2014
Electrochemical Synthesis of Palladium Nanoparticles on HOPG Electrode. David Garrido-Márquez, L.H. Mendoza-Huizar, Clara Hilda-Rios-Reyes, C. Galán-Vidal, Advanced Materials Research Vol. 976 (2014) pp 139-143. ISSN. 1662-8985. DOI:10.4028/www.scientific.net/AMR.976.139
Abstract
In the present work, it was analyzed the palladium electrodeposition onto High Oriented Pyrolitic Graphite (HOPG) electrode from an aqueous solution (0.001 M PdCl2 + 1M NH4Cl (pH 5)) through cyclic voltammetry and chronoamperometry. The analysis of voltammetric data showed that palladium electrodeposition is controlled by mass transfer. From the potentiostatic study it was calculated the diffusion coefficient, the number of active nucleation sites (N0) and the rate constant of the proton reduction process (kPR). It was seen that an increment of N0 and kPR values is obtained when the overpotential applied is increased.
Synthesis, Characterization and Catalytic Activity of Supported NiMo Catalysts