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We study a two-dimensional nonvibrating granular system as a model of a magnetorheological fluid. The
system is composed of magnetic steel particles on a horizontal plane under a vertical sinusoidal magnetic field
and a horizontal static magnetic field. When the amplitude of the horizontal field is zero, we find that the motion
of the particles has characteristics similar to those of Brownian particles. A slowing down of the dynamics is
observed as the particle concentration increases or the magnitude of the vertical magnetic field decreases. When
the amplitude of the horizontal field is nonzero, the particles interact through effective dipolar interactions. Above
a threshold in the amplitude of the horizontal field, particles form chains that become longer and more stable as
time increases. For some conditions, at short time intervals, the average chain length as a function of time exhibits
scaling behavior. The chain length distribution at a given time is a decreasing exponential function. The behavior
of this granular system is consistent with theoretical and experimental results for magnetorheological fluids.
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I. INTRODUCTION

Magnetorheological (MR) fluids have interesting properties
that have attracted attention in both applied and basic research
fields. They have many potential applications in systems
where controlled energy dissipation is required [1,2]. These
systems exhibit notable changes in mechanical properties such
as the viscosity, yield stress, and elastic modulus when a
magnetic field is applied [3]. In the absence of magnetic
fields, micron-size particles in an MR fluid move randomly
owing to collisions with the molecules of the liquid. In this
Brownian motion, temporal correlations fall very rapidly over
time. When a magnetic field is turned on, the particles acquire
dipolar magnetic moments that, on average, are aligned in
the magnetic field direction. Owing to the anisotropy of
the dipolar interaction, the interaction between two particles
can be attractive or repulsive depending on their relative
positions [4]. After the magnetic field reaches a threshold,
the magnetic interactions overcome the thermal interactions
among particles, and an aggregation process begins. At the
beginning of the process, the chains are usually one particle
in thickness. As dipolar interactions continue, the chains start
aggregating laterally, forming columns through a zippering
mechanism [4–6]. Two chains aggregate laterally depending
on whether they are in-registry or off-registry [4]. Moreover,
the Brownian motion causes mechanical deformation in the
chains, which leads to an anisotropy of the magnetic field,
enhancing and hastening this lateral aggregation. Particle size
dispersion also contributes to lateral aggregation.

The kinetic theory states that at short time intervals,
Brownian particles follow ballistic behavior that becomes
diffusive after collisions with other particles occur [7]. In
the ballistic regime, the temporal dependence of the mean
squared displacement reveals quadratic behavior, whereas in
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the diffusive regime, the behavior is linear. In an MR fluid,
when a magnetic field is applied, the transition from diffusive
behavior to an arrested state occurs so quickly that it cannot
be observed in detail at short time intervals. To observe the
behavior at short time scales in detail, it is necessary to observe
the particle trajectories with a time resolution on the order of
nanoseconds and a spatial resolution on the order of molecular
sizes. Thus, detailed study of the transition from ballistic to
diffusive behavior of an ensemble of magnetic Brownian parti-
cles has been out of reach using current technology. However,
some progress has been made in that direction; for instance,
Refs. [8–10] report that by using an optical interferometric
technique, the full transition from ballistic to diffusive motion
of a single confined Brownian particle was observed in detail.

The slowing down of the dynamics in MR fluids as the
magnetic field increases shares some characteristics with the
slowing down of the dynamics observed in a glass-forming
liquid when the temperature decreases [11]. To study the
slowing down of a glass-forming liquid with decreasing
temperature, colloidal and granular systems have been used
[12–18]. Some of the advantages of these macroscopic models
are that the particles can be easily tracked in more detail
than particles in molecular systems and that the interparticle
interactions can be modulated by active controls [18,19].

In this study, we model the phenomena occurring in MR
fluids on the basis of a nonvibrating granular system under
the effect of two magnetic fields: a vertical sinusoidal field
and a horizontal static magnetic field. In our two-dimensional
(2D) system, particle motions are effectively restricted to the
horizontal plane in which the particles lie. Thus, it differs from
vertically vibrated granular systems, where particles leave the
plane as they move, resulting in an effective dimension greater
than two dimensions [17]. In our system, we can track the
particles for a long time period, provided they remain within
the field of view. We found that in the absence of the horizontal
magnetic field, the particles exhibit quasiballistic behavior
on short time scales, whereas at long time scales, diffusive
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FIG. 1. Schematic diagram of the experimental setup. The verti-
cal magnetic field is sinusoidal and the horizontal field is static.

behavior appears. This indicates that our system is suitable
for modeling Brownian motion. Moreover, we found that our
system is suitable for studying the role of thermal fluctuations
in general, because the sinusoidal magnetic field, a parameter
that plays the role of the temperature, is easily controlled by
changing the intensity of the field. One example of the use of a
macroscopic system to model a magnetic colloidal system can
be found in Ref. [20]. There, it is reported that a system based
on non-Brownian magnetic particles dispersed in a liquid,
under mechanical perturbations, is suitable for studying the
structures formed in a magnetic colloid [21].

In Sec. II, we describe the experimental setup. In Sec. III,
we examine the slowing down of the dynamics as a function of
both the particle concentration and the intensity of the vertical
magnetic field. In Sec. IV, we analyze the dynamical and
structural properties of the chainlike structures that are formed
when a horizontal field is applied; we determine the growth
rate and the distribution of chain lengths. Finally, in Sec. V,
we provide our final comments and remarks.

II. EXPERIMENTAL SETUP

We conduct our experiments using a modified version of the
experimental setup used in Ref. [18]. We use up to 3000 steel
beads (1-mm diameter) confined in a circular plate 72 mm
in diameter. The particles are homogeneous in shape and
size to avoid the effects of size polydispersity. Figure 1
schematically illustrates the experimental setup. The system
is located horizontally between two pairs of Helmholtz coils
that produce a vertical oscillating field (Bosc) and a horizontal
static field (Bstatic). The coils that produce Bosc are fed by
a Kepco power amplifier driven by a sinusoidal signal. This
signal is sent to the amplifier from a PC through a DAQ NI data
acquisition card. The frequency of the signal is 9.25 Hz. The
coils that produce Bstatic are fed by a PASCO power supply.

The experiments are recorded using a CCD videocamera
at 30 fps in AVI interlaced format. The observation field is
smaller than the confining boundaries of the sample to avoid
edge effects. From the videos, we obtain 20 000 frames. During
the decompression process, we use a filter to separate the even

and odd frames; thus, we obtain 60-fps resolution. We obtain
the trajectories of the particles by using IMAGEJ and its plugin
MOSAIC [22,23]. These trajectories are used to obtain the mean
squared displacement 〈�r2(t)〉 and the intermediate scattering
function Fs(k,t) using programs we designed. We used stacks
of frames to calculate the radial distribution function g(r) and
the effective potential UE(r). We study these quantities under
several particle concentrations, vertical magnetic fields, and
horizontal magnetic fields.

III. STRUCTURE AND DYNAMICS AS A FUNCTION
OF PARTICLE CONCENTRATION AND MAGNITUDE

OF THE VERTICAL MAGNETIC FIELD

We characterize the structure and dynamics of the system
for various particle concentrations and amplitudes of the verti-
cal field while keeping the horizontal field Bstatic at zero. Here,
the particle concentration is defined as φs = Nπd2

4A
, where d is

the diameter of the beads, and N is the number of particles in
an area A. First, we vary the particle concentration in the range
0.013 < φs < 0.545, keeping Bosc = 46.7 G. Figure 2 shows
some typical trajectories observed in our system for different
particle concentrations. These trajectories are similar to those
observed in an ensemble of Brownian particles. At low particle
concentrations, the particles enter and leave the observation
window quickly, colliding a few times with other particles
[Fig. 2(a)]. As the particle concentration increases, collisions
are more frequent, and the particles spend more time within the
field of view [Fig. 2(b)]. Furthermore, at higher concentrations,
a greater slowing down of the dynamics is observed, and the
particles are trapped in small cages [Fig. 2(c)].

We calculate 〈�r2(t)〉 and g(r) for several particle concen-
trations. In Fig. 3, we plot 〈�r2(t)〉 for some of the particle
concentrations studied here. At low particle concentrations
and short time intervals, a relation of the form 〈�r2(t)〉 ∼ t1.8

can be fitted to the curves (not shown in the figure); thus, in
this regime, the motion is quasiballistic. This regime is not
studied here. At longer time intervals, the behavior changes,
and it takes the form 〈�r2(t)〉 ∼ t , showing diffusive behavior.
As particle concentration increases, the slope of the curves
becomes smaller, and the ballistic regime vanishes. Further
increases in the particle concentration produce qualitative
changes in 〈�r2(t)〉 as the particles pass from diffusive to
subdiffusive and then to confined behavior.

We fit a linear function to each curve of the mean squared
displacement. From the slope of each curve, and using the
Einstein relation 〈�r2(t)〉 = 4Dt , we determine the diffusivity
D. Because some of the 〈�r2(t)〉 curves show considerable
curvature, the diffusivity we report is in fact a mean value. For
low particle concentrations, the diffusivity is large, and the par-
ticles leave the field of observation very quickly. Thus, in these
cases we cannot follow single particles for long times. The
reentrant trajectories are taken as new trajectories. Here, after
1.66 s, large fluctuations appear in 〈�r2(t)〉 owing to the lack of
statistics because, at this point, the long trajectories are few. In
the intermediate particle concentration regime, the dynamics
is subdiffusive. In this regime, we can follow the trajectories
for longer times. At high particle concentrations, arrested
trajectories dominate the dynamics. Figure 4 shows the D

value for each concentration studied here. We can observe that

022601-2



DYNAMICAL AND STRUCTURAL PROPERTIES OF A . . . PHYSICAL REVIEW E 95, 022601 (2017)

FIG. 2. Typical trajectories. (a) At low concentrations, the parti-
cles quickly leave the observation field. (b) At higher concentrations,
the trajectories are larger and more intricate. The particles stay longer
within the field of observation, sweeping a larger region than at
low concentrations. (c) At high concentrations, only a few particles
are still diffusing, and the effect of “caging” appears, trapping the
particles in arrested states. The magnetic field in all three cases is
Bosc = 46.7 G.

D decreases very quickly, going to zero around φs = 0.52.
This indicates that at this point, the system becomes arrested.

Figure 5 shows g(r) for several particle concentrations. We
observe that at low concentrations, a depletion zone appears in
the range 1 < r/d < 2 [Fig. 5(a)]. The reason is that, at very
low concentrations, the particles are free to move to almost
any position and avoid being in close proximity to each other
because of repulsive interactions. These repulsive interactions
arise because, on average, the dipolar moments of the particles

FIG. 3. Mean squared displacement for several particle concen-
trations. Low particle concentrations show quasiballistic (at short time
scales) and diffusive (at long time scales) behavior. At high particle
concentrations, the particles became arrested. The magnetic field is
Bosc = 46.7 G. (Inset) Mean squared displacement for a concentration
of φs = 0.15; the green and red lines have slopes of 2 (ballistic) and
1 (diffusive), respectively.

are parallel. For concentrations greater than φs = 0.076, a
small peak around r/d = 1.25 and a hump around r/d = 1.75
can be observed. The former appears because the number of
collisions increases with the concentration, so the probability
of finding a particle at a distance of around r/d = 1 increases
despite the repulsive interactions. Moreover, as the particle
concentration increases, some particles aggregate, and the
peak is shifted toward r/d = 1. The hump around r/d = 1.75
shows that, on average, particles are at a certain distance from
each other. As the particle concentration increases, collisions
become more frequent, and the particles change direction more
often; thus, they are forced to be closer to each other, and
the hump is shifted toward the left [Fig. 5(b)]. As shown in
the graphs, g(r) evolves toward a liquidlike configuration as

FIG. 4. Diffusivity for different particle concentrations. Note that
the curve goes down very quickly as the particle concentration
increases.

022601-3



F. DONADO, J. M. SAUSEDO-SOLORIO, AND R. E. MOCTEZUMA PHYSICAL REVIEW E 95, 022601 (2017)

FIG. 5. Radial distribution function for different particle concen-
trations. (a) At low concentrations, the system exhibits a significant
depletion zone in the range of 1–2 particle diameters. (b) and (c) For
intermediate and high concentrations, the system starts exhibiting
some features similar to those of a liquid. The magnetic field is
Bosc = 46.7 G.

the particle concentration increases. For the highest particle
concentrations, we observe the characteristic curve for a liquid,
although most of the particles in the system are arrested
[Fig. 5(c)]. Thus, we have a system that evolves from gaslike
behavior to solidlike behavior with a liquidlike structure,
which is characteristic of the glassy state.

We determined the effective potential UE(r) to obtain in-
formation about the effective interactions among the particles
in the system. We follow the method used in Ref. [18]. Briefly,
it starts from the Ornstein-Zernike equation,

h(r12) = c(r12) + φs

∫
d3 r3c(r13)h(r32), (1)

FIG. 6. Effective potential in the HNC approximation for some
of the concentrations studied here.

where h(r) = g(r) − 1 is the total correlation function, and
c(r) is the direct correlation function. In the frequency
space, using the fast Fourier transform (FFT), this relation
is transformed to

ĉ(k) = ĥ(k)

1 − φsĥ(k)
. (2)

From the experimental data, we determined ĥ(k) using the
FFT. After determining ĉ(k), we return to real space by using
the inverse FFT to obtain c(r). The relationship between c(r)
and the effective potential UE(r) is approximately given by
a closure relationship. Here, we use the hypernetted chain
(HNC) approximation [7], which states that

h(r) − c(r) = ln g(r) + UE(r)/TE, (3)

where TE is the effective temperature. This relation is solved
for UE(r)/TE . Here, we have followed the usual practice of
setting kB = 1 in granular systems [18].

In Fig. 6, we plot UE(r)/TE in the HNC approximation for
different concentrations. At low concentrations, the repulsive
part of the potential governs the dynamics of the system.
Here, the effective potential has a very shallow well around
one-particle diameter and then becomes almost flat [Figs. 6(a)
and 6(b)]. As the concentration increases, the first well
becomes deeper, and other wells appear [Fig. 6(c)]. For the
three highest concentrations, the effective potential exhibits
periodic behavior [Fig. 6(d)].

As we stated above, the effective temperature of the system
can be varied by changing Bosc. In Fig. 7, we depict the
behavior of the measured 〈�r2(t)〉 for different magnitudes
of Bosc with φs = 0.15. As expected, as the temperature
decreases, 〈�r2(t)〉 decreases. Figure 8 shows the behavior of
D as a function of the oscillating magnetic field (Bosc). After
reaching a threshold value (around 6 G), D increases linearly as
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FIG. 7. Mean squared displacement for different magnitudes of
the magnetic field (Bosc) with φs = 0.15. Here, we observe a transition
from diffusive to arrested states.

the temperature increases. Figure 9 shows g(r) and UE(r)/TE

for φs = 0.15 and different magnitudes of the oscillating field.
As Bosc decreases, we can observe an evolution similar to that
observed for increasing particle concentration. As we decrease
the magnitude of the field, the system evolves toward a state
that exhibits a liquidlike structure [Fig. 9(a)]. The effective
potential also supports this picture; it evolves toward a state
with several effective attractive potential wells [Fig. 9(b)].

These results show that the dynamics and structure of the
system depend on both the particle concentration and the
magnitude of the oscillating field; in vibrating granular sys-
tems, the structure depends only on the particle concentration.
From the above results, we select an oscillating field (effective
temperature) Bosc = 15 G and a particle concentration φs =
0.15. With these parameters, the particles move diffusively.
The inclusion of a horizontal magnetic field in this system
under these conditions is studied in the next section.

FIG. 8. Diffusivity at different magnitudes of the oscillating
(vertical) magnetic field. For small field magnitudes, the diffusivity
increases following a quadratic function (red continuous line) as the
magnitude of the field increases. For large magnitudes, the increment
is linear (green continuous line).

FIG. 9. (a) Radial distribution function for a fixed concentration
φs = 0.15 and different magnitudes of the vertical oscillating field
Bosc. (b) Effective potential in the HNC approximation for different
oscillating magnetic fields.

IV. SYSTEM UNDER A HORIZONTAL MAGNETIC FIELD

To study the aggregation process due to dipolar interactions
such as those studied in dipolar fluids, including MR fluids,
we analyze the behavior of the system at Bosc = 15 G, a
concentration φs = 0.15, and various horizontal magnetic
fields. In Fig. 10, we show snapshots of the chain formation
under different horizontal magnetic fields. We can observe
that when the field is small (16 G), no aggregates are
formed [Fig. 10(a)]. When Bstatic = 20 G, a few aggregates
that are weakly joined begin to appear [Fig. 10(b)]. For
Bstatic = 23.5 G, the aggregates increase and are more stable
[Fig. 10(c)], and finally, for Bstatic = 41.5 G, the aggregates
that form are tightly bound [Fig. 10(d)].

Figure 11 shows the behavior of 〈�r2(t)〉 as a function
of the horizontal field intensity. In these curves, we observe
behavior similar to that observed when the particle concentra-
tion increases (Fig. 3) or when Bosc (the temperature) decreases
(Fig. 7). At low magnetic fields, the motion is diffusive and
decreases as the magnetic field increases. Even though these
curves show the slowing down of the particle dynamics as the
magnetic field increases, this slowing down does not occur in
the same way as in a glass-forming liquid as the temperature
decreases. In our system, the calculated 〈�r2(t)〉 is the average
of the motion of isolated particles and the motion of particles
that are forming a chain; isolated particles are very fast and
move with high energy, whereas particles that are forming a
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FIG. 10. Snapshots of the particle configurations for Bosc =
15 G and different horizontal magnetic fields: (a) Bstatic = 16.0 G,
(b) Bstatic = 20.0 G, (c) Bstatic = 23.5 G, (d) Bstatic = 41.5 G. At small
magnetic fields (a) and (b), small aggregates are formed; however,
they are not very stable and are rapidly destroyed. As the magnetic
field increases, the aggregates become stable (c) and (d).

chain move slowly. This behavior differs from that observed
when a glass-forming liquid is cooled, where most of the
particles slow down at the same rate.

Figure 12 shows the diffusivity as a function of the static
magnetic field intensity (Bstatic). Here we observe that D

decreases very rapidly as Bstatic increases. At low magnetic
fields, small aggregates are formed; however, these aggregates
are destroyed very rapidly. As the magnetic field increases,
the chainlike aggregates are more stable. The inset of Fig. 12
shows D as a function of the inverse of Bstatic. In this curve, we
can observe that increasing Bstatic has an effect similar to that
of decreasing Bosc (temperature). That is why, in some studies
of MR fluids, concepts from the glass transition literature are
used [11].

One of these concepts is the intermediate scattering function
Fs(k,t) which measures the temporal correlations of the
particle positions. For a homogeneous system, Fs(k,t) is

FIG. 11. Measured mean squared displacement for several hori-
zontal magnetic fields. As the magnetic field increases, the particle
dynamics changes to arrested states.

FIG. 12. Diffusivity at different magnitudes of the static (horizon-
tal) magnetic field. The values decrease very quickly as the magnetic
field increases. After reaching a value of around 40 G, the diffusivity is
almost zero. (Inset) D as a function of 1/Bstatic. Here, we can observe
that increasing the horizontal field is equivalent to decreasing the
oscillating field.

given by

Fs(k,t) =
〈

sin(k(rj (t) − rj (0)))

k(rj (t) − rj (0))

〉
, (4)

where rj (t) represents the position of a particle at time t in its
trajectory j . If Fs(k,t) drops very quickly, it indicates that the
positions are time uncorrelated; on the other hand, if Fs(k,t)
remains near unity, the positions are highly time correlated.

Figure 13 shows Fs(k,t) curves obtained immediately after
the Bstatic field is turned on. We use k = 5 because the first peak
in g(r) curves appears first at a distance of around r/d = 1.25;
to determine k we have used k = 2π/1.25. For weak magnetic
fields Fs(k,t) decays very quickly, showing that the magnetic
field does not produce stable structures, and consequently the

FIG. 13. Intermediate scattering function for different horizontal
magnetic fields (Bstatic). As the magnetic field increases the correlation
increases. For the highest magnetic field, the formation of stable
structures produces high correlation curves. (Inset) α-relaxation time
for different horizontal magnetic fields. The red continuous line is an
exponential fitting to data.

022601-6



DYNAMICAL AND STRUCTURAL PROPERTIES OF A . . . PHYSICAL REVIEW E 95, 022601 (2017)

FIG. 14. Average chain length as a function of time for different
magnitudes of Bstatic. At short times and large magnitudes, the
curves can be fitted by a power law (red continuous lines). At small
magnitudes, the behavior is more complex.

temporal correlation decays very quickly. As the magnetic field
increases, the Fs(k,t) curves show behavior that indicates that
the particle positions are correlated with the initial positions. In
these cases, the time correlation indicates that stable structures
are formed. The range of magnetic field intensities at which
the system changes from having weak correlations to having
strong correlations is very narrow. From the Fs(k,t) curves,
the α-relaxation time tα is calculated by determining the time
it takes for Fs(k,t) to decay to 1/e from its initial value. As
shown in the inset of Fig. 13, the α-relaxation time increases
exponentially with Bstatic as in glass-forming systems as the
temperature decreases.

Figure 14 shows the temporal evolution of the average chain
length L̄ for different values of the horizontal magnetic field.
The chains were identified and their lengths were measured
using IMAGEJ [23]. In all cases, we observe that the initial
growth increases with increasing magnetic field. Furthermore,
for high field intensities and short time intervals, the average
chain length at time t follows power law behavior, L̄ ∼ t z.
For Bstatic = 32.5 G and 41.5 G, we found that the kinetic
exponents are z = 0.45 and 0.42, respectively. Similar kinetic
exponents have been reported in some studies of MR fluids.
For instance, in Ref. [24], the kinetic exponent in a system
based on superparamagnetic particles 1μm in diameter was
found to be z = 0.57. In a similar system, when salt was
added, it was found that z = 0.45 [25]. On the other hand, in
Ref. [26], the aggregation process of non-Brownian magnetic
particles (65 μm in diameter) was studied in the presence of a
static magnetic field and in the presence of two perpendicular
magnetic fields (a static and an oscillating field). In that work,
it was found that in the presence of only the static field, the
kinetic exponent was z = 0.3; when both fields were applied
with a low frequency of the oscillating field (1.5 Hz), the
exponent was z = 0.53, and for a higher frequency (12 Hz),
it was z = 0.45. Therefore, our results are in good agreement
with those obtained for MR fluids. As we can see from Fig. 14,
at long time intervals, the curves reach a plateau, indicating that
at this point the aggregates reach their maximum length. This

FIG. 15. Histograms of the average chain length for different
static magnetic fields. Continuous lines are the exponential fittings.

happens because when the horizontal magnetic field is turned
on, the particles start aggregating axially, forming chains. As
these chains grow, the number of isolated particles decreases
until no more isolated particles remain. At this point, the
chains stop growing axially. Chains cannot aggregate laterally
because of friction with the container surface. In our system,
there are no mechanical fluctuations in the chains such as
those occurring in lateral aggregation in MR fluids [4–6,27].
Thus, the maximum growth is reached, and the plateau in the
average chain length appears. On the other hand, when the field
intensity is low, the growth of chains is slower, and it does not
follow a power law. These results show that magnetic fields of
around 30 or 40 G are needed to reproduce the formation of
aggregates as in MR fluids.

We observe that, as in MR fluids, the chains that form are
not all the same length but rather exhibit a distribution of
lengths. Figure 15 shows the average chain length distribution
for different static magnetic field intensities. Each distribution
is well fitted by an exponential function of the form,

f ((r/d)) = Ae exp
(
−ζ

r

d

)
, (5)

where Ae and ζ are adjustable parameters.
In the literature on MR fluids and ferrofluids, exponential

distributions have also been reported [28,29]. In Ref. [30], we
theoretically and experimentally studied this distribution in an
MR fluid. Here we briefly describe that result applied to our
granular system. We started from an ensemble of chains of
different lengths constrained to a fixed number of particles
under a magnetic field. The chain length distribution can
be obtained by determining the conditions that minimize the
Helmholtz free energy [31–36]. In a first approximation, we
can consider noninteracting chains. The proposed partition
function for the ensemble is

Z =
nmax∏
n=1

qMn
n

Mn!
, (6)

where qn is the partition function of a chain with n particles,
Mn is the number of chains of length n, and nmax is the
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number of particles in the longest chains. For qn, the sum
over all its energetic states can be approximated by one term
corresponding to the average configurational energy ε̄ [7], that
is,

qn =
∑

i

exp

[
− εi

TE

]
≈ exp

[
− ε̄

TE

]
. (7)

The energy ε̄ can be approximated by the sum of the energies
of pairs of particles, −[ϕ(1,2) + ϕ(2,3) + · · · + ϕ(n − 1,n)].
If we ignore the effects of the edges of the chains, each term
could be considered equal to ϕ; then the partition function for
a single chain is expressed as

qn = exp

[
− (n − 1)ϕ

TE

]
. (8)

This expression for the partition function is in agreement with
the result obtained in Ref. [31].

The distribution of chain lengths can be derived by
minimizing the Helmholtz free energy,

F = −TE ln Z, (9)

which is restricted by the conservation of particles,

N =
nmax∑
n=1

nMn. (10)

Starting from the partition function in Eq. (6) and using the
expression for the partition function of a single chain in Eq. (8),
and minimizing the Helmholtz free energy, we find that Mn is
given by

Mn = exp

(
ϕ

TE

)
exp

[
−n

(
ϕ

TE

+ λ

)]
, (11)

where λ is a Lagrange multiplier. If n � 1, it can be shown
that [30]

N = exp
(

ϕ

TE

)
(

ϕ

TE
+ λ

)2 ; L̄ = 1
ϕ

TE
+ λ

, (12)

where L̄ is the average chain length. In an area A of an MR
fluid consisting of spherical particles of diameter d, the total
number of particles N is given by

N = 4φsA

πd2
. (13)

Therefore, using Eqs. (11)–(13), the distribution of chain
lengths is given by

Ml = 4φsA

πd2(L̄)2
exp

(
− 1

L̄

r

d

)
. (14)

This theoretical result is in agreement with our experimental
findings on MR fluids in Refs. [30,37] and with previous
theoretical results [28,29,36]. This expression for the chain
length distribution is also in agreement with the one we
obtained in our granular model of MR fluids (Fig. 15). A more
accurate expression for the chain length distribution in dipolar
fluids can be found in Ref. [38]. However, that expression
involves an equilibrium state with a constant concentration

FIG. 16. Inverse of the exponential decay rate of the chain length
distribution as a function of the average chain length. The green line
is the linear fitting (slope of 1.3), and the blue line (slope of 1) is
traced for comparison. (Inset) Exponential decay rate as a function
of the static magnetic field.

of isolated particles. In our case, in the conditions where
chains form, the concentration of isolated particles goes to
zero rapidly as chains grow.

FIG. 17. (a) Radial distribution function for a fixed oscillating
field Bosc = 15G and several horizontal magnetic fields (Bstatic). Note
the peaks appearing around multiple particle diameters. (b) Effective
potential UE(r)/TE in the HNC approximation for different values of
Bstatic.
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From Eq. (14) and Eq. (5) it can be seen that the exponential
decay rate ζ and the average chain length L are inversely
proportional to each other. Figure 16 compares the average
chain length and the inverse of the exponential decay rate. A
linear fitting shows a slope around 1.3 (green line); however,
full agreement between our theory and the experimental
results would require a slope of 1 (blue line). Although
there is a discrepancy of around 30%, it is interesting that
our granular system exhibits behavior similar to that of MR
fluids.

The radial distribution function shows very sharp peaks
resulting from periodic structures. In this case, these peaks
correspond to chains in which particles are located in a periodic
configuration [Fig. 17(a)]. Although the radial distribution
function is a quantity defined for systems with radial symmetry,
the curve clearly shows maxima at multiple particle diameters.
Even for lower fields, the radial distribution function clearly
shows signatures of these periodic arrangements (formation
of straight chains). As particle concentration increases, the
maxima grow in amplitude. The first peak is very notable and
indicates that short chains are more numerous than longer
ones.

Figure 17(b) shows the effective potential curves for
different horizontal magnetic fields. The effective potential
evolves from a case where repulsive interactions dominate the
dynamics to a case where periodic wells are formed. The fact
that the deepest well appears around one-particle diameter
shows that first-neighbor interactions are more important.

V. COMMENTS AND REMARKS

We studied a nonvibrating granular system that, under a
vertical sinusoidal field, exhibits behavior very similar to that
of a system based on Brownian particles. The dynamical and
structural characteristics of this system can be easily controlled
by varying the particle concentration and the magnitude of the
vertical magnetic field, which plays the role of the temperature.
We applied an additional static magnetic field in the direction
horizontal to the plane in which the particles lie. This second
field produces an effective magnetic dipolar interaction among
the particles, which in turn initiates the formation of chains of
different lengths. The general process consists of the initial
formation of short chains that grow with time. We found that
the growth rate of the chains follows a scaling law similar to
that observed in MR fluids. Our results show that this granular
system can be used to model particle aggregation processes in
an MR fluid under a steady magnetic field. The experimental
setup can be modified to model other complex fluids since
the particle concentration, the “temperature,” and additional
interactions can be easily controlled.
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