2009
Arturo Criollo and Ernesto Pérez-Chavela. Foliation of the phase space for the Kepler Problem with anisotropic perturbations. Qualitative Theory of Dynamical Systems Vol. 7 No. 2 p. 435-449. 2009.
Abstract
We study a particular perturbation of the Kepler problem givenby the potential U(r, ?) = ?1/r ? b/r2(1 + cos2 ?), where b and are theperturbation parameters. This problem has two first integrals in involution:the first one is the well known Hamiltonian H = (p2r+p2?/r2)?1/r?b/r2(1+ cos2 ?); the second one is given by G = p2?/2 ? b/(1 + cos2 ?). The setsH?1(h), G?1(g) and H?1(h)G?1(g) are invariant under the flow of theHamiltonian system. From here we obtain a nice foliation of the phase space.In this paper we study the topology of the above foliation.
Resolución de problemas y uso de tecnologías digitales en el desarrollo de competencias matemáticas
International Journal of Pure and Applied Mathematics
Foliation of the Phase Space for the Kepler Problem with Anisotropic Perturbations
Enseñanza de la Ley de Grashof con Cabri Geometry: Una Tarea de Aprendizaje
RADICAL EXTENSIONS AND CROSSED HOMOMORPHISMS
Raíces Cuadradas y Uso de Tecnología en el Aprendizaje de Matemáticas
FRACCIONES PARCIALES: ELEMENTOS PARA UNA DISCUSIÓN EN EL AULA
Contrasting and Looking into Some Mathematics Education Frameworks