Producción Científica Profesorado

Eigenvalues, K-theory and Minimal Flows



Itzá Ortiz, Benjamín Alfonso

2007

Itzá-Ortiz, B., Eigenvalues, K-theory and minimal flows, Canad. J. Math. 59(2007), 596-613. Preprinted


Abstract


Let (Y, T) be a minimal suspension flow built over a dynamical system (X, S) and with (strictly positive, continuous) ceiling function f : X ! R. We show that the eigenvalues of (Y, T) are contained in the range of a trace on the K0-group of (X, S). Moreover, a trace gives an order isomorphism of a subgroup of K0 (C(X) ?S Z) with the group of eigenvalues of (Y, S). Using this result, we relate the values of t for which the time-t map on minimal suspension flow is minimal, with the K-theory of the base of this suspension.



Producto de Investigación UAEH




Artículos relacionados

Una Conjetura de Polya y Szego para el Tono Fundamental de Membranas Poligonales

BlochFloquet waves and localisation within a heterogeneous waveguide with long cracks

REALIZATION OF A SIMPLE HIGHER DIMENSIONAL NONCOMMUTATIVE TORUS AS A TRANSFORMATION GROUP C*-ALGEBRA

CONTINUOUS AND DISCRETE FLOWS ON OPERATOR ALGEBRAS

Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal Acti...

Propagation of Elastic Waves along Interfaces in Layered Beams

Quasi-periodic breathers in Hamiltonian networks of long-range coupling

Eigenvalues, K-theory and Minimal Flows

Eigenfunction expansions and spectral projections for isotropic elasticity outside an obstacle

D-Branes in Orientifolds and Orbifolds and Kasparov KK-Theory