Cetonas y aldehídos

Resumen

De todos los compuestos orgánicos, los aldehídos y las cetonas son los que más se encuentran, tanto en la naturaleza como en la industria química. En la naturaleza, una buena parte de las sustancias necesarias para los organismos vivos son los aldehídos o cetonas. En la industria química se producen aldehídos y cetonas simples en grandes cantidades para utilizarlas como disolventes y materias primas, con el fin de preparar muchos otros compuestos.

En la Química Orgánica existen agrupaciones de átomos que les confieren a los compuestos orgánicos sus características químicas, o capacidad de reaccionar con otras sustancias específicas. Son los llamados Grupos Funcionales. La mayor parte de las sustancias Orgánicas solo se componen de Carbono, Oxígeno e Hidrógeno, pero la forma en que están enlazado estos elementos puede dar origen a distintos compuestos, que pertenecerán a distintos Grupos funcionales, como lo son los aldehídos y las cetonas.


Palabras clave: aldehído, cetona, compuestos.

Abstract

Of all the organic compounds, aldehydes and ketones are the most found, both in nature and in the chemical industry. In nature, a good part of the substances necessary for living organisms are the aldehydes or ketones. In the chemical industry simple aldehydes and ketones are produced in large quantities for use as solvents and raw materials in order to prepare many other compounds. In Organic Chemistry there are clusters of atoms that give organic compounds their chemical characteristics, or ability to react with other specific substances. These are called Functional Groups. Most of the organic substances are only composed of carbon, oxygen and hydrogen, but the way in which these elements are bound can give rise to different compounds, which will belong to different functional groups, such as aldehydes and ketones.


Keywords: Aldehyde, ketone, compounds.

Definición de Cetonas y Aldehídos

Los aldehídos y las cetonas son funciones en segundo grado de oxidación. Se consideran derivados de un hidrocarburo por sustitución de dos átomos de hidrógeno en un mismo carbono por uno de oxígeno, dando lugar a un grupo oxo (=O). Si la sustitución tiene lugar en un carbono primario, el compuesto resultante es un aldehído, y se nombra con la terminación -al. Si la sustitución tiene lugar en un carbono secundario, se trata de una cetona, y se nombra con el sufijo -ona.

El grupo funcional conocido como grupo carbonilo, un átomo de carbono unido a un átomo de oxigeno por un doble enlace- se encuentra en compuestos llamados aldehídos y cetonas.

En los aldehídos. El grupo carbonilo se une a un átomo de hidrógeno y a un radical Alquilo, con excepción del formaldehído o metanol.

En las cetonas, el carbonilo está unido a dos radicales que pueden ser iguales, diferentes, alquílicos. La fórmula abreviada de una cetona es RCOR.

Los aldehídos y las cetonas son muy reactivos, pero los primeros suelen ser los más reactivos.

El grupo carbonilo se encuentra unido a dos radicales hidrocarbonados: si éstos son iguales, las cetonas se llaman simétricas, mientras que si son distintos se llaman asimétricas.

Según el tipo de radical hidrocarbonado unido al grupo funcional, Los aldehídos pueden ser: alifáticos, R-CHO, y aromáticos, Ar-CHO; mientras que las cetonas se clasifican en: alifáticas, R-CO-R', aromáticas, Ar-CO-Ar, y mixtas; R-CO-Ar, según que los dos radicales unidos al grupo carbonilo sean alifáticos, aromáticos o uno de cada clase, respectivamente.

Nomenclatura de Aldehídos y Cetonas

Para denominar los aldehídos y cetonas se puede usar el sistema IUPAC. En ambos casos primero se debe encontrar la cadena hidrocarbonada más larga que contenga al grupo carbonilo. La terminación -o de los hidrocarburos se reemplaza por -al para indicar un aldehído.

Las cetonas se denominan cambiando la terminación -o de la cadena carbonada lineal más larga que contienen al grupo carbonilo por la terminación -ona del carbonilo en la cadena carbonada.

Algunos aldehídos y cetonas comunes
Fórmula condensada Nombre según IUPAC Nombre común
Aldehído    
HCHO Metanal Formaldehído
CH3CHO Etanal Acetaldehído
CH3CH2CHO Propanal Propionaldehído
CH3CH2CH2CHO Butanal Butiraldehído
C6H5CHO Benzaldehído Benzaldehído
Cetonas    
CH3COCH3 Propanona Cetona (dimetilcetona)
CH3COC2CH5 Butanona Metiletilcetona
C6H5COC6H5 Difenilmetanona/cetona Benzofenona
C6H10O Clicohexanona Ciclohexanona

Propiedades físicas

Las características especiales del grupo carbonilo influyen en las propiedades físicas de las cetonas y de los aldehídos.

Punto de ebullición: temperatura de ebullición mayor que hidrocarburos del mismo peso molecular, pero menor que el de los alcoholes y ácidos carboxílicos comparables. Esto se debe a la formación de dipolos y a la ausencia de formación de puentes de hidrógeno intramoleculares en éstos compuestos.

Los aldehídos y las cetonas no pueden formar enlaces intermoleculares de hidrógeno, porque al carecer de grupos hidroxilo (-OH) sus puntos de ebullición son más bajos que los alcoholes correspondientes. Sin embargo, los aldehídos y las cetonas pueden atraerse entre sí mediante las interacciones polar-polar de sus grupos carbonilo y sus puntos de ebullición son más altos que los de los alcanos correspondientes.

Con excepción del metanol, que es gaseoso a la temperatura ambiente, la mayor parte de los aldehídos y cetonas son líquidos y los términos superiores son sólidos. Los primeros términos de la serie de los aldehídos alifáticos tienen olor fuerte e irritante, pero los demás aldehídos y casi todas las cetonas presentan olor agradable por lo que se utilizan en perfumería y como agentes aromatizantes.

Solubilidad: a medida que aumenta el tamaño de las moléculas, disminuye la solubilidad de los compuestos. Los aldehídos y las cetonas pueden formar enlaces de hidrógeno con las moléculas polares del agua. Los primeros miembros de la serie (formaldehído, acetaldehído y acetona) son solubles en agua en todas las proporciones. A medida que aumenta la longitud de la cadena del hidrocarburo, la solubilidad en agua decrece. Cuando la cadena carbonada es superior a cinco o seis carbonos, la solubilidad de los aldehídos y de las cetonas es muy baja. Como era de suponer, todos los aldehídos y cetonas son solubles en solventes no polares.

Estado físico: bajo peso molecular (gases), peso molecular intermedio (líquidos) y compuesto pesados (sólidos).

Propiedades químicas

Las cetonas y los aldehídos se comportan como ácidos debido a la presencia del grupo carbonilo, esto hace que presenten reacciones típicas de adición nucleofílica.

  • Reacciones de adición nucleofílica
  • Reducción o hidrogenación catalítica
  • Reacciones de sustitución halogenada
  • Reacciones de condensación aldólica
  • Reacciones de oxidación.

Aplicaciones de Aldehídos y Cetonas

Se ha aislado una gran variedad de aldehídos y cetonas a partir de plantas y animales; muchos de ellos, en particular los de peso molecular elevado, tienen olores fragantes o penetrantes. Por lo general, se les conoce por sus nombres comunes, que indican su fuente de origen o cierta propiedad característica. A veces los aldehídos aromáticos sirven como agentes saborizantes. El benzaldehído (también llamado "aceite de almendra amargas") es un componente de la almendra; es un líquido incoloro con agradable olor a almendra. El cinamaldehído da el olor característico a la esencia de canela. La vainilla que produce el popular sabor a

vainilla durante un tiempo se obtuvo solo a partir de las cápsulas con formas de vainas de ciertas orquídeas trepadoras. Hoy día, la mayor parte de la vainilla se produce sintéticamente:

La vainillina es una molécula interesante porque tiene diferentes grupos funcionales: unos grupos aldehídos y un anillo aromático, por lo que es un aldehído aromático.

El alcanfor es una cetona que se encuentra en forma natural y se obtiene de la corteza del árbol del mismo nombre.

Tiene un olor fragante y penetrante; conocido desde hace mucho tiempo por sus propiedades medicinales, es un analgésico muy usado en linimentos. Otras dos cetonas naturales, beta-ionona y muscona, se utilizan en perfumería. La beta ionona es la esencia de violetas. La muscona, obtenida de las de las glándulas odoríferas del venado almizclero macho, posee una estructura de anillo con 15 carbonos.

El aldehído más simple, el formaldehído, es un gas incoloro de olor irritante. Desde el punto de vista industrial es muy importante, pero difícil de manipular en estado gaseoso; suele hallarse como una solución acuosa al 40 % llamada formalina; o en forma de un polímero sólido de color blanco denominado paraformaldehído.

Si se caliente suavemente, el paraformaldehido se descompone y libera formaldehído:

La formalina se usa para conservar especímenes biológicos. El formaldehído en solución se combina con la proteína de los tejidos y los endurece, haciéndolos insolubles en agua. Esto evita la descomposición del espécimen. La formalina también se puede utilizar como antiséptico de uso general. El empleo más importante del formaldehído es en la fabricación de resinas sintéticas. Cuando se polimeriza con fenol, se forma una resina de fenol formaldehído, conocida como baquelita. La baquelita es un excelente aislante eléctrico; durante algún tiempo se utilizó para fabricar bolas de billar.

El acetaldehído es un líquido volátil e incoloro, de olor irritante. Es una materia prima muy versátil que se utiliza en la fabricación de muchos compuestos.

Si el acetaldehído se calienta con un catalizador ácido, se polimeriza para dar un líquido llamado paraldehído.

El paraldehído se utilizó como sedante e hipnótico; su uso decayó debido a su olor desagradable y al descubrimiento de sustitutos más eficaces.

La cetona industrial más importante es la acetona, un líquido incoloro y volátil que hierve a 56° C. Se utiliza como solvente de resinas, plásticos y barnices; además es miscible con agua en todas las proporciones. La acetona se produce en el cuerpo humano como un subproducto del metabolismo de las grasas; su concentración normal es menor que 1 mg./100 ml de sangre. Sin embargo, en la diabetes mellitus, la acetona se produce en cantidades mayores, provocando un aumento drástico de sus niveles en el cuerpo.

Aparece en la orina y en casos graves se puede incluso detectar en el aliento.

La metilcetona se usa industrialmente para eliminar las ceras de los aceites lubricantes, durante la refinación; también es un solvente común en los quita esmaltes de las uñas.

Bibliografía

Meislich, Herbert , Nechamkin, Howard. Química Orgánica. Tercera Edición. Mc Graw Hill. Bogotá Colombia.

Solomons, T.W. Graham e María Cristina Sangines Franchini Química orgánica. México, D.F.: Limusa, 1985

http://www2.udec.cl/quimles/general/aldehidos_y_cetonas.htm

[a] Profesor Escuela Preparatoria No. 3


Compartir en: