Producción Científica Profesorado

Thermoplastic biofilms obtained from an arabinoxylan-rich fraction from brewers spent grain: physicochemical characterization and thermal analysis.



Gonzalez Olivares, Luis Guillermo

2022

Yari Jaguey-Hernández, Cecilio Tapia-Ignacio, Karina Aguilar-Arteaga, Luis Guillermo González-Olivares, Evodio Pedro Castañeda-Ovando, Nelly Cruz-Cansino, Deyanira Ojeda-Ramirez & Araceli Castañeda-Ovando. Thermoplastic biofilms obtained from an arabinoxylan-rich fraction from brewers spent grain: physicochemical characterization and thermal analysis. Biomass Conv. Bioref. (2022).


Abstract


Brewers? spent grain is an important source of non-starch polysaccharides, such as arabinoxylans. In this paper, a fraction rich in arabinoxylans was extracted from brewers? spent grain (BSG-AX) by alkaline medium; was characterized by FTIR spectroscopy, scanning electronic microscopy (SEM), and zeta potential; and was used to prepare fourteen thermoplastic films by addition of two plasticizers (glycerol and polypropylene glycol) and a defoamer agent (coconut oil). All films were characterized by FTIR spectroscopy, SEM, and thermogravimetric analysis (TGA). Activation energy (Ea) of the thermal film?s degradation were determined using four models (Broido, Horowitz-Metzger, Coats-Redfern, and Kissigner-Akahira-Sunose), which provide overall kinetic data. Likewise, microbiological analysis of films was performed for assessing their safety. FTIR spectra of BSG-AX films confirm the presence of distinctive functional groups for arabinoxylan, whereas their morphology shows a homogeneous surface structure. Zeta-potential measures suggest that BSG-AX can be considered as a neutral polysaccharide between pH 3 to 10 (values from???3.44 to???9.17 mV). Two stages of mass loss were observed in the plasticized films and three for the control (at 113?174 C, 215?350 C, and 487?598 C). The addition of the plasticizer and defoamer agents increases the Ea of the films; namely, the films show greater thermal stability. Besides, the microbiological analysis suggests that the BSG-AX films are safe (absence of total coliforms and 102 CFU g?1 of aerobic mesophylls). In conclusion, plasticized films prepared with BSG-AX have characteristics such as resistance to a wide range of temperatures and can be used as packaging materials.



Producto de Investigación




Artículos relacionados

LIBERACIÓN DE PÉPTIDOS BIOACTIVOS POR BACTERIAS LÁCTICAS EN LECHES FERMENTADAS COMERCIALES

CARACTERIZACIÓN DEL ALMIDÓN DE DOS VARIEDADES DE SORGO DEL ESTADO DE TAMAULIPAS

Evaluación del Efecto Antihiperglucémico del Bagazo de Naranja (Citrus sinensis var. Valencia) en Es...

Incidence and Behavior of Salmonella and Escherichia coli on Whole and Sliced Zucchini Squash (Cucur...

Chemical and Physicochemical Properties of Maize Starch After Industrial Nixtamalization

CARACTERIZACIÓN FISICOQUÍMICA DEL LACTOSUERO EN EL VALLE DE TULANCINGO

EFECTO DEL EXTRACTO DE LA CEREZA EN LA REDUCCIÓN DE COLESTEROL.

Frequency and Behavior of Salmonella and Escherichia coli on Whole and Sliced Jalapeño and Serrano P...

Behavior of Salmonella Typhimurium, Staphylococcus aureus, Listeria monocytogenes, and Shigella flex...

Composición química de cebadas cultivadas bajo diferentes condiciones de labranza en tres localidade...