Producción Científica Profesorado

Eigenvalues, K-theory and Minimal Flows



Itzá Ortiz, Benjamín Alfonso

2007

Itzá-Ortiz, B., Eigenvalues, K-theory and minimal flows, Canad. J. Math. 59(2007), 596-613. Preprinted


Abstract


Let (Y, T) be a minimal suspension flow built over a dynamical system (X, S) and with (strictly positive, continuous) ceiling function f : X ! R. We show that the eigenvalues of (Y, T) are contained in the range of a trace on the K0-group of (X, S). Moreover, a trace gives an order isomorphism of a subgroup of K0 (C(X) ?S Z) with the group of eigenvalues of (Y, S). Using this result, we relate the values of t for which the time-t map on minimal suspension flow is minimal, with the K-theory of the base of this suspension.



Producto de Investigación UAEH




Artículos relacionados

Una Conjetura de Polya y Szego para el Tono Fundamental de Membranas Poligonales

Matematicas en la distribucion espacial de poblaciones

Eigenfunction expansions and spectral projections for isotropic elasticity outside an obstacle

BlochFloquet waves and localisation within a heterogeneous waveguide with long cracks

Eigenvalues, K-theory and Minimal Flows

Multichannel Detrended Fluctuation Analysis Reveals Synchronized Patterns of Spontaneous Spinal Acti...

Quasi-periodic breathers in Hamiltonian networks of long-range coupling

Slow decay of end effects in layered structures with an imperfect interface

REALIZATION OF A SIMPLE HIGHER DIMENSIONAL NONCOMMUTATIVE TORUS AS A TRANSFORMATION GROUP C*-ALGEBRA

CONTINUOUS AND DISCRETE FLOWS ON OPERATOR ALGEBRAS