Producción Científica Profesorado

Addition of manganese to alumina and its influence on the formation of supported NiMo catalysts for dibenzothiophene hydrodesulfurization application



Guevara Lara, Alfredo

2016

A. López-Benítez, G. Berhault. A. Guevara-Lara, Journal of Catalysis, 2016, 344, 59-76.https://doi.org/10.1016/j.jcat.2016.08.015


Abstract


The influence of adding manganese to NiMo/Al2O3 hydrodesulfurization (HDS) catalysts was studied by impregnation of manganese acetate at the surface of an Al2O3 support obtained by a sol?gel method. The as-obtained Mn-containing alumina supports were then impregnated with nickel nitrate, Ni(NO3)26H2O, and ammonium heptamolybdate, (NH4)6Mo7O244H2O, dried at 120 C for 12 h, and finally calcined in air at 400 C for 4 h. The different solids were then sulfided using 10 mol.% H2S in H2 at 400 C for 4 h and evaluated in the hydrodesulfurization of dibenzothiophene (DBT) at T = 300 C and P = 30 bars H2. Catalysts were characterized at each step of the preparation: after drying, after calcination, and finally in the sulfided state. Both the pH of the impregnation solution of Ni and Mo precursors and the Mn content (1 or 5 mol.% as MnO) strongly influence the nature of the Ni and Mo species formed. In this respect, the pH of the impregnation solution plays a critical role at low Mn content (1 mol.%). While impregnation at pH 7 results in well-dispersed molybdate species easily sulfided into a highly Ni-promoted MoS2 phase, increasing the pH to 9 favors the formation of more polymerized Mo species and the loss of some nickel into a NiMnO spinel, leading after sulfidation to a lower promotion degree and a lower dispersion. At higher Mn content (5 mol.%), whatever the pH of impregnation, the formation of MoO3 clusters and the loss of Ni into a NiMnO spinel phase leads to deleted HDS activity after sulfidation. Finally, our results also demonstrate a strong positive influence of manganese on the intrinsic activity of the NiMoS phase if conditions of preparation are optimized.



Producto de Investigación




Artículos relacionados

Zinc Electrodeposition from Chloride Solutions onto Glassy Carbon Electrode

Estudio de las Interacciones Ácido Húmico-Metales Pesados y Determinación de sus Constantes de Estab...

Mercury Ions Removal from Aqueous Solution Using an Activated Composite Membrane

Characterization of Main Anthocyanins Extracted from Pericarp Blue Corn by MALDI-ToF MS

Electrochemical kinetic study about cobalt electrodeposition onto GCE and HOPG substrates from sulfa...

A Semiempirical PM6 Study of Some Aminopyrimidine Derivatives and their Interaction with an Iron Sur...

A theoretical quantum study on the distribution of electrophilic and nucleophilic active sites on Ag...

Effect of TiO2-Al2O3 sol-gel supports on the superficial Ni and Mo species in oxidized and sulfided ...

Nucleation and Growth Kinetics of Electrodeposited Sulfate-Doped Polypyrrole: Determination of the D...

Nucleation and growth of cobalt onto different substrates: Part II. The upd-opd transition onto a go...