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A B S T R A C T

This paper presents a control policy of integrated production, maintenance and quality control planning for a
continuous production system subject to quality deterioration. The system under study is composed of an un-
reliable machine that produces one part type satisfying customers demand. The machine can fail at any time and
is subject to quality deterioration, and so a preventive maintenance and quality control policies are proposed to
decrease the rate of defectives and to increase the system availability. The proposed production policy in-
corporates production thresholds, which regulate the machine production rate. Traditional sampling inspections
standards such as ANSI/ASQC Z1.4 and ISO 2859 have addressed a dynamic quality control level to face quality
deterioration. However, these standards are based only on quality considerations, disregarding the economic
aspects and the interactions with production and maintenance management in the design of sampling plans.
Thus, the proposed integrated model analyses in detail the effect of such dynamic sampling strategy and relevant
interactions with production and maintenance strategies. The main objective of the paper is to determine an
appropriate production policy as well as the preventive maintenance and the quality control rates in order to
minimize the expected average incurred cost and satisfy at the same time a quality constraint. Given the high
flexibility and capacity to model complex manufacturing systems, a combination of simulation modeling and
optimization techniques are used to determine a solution for this stochastic and constrained problem. In addi-
tion, numerical examples and an extensive sensitivity analysis are conducted to illustrate the proposed control
approach. Furthermore, we compared the proposed integrated policy with three common policies from the
literature. Such study serve us to highlight the effectiveness of the approach, since the proposed integrated policy
led to considerable cost savings.

1. Introduction

Quality, production planning and maintenance plays a critical role
in modern production systems and it is clear that their mutual inter-
actions should not be neglected while managing production systems.
Unfortunately, only a few contributions address problems under an
integrated view. According to Colledani et al. (2014), limited litera-
ture exists in the development of new models that allow companies to
identify strategic targets in these three key functions and balance them
towards a desired equilibrium. Thus, the research conducted in this
paper aims to propose an integrated model which avoids sub-

performing unbalance solutions that privileges one or two of the
functions while decreasing the overall production system perfor-
mance.

A common feature observed from the manufacturing system domain
is that it focuses on static sampling plans whose parameters do not
change over time. However, we state that in many complex manu-
facturing processes, such as in electronics, automobile and chemical
industries, deterioration is a common phenomenon, which certainly
have a significant impact on the control policy. Thus, we conjecture in
this paper that the quality control policy, must be adjusted continuously
in function of the level of deterioration of the production system.
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Based on these observations, we can observe that much research is
needed, since the industrial sector demands advanced engineering
scheduling methods for joint production, quality control and main-
tenance planning incorporating in the model the deterioration phe-
nomenon with the aim to keep companies profitable.

The rest of the paper is organized as follows. The literature review is
presented in Section 2. The industrial context is presented in Section 3.
The notation, assumptions and description of the production system
under study is detailed in Section 4. The model formulation, the joint
control policy and the optimization problem under study are presented
in Section 5. Afterwards, an approach based on simulation-optimization
is detailed in Section 6. Moreover, in Section 7 a simulation model and
its validation are presented. A numerical example is analyzed in Section
8 to illustrate the proposed approach. In Section 9 we performed an
extensive sensitivity analysis. Further, in Section 10 we present a
comparative study where we highlighted the efficiency of our policy
compared with alternative control policies common on the literature.
Section 11 concludes de paper.

2. Literature review

To adequately situate our proposed integrated model, we present an
overview of the literature from five relevant research topics, which
represent the main fields that have been addressed in the last years in
the production system domain. Particularly, we consider models that
have focused in: (i) the production and quality relationship, (ii) quality
information feedback and maintenance strategies, (iii) quality control
inspection strategies, (iv) studies on the joint quality, production and
maintenance planning, and (v) deterioration models. In the next para-
graphs we discuss these five topics.

(i) The relationship between production and quality aspects was ex-
plored by Inman, Blumenfeld, Huang, and Li (2003), where they
suggested several important issues about this interaction, also they
highlighted the fact that increasing quality is mandatory for
modern companies. We find in the literature analytical models
such as in the paper of Kim and Gershwin (2005, 2008), where
they presented a method for the performance analysis of produc-
tion systems. In particular, they analyzed how production system
design, quality and productivity are inter-related in such systems.
In the same line Colledani and Tolio (2011) presented an analytical
method for evaluating the performance of production systems in
which the behavior of the machine is monitored by statistical
control charts. Their method considered the presence of inspection
and integrated stations in the line that produces defectives. The
mutual inter-relation of quality and production measures, denotes
a growing area that has spurred significant research as the paper of
Mhada, Hajji, Malhame, Gharbi, and Pellerin (2011). These au-
thors presented analytical expressions for the optimal production
threshold and the optimal cost of a production control problem of a
failure-prone manufacturing system that produces a random frac-
tion of defective items. Nourelfath, Nahas, and Ben-Daya (2016)
addressed the joint selection of the optimal values of production
plan and the maintenance policy while taking into account quality
related costs. As can be noted from the presented papers, the area
of research that jointly addresses quality-production is very active.
Currently, the study of such relationship, has devised new direc-
tions towards the consideration of maintenance strategies, since
the fundamental functions of production-quality and maintenance
are strongly interrelated. Unfortunately, the amount of literature
on this field is limited.

(ii) Several production paradigms have been proposed to analyze the
inter-relation between quality information feedback and main-
tenance strategies. Given that quality information feedback could
provide useful information for process monitoring and main-
tenance-decision making and it may lead to significant cost

savings. Preventive maintenance based on quality information
feedback has fostered considerable research in recent years since it
represents an alternative solution to palliate the system degrada-
tion. In this context, Njike, Pellerin, and Kenné (2011) used an
iterative feedback based on the quantity of defective products to
determine the optimal maintenance and production planning,
since they proposed that defective products are a consequence of
global manufacturing system deterioration. In the paper of Lu,
Zhou, and Li (2016), it was integrated quality improvement into
preventive maintenance decision-making, also an integrated re-
liability model is built for the machine based on the proportional
hazard model taking into account the effects of the degradation
states of quality-related components. Furthermore, Shrivastava,
Kulkarni, and Vrat (2016) considered the joint optimization of
preventive maintenance and quality control policy, their model
enables the determination of the optimal value of the parameters
of a control chart and the preventive maintenance interval. From
these models we note the relevance of quality information for
process condition monitoring and maintenance decision-making.

(iii) Additionally, a limiting assumption observed in the literature is the
consideration that quality control inspection has a negligible
duration and cost as in the papers of Radhoui, Rezg, and Chelbi
(2010). In this study the authors determined a preventive main-
tenance strategy based on the rate of non-conforming units de-
tected on an automated quality control that disregards the in-
spection duration and cost. On another hand, in the paper of
Mhada, Malhamé, and Pellerin (2013), it was addressed the pro-
blem of the joint determination of buffer sizing and inspection
station placement for an unreliable production system which in-
cludes two inspection stations, one station dedicated to the in-
spection of finished parts, while the location of the other station is
chosen so to optimize the total average cost comprising the storage
cost, possible shortage and the inspection cost; however the in-
spection duration is not considered in their study. Sahnoun,
Bettayeb, Bassetto, and Tollenaere (2014) defined an optimized
quality control plan that reduced required capacity of control
while maintaining enough trust in quality control. They observed
that significant savings could have been obtained by using an op-
timized sampling plan. Nevertheless, they disregarded the impact
of inspection duration in their analysis. Additionally several sam-
pling strategies exist and can be classified according to their cap-
ability to integrate the factory variability, where the focus has
changed from static sampling to dynamic sampling such as the
paper of Lee (2002). Who presented a dynamic sampling strategy
for a semiconductor industry that dynamically determined the
sampling locations and sampling size on the basis of defect pattern
change for faster detection of any abnormality. Rodriguez-Verjan,
Dauzére- Pérès, and Pinaton (2015) proposed other dynamic
sampling strategy, where the difference with other techniques is
that in their model lots are selected in real time, according to the
information that can be obtained by inspecting lots and based on
the current production state. Their model also calculates the in-
spection capacity required in order to satisfy a given quality limits.
From these papers, it is evident that dynamic sampling effectively
utilizes the inspection capacity for quicker excursion detection and
increases the throughput of inspection without affecting the
quality of inspection. However, the interaction of dynamic sam-
pling strategies with production and preventive maintenance
planning has not been studied.

(iv) The increasing emphasis on sustainable production requires high
system availability, excellent product quality and productivity
along the production system life cycle. Several contributions on
this domain have focused on the relationship between production
and maintenance functions as in the paper of Kenné and Gharbi
(2004) and Ramirez-Restrepo, Hennequin, and Aguezzoul (2016)
where they proposed a method to determine optimal maintenance
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and production rates for an unreliable manufacturing system. In
the paper of Dahane, Clementz, and Rezg (2010) it was considered
the problem of the joint maintenance management and production
control for a production unit that satisfies a constant demand and
at the same time can be allocated to perform additional produc-
tions tasks to a contractor production system. In their model they
determined the impact of an unforeseen extension of these addi-
tional production tasks on the generated cost. Despite the re-
levance of these papers, it should be point out that there is a very
limited number of integrated models in the literature that address
mutual relations among quality, production and maintenance
planning. For example, Colledani and Tolio (2012) analyzed the
production rate of conforming parts in manufacturing systems with
reduction of their product quality and preventive maintenance.
Their model determined the state threshold that activates pre-
ventive maintenance, whenever the machine is detected to be in an
undesired state characterized by degrading performance. Further,
Rivera-Gómez, Gharbi, and Kenné (2013) investigated the joint
production and maintenance planning for an unreliable machine
subject to quality deterioration. They determined the optimal
production threshold and the optimal overhaul strategy that mi-
tigate the presence of defectives. Recently, Bouslah, Gharbi, and
Pellerin (2016) considered the problem of integrating the batch
production strategy and quality control that is performed using a
single acceptance-sampling plan by attributes. Also they con-
sidered that maintenance is undertaken once the proportion of
defectives in a rejected lot reaches a given threshold. Other in-
tegrated model was presented by Bouslah, Gharbi, and Pellerin
(2018), who studied a multistage manufacturing system consisting
of two unreliable machines where defectives products manu-
factured in upstream processes have a significant impact on the
production system reliability. Also they proposed a control policy
that defines the production thresholds, the level of quality control
implemented in the machines and the critical age to conduct pre-
ventive maintenance. Lopes (2018) studied the influence of a
quality inspection policy for an imperfect manufacturing system
with defective production. They considered that the inspection
policy is imperfect and that defective items detected on inspection
are sent for reworking and preventive maintenance is performed
after each production cycle. As can be noted, more research is
needed in this domain to fully integrate production-quality and
maintenance functions in a joint control strategy.

(v) In the literature, several attempts have been made to incorporate
deterioration in the optimal strategies. For instance, Chouikhi,
Khatab, and Rezg (2014) addressed a condition-based maintenance
strategy for a system subject to deterioration, which impacts the
product quality. To control this deterioration, inspections are
performed and after which the system is preventively replaced. In
Kouedeu, Kenné, Dejax, Songmene, and Polotski (2015) it was
studied the impact of imperfect repairs for the joint analysis of the
optimal production and maintenance planning of a deteriorating
manufacturing system. In their model corrective and preventive
maintenance are determined based on the level of deterioration of
the production unit. He, Gu, Chen, and Han (2017) considered a
manufacturing system whose equipment is in a state of continuous
degradation during operation. Their paper proposed a predictive
maintenance strategy, where key process variables are identified
and integrated into the evaluation of the equipment state. Kang
and Subramaniam (2018) integrated control of maintenance and
production in a deteriorating manufacturing system. Their model
uses the downtime of machines as potential opportunities to per-
form maintenance on other machines. Another model targeting
product reliability degradation was proposed by He et al. (2019),
who applied preventive maintenance and a time-between-events
(TBE) chart to detect any undesired machine state deteriorations.
Their model determines the critical state, PM interval and lower

control limit of TBE chart. It is evident from these papers that the
influence of the deterioration process on the joint design of pro-
duction, quality and maintenance strategies has been commonly
disregarded. Nevertheless, the influence of the deterioration pro-
cess on the control policy certainly may be significant.

Summing up, we present in Table 1 a comparison of the literature
with the contribution of this paper. The lines I-V of Table 1 shows
thematically the papers that have been discussed in this section, while
their columns present a set of key features that highlight in such papers.

From the articles presented in the previous paragraphs, it is clear
that few papers have considered the effects of a deterioration process on
the three key functions of inventory management, maintenance and
quality sampling inspection. Thus, in this paper a joint integrated model
is proposed, in contrast to previous research where quality decisions are
separated from production and maintenance. In particular, our model
aims to extend existing literature, mainly the papers of Rivera-Gómez
et al. (2013) and Bouslah et al. (2016, 2018). With the difference that
we focus in the following issues: (i) determination of a quality strategy,
which takes into account the economic aspect and the influence on
production, inventory and maintenance management. (ii) Im-
plementation of a quality sampling plan that continuously evolves in
function of the level of deterioration of the machine. (iii) Consideration
of non-negligible duration and cost of inspection and rectification ac-
tivities. (iv) Consideration of a quality level constraint in the joint de-
termination of the production, maintenance and quality control stra-
tegies. (v) Consideration of the impact of a deterioration process on the
production, quality and maintenance control parameters. The combi-
nation of these set of characteristics has not been simultaneously con-
sidered in the literature before. Further the study of these issues are a
need of industrial manufacturers since the functions of production,
quality and maintenance are key for economic success of organizations.

3. Industrial context

Our model can be applied in production systems, where machines
are subjected to random failures, their production rates can be con-
trolled and the system evolves with stochastic dynamics deriving in
deterioration. Such process challenges performance operation, as in
machining centers, grinders, and other machining tools. Such systems
normally have a large number of components that deteriorates over
time; thus causing the machine to experience negative effects of its
performance, (Dehayem-Nodem, Kenné, & Gharbi, 2011a). However,
the impact of quality issues must considered in such deterioration
process. Additionally, we realize that if production is carried on with
such deteriorating systems, it may accelerate the machine degradation,
and limit its production capacity. Once the production system is unable
to satisfy customer demand, the increase in additional costs due to
deterioration force companies to devise effective and efficient coun-
termeasures to face the effects of such deterioration process. Several
manufacturing sectors such as in the electronics, automobile and che-
mical industries experience deterioration phenomenon, (Kouedeu et al.,
2015). Unfortunately, the field of production-quality-maintenance has
disregarded the effects of such deterioration process on the control
strategy (Colledani et al., 2014). The proposed integrated model pre-
sented in this paper is suitable for unreliable production systems subject
to deterioration and determines simultaneously production, quality
control and maintenance policies. Below, we proposed an integrated
model and develop appropriate techniques for its solution.

4. Notations, assumptions and problem statement

In this section we introduce the notations used in the formulation of
the developed model; also we present the assumptions of the model and
the problem statement.
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4.1. Notations

The model under consideration is based on the following notations:

x t( ) Inventory level at time t
n t( ) Current number of failures at time t
d Market demand rate of products

t( ) State of the machine at time t
p Unit production duration
i Unit inspection duration
r Unit rectification duration

up Production rate
ui Inspection rate
ur Rectification rate
umax Maximum production rate
uTP Total production rate
uTP

max Maximum total production rate
+C Inventory holding cost/units/time unit

C Backlog cost/units/time unit
Cins Inspection cost
Crec Rectification cost
Cdef Cost of selling-accepting a defective item
Cpro Production cost
Cr Repair cost
Cm Preventive maintenance cost

(·) Proportion of defective ítems
f (·) Fraction of inspected products f(0 (·) 1)

w Major maintenance policy
nmax Maximum number of repairs considered in the deterioration process
np Accumulated number of repairs that trigger preventive maintenance
AOQ Average outgoing quality
AOQL Average outgoing quality limit
AOQLmax Maximum accepted level of the average outgoing quality limit
Z n( )p Production thresholds

4.2. Problem description

This paper deals with the analysis of a single-unit manufacturing
system subject to deterioration. The machine satisfies a constant de-
mand. However, the machine presented in Fig. 1, experiences random
events such as failures and repairs. Thus, given that the production
system is unreliable, buffer stock is needed as protection against
backlog, during the periods of time where the system is not available
because of its disruptions. Furthermore, unsatisfied demand is back-
logged with a penalty cost. In response to each failure event, a minimal
repair can be conducted, which returns the machine to an as-bad-as-old
conditions. The machine is subject to a continuous deterioration process
which leads to an increase of the defective rate. In this paper, we focus
on the case where a quality sampling plan is implemented to ensure a
certain average of outgoing quality limit AOQLmax, required by custo-
mers. More specifically, the proposed quality control policy, implies
that a sampling fraction of produced items is inspected before being
transferred to the inventory stock. Once defective items are identified
upon inspection, they are rectified prior to moving them to the in-
ventory stock. Depending on the proportion of defectives found in the
inspection, the decision maker can decide to immediately initiate a
preventive maintenance. Such maintenance option enables us to com-
pletely mitigate the effects of deterioration on the machine and restore
its performance to brand new conditions. The durations of the minimal
repair and the preventive maintenance are stochastic, and given the set
of disturbances that could appear during production, shortages may
occur. Thus, a make-to-stock production strategy is needed with the aim
to provide protection against possible uncertainties in production,
quality control and maintenance. The objective of the model is to
jointly determine the production rate, the fraction of production in-
spected and the major maintenance rate that minimize the total in-
curred cost. The determined control parameters satisfy the quality
constraint required by customers, denoted in this case by AOQLmax. The

total cost includes inventory, backlog, inspection, rectification, repair,
preventive maintenance and defectives costs. The optimal solution must
ensure that final customers are protected with a constraint on the
outgoing quality of items that they receive.

4.3. Assumptions

The model developed in this paper is based on the following as-
sumptions:

(1) The demand rate is known and constant during all the time period.
(2) The deterioration process negatively influences product quality.
(3) The level of deterioration of the machine is defined by the number

of repairs.
(4) At failure, a minimal repair is conducted, leaving the machine in as-

bad-as-old, (ABAO) conditions.
(5) The preventive maintenance implies a perfect repair that restores

the machine to as-good-as new, (AGAN) conditions.
(6) The totality of the defective units detected in the inspection are

rectified before being shipped to the final customer.

We have used these assumptions to have a better understanding of
the impact of quality deterioration in the joint determination of pro-
duction, quality inspection and maintenance strategies, with the aim to
extent existing models.

5. Model formulation and proposed control policies

As illustrated in Fig. 1, the manufacturing facility is unreliable, and
so the mode of the machine can be described by a stochastic process

t( ) with value in {1, 2, 3}. More specifically, the machine is opera-
tional when =t( ) 1, and down when =t( ) 2, where a minimal repair
is conducted. When =t( ) 3, a preventive maintenance is conducted,
which implies a perfect repair that restores the system to as-good-as-
new-conditions.

Given that the manufacturing system is subject to deterioration, our
model seeks to identify the impact of such deterioration process on
product quality and incorporate the effects of quality-deterioration in
the joint control strategy (Colledani & Tolio, 2011). Further at con-
sidering the fact that maintenance strategies can be classified according
to the degree to which the operating conditions of the machine is re-
stored by maintenance. We consider the quality-deterioration modeling
with the use of worse repairs, which implies that the machine is in
worse operating condition after a worse repair due to usage, aging and
imperfectness of repairs, etc., (Pham & Wang, 1996) and (Wang, 2002).
Furthermore, given that in this domain the number of repairs is com-
monly used as indicator of the level of deterioration of the machine, it
serves us to define a failures-deterioration relationship, as in Lam, Zhu,
Chan, and Liu (2004). Our formulation implies that repairs have a ne-
gative impact of product quality based on the relationships between
failures-deterioration and deterioration-quality, leading then to define a
failures-quality association as indicated in the following expression:

= +n b b n
n

( ) ·
max

r

0 1
(1)

where b0 and b1 are given constants, nmax is the upper limit for the
number of repairs, considered in the deterioration process, n is the
current number of repairs and r is an adjustment parameter that serves
to improve the fit of Eq. (1) to a particular set of data. Similar ex-
pressions to Eq. (1) have been successfully used in several studies to
model the impact of deterioration as in Dehayem-Nodem et al. (2011a).
We need data from historical production to obtain the systeḿs pro-
cessing capacity and product quality in function of its level of dete-
rioration. Then for given b0 and nmax , factors b1 and r can be derived
from this data through estimation methods, such as the maximum
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likelihood and least squares, such as in Lu et al. (2016). We present in
Fig. 2 the effect of the variation of the parameters r and b1 on the in-
crease of the rate of defectives when we set =b 00 and =n 20max .

In Fig. 2 we note that the rate of defectives increases as the pro-
duction system experiences more repairs. Furthermore, defectives units
that are not defected in the inspection will reach the final customer at a
rate defined by the average of outgoing quality, AOQ as follows:

=AOQ n f n n( ) (1 ( ))· ( ) (2)

where AOQ n( ) denotes the amount of defectives observed by the final
customer and f n( ) is the fraction of inspected products. Additionally, it

is a common practice in this domain that customers demand a certain
quality level, and so we must ensure that the average outgoing quality
limit (AOQL), defined as the maximum value observed for AOQ (·),
does not surpass the limit required by customers, AOQLmax. In this case
the AOQL is calculated as follows:

= =AOQL AOQ n n Nmax { ( )}, 0, 1, ,
n

f n
0 ( ) 1
0 ( ) 1 (3)

In this context, the decision-maker must select the optimal combi-
nation of preventive maintenance and inspection such that the AOQL
does not exceed the maximum limit AOQLmax required by customers,

Fig. 1. Block diagram of the proposed production system.

a) Effect of the parameter                                          b) Effect of the parameter 

Fig. 2. Trend of the rate of defectives, for =b 00 .
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impliying that AOQL AOQLmax.
At considering the quality control activities, it is expected a reduc-

tion in the total production rate of the production unit, since we assume
that inspection and rectification activities require a non-negligible
amount of time for their conduction. In order to incorporate in our
formulation the delay caused by inspection and rectification activities,
let us first define that the inverse of the production rate up denotes the
production time as follows:

=
u
1

p
p (4)

Regarding the delay caused by inspection activities, we incorporate
in the model the fact that as more units are inspected, more time is
needed to conduct such inspection. Then to model this condition we
conjecture that the inspection time i, depends on the sampling fraction
f n( )conducted as follows:

= f n
u
( )

i
i (5)

where ui refers to the inspection rate. Eq. (5) implies that the delay of
inspection increases, as more units are being inspected and as a con-
sequence the production rate of the unit declines. Furthermore, we
model the delay of rectification activities, based on the consideration
that the rectification time r is non-negligible and depends on two
parameters, namely, the fraction of sampling inspection f n( ) and the
rate of defectives n( ), as indicated by the following expression:

= f n n
u

( )· ( )
r

r (6)

where ur is the rectification rate. Eq. (6) denotes that when the fraction
of sampling inspection and the rate of defectives increase, more time is
necessary to complete the rectification, and this leads to the reduction
of the production capacity. Summing up, Eqs. (4)–(6) enable to model
the effect of the inspection and rectification delay on the total pro-
duction rate in order to determine a feasible production plan. In this
case the total production rate uTP is influenced by inspection and rec-
tification activities as follows:

=
+ +

u 1
TP

p i r (7)

With u u0 TP TP
max , where uTP

max is the maximum total production
rate. Eq. (7) models the progressive reduction in the production rate of
the unit, since the delay for inspection and rectification activities in-
creases with the level of deterioration of the system. At assuming that a
given rate of non-conforming units will reach the final customers. Thus,
the dynamics of the stock level are described by a differential equation,
as in the papers of Akella and Kumar (1986), Boukas and Haurie
(1990), Polostki, Kenné, and Gharbi (2019):

= =dx t
dt

u t d
AOQ n

x x( ) ( )
1 ( )

, (0)TP 0 (8)

where x0 is the initial inventory level, x t( ) is the inventory at time t ,
u t( )TP is the total production rate at time t and d is the market demand
rate.

5.1. Quality control policy

The quality control strategy proposed in this paper consists of a
derivation of a continuous sampling plan proposed by Bouslah et al.
(2018) that randomly inspects a fraction f (·) of products
with f0 (·) 1. However, in contrast of assuming a constant fraction
of inspection as in Bouslah et al. (2018), in this paper we conjecture
that such fraction f (·) is dynamic and have to be continuously adjusted
in function of the level of deterioration of the machine. The sampling
plan must be dynamic since we aim in this paper to incorporate the
effects of a degrading process with continuous deterioration of part

quality (Colledani & Tolio, 2011). Further, it is evident that in the
context of quality deterioration, more defectives are produced as the
machine deteriorates. Thus as a countermeasure, more units must be
inspected as the machine wears, since most of the sampling plan
methods increases the sampling fraction f (·) as the rate of defectives
increases (Montgomery, 2016). Hence, to facilitate matters at modeling
these observations, we can assume that the quality sampling policy is
denoted by the following equation:

= +f n f f n
n

( )
max

r

0 1 (9)

where f0 is the fraction of inspected products at initial conditions, f1 is
the maximum limit considered for the sampling fraction and r is a
positive constant. Eq. (9) determines the fraction of sampling inspection
for each number of repair. The trend of the sampling fraction f (·) for
different values of parameters r and f1 is similar to the trend of (·)
illustrated in Fig. 2. A significant advantage of Eq. (9) is that it allows us
to model the progressive increase in the sampling fraction as the pro-
duction unit deteriorates in a not involved manner. Expressions similar
to Eq. (9) have been successfully applied to model progressive adjust-
ment in function of the level of deterioration of the machine in this
domain of optimal control, as in the papers of Rivera-Gómez et al.
(2013) and Dehayem-Nodem, Kenné, and Gharbi (2011b).

5.2. Production-inventory control policy

The proposed production policy is based on the findings of Hlioui,
Gharbi, and Hajji (2015a,2015b) and Rivera-Gómez et al. (2013). For
the same class of unreliable production systems in a stochastic dynamic
context where the machine is facing defective production, Hlioui et al.
(2015a,2015b) determined the production rate, the sequence of supply
orders and the quality inspection policy consisting on the design of a
single acceptance-sampling plan. By considering an imperfect produc-
tion system with defective production, Hlioui et al. (2015a,2015b)
noted that the production policy is effectively controlled by a Modified
Hedging Point Policy that takes into account the fact that non-con-
forming units my pass inspection and reach the final customer by an
amount denoted by AOQ. Then in the case of imperfect production, we
incorporate in our production control rule the amount AOQ of defec-
tives at adjusting the demand rate by d AOQ n/(1 ( )) to compensate for
the presence of defective units. Furthermore, the final product in-
ventory should be maintained at an excess level in order to face capa-
city shortages and mitigate the presence of defectives units. However,
according to the findings of Rivera-Gómez et al. (2013), at considering
the cumulative effects of the deterioration process, such inventory level
Z n( )p must be progressively adjusted to provide further protection
against degradation, then it should increase in function of the level of
deterioration of the machine. Consequently, in the context of imperfect
production and deterioration, a more appropriate production control
policy is as follows:

=
<
=
>

u x n
u

d AOQ n
if x t Z n
if x t Z n
if x t Z n

(1, , ) /(1 ( ))
0

( ) ( )
( ) ( )
( ) ( )

p
TP
max p

p

p (10)

where x t( ) refers to the inventory level at timet at mode 1 and Z n( )p is
the function that defines the optimal production threshold based on the
level of deterioration of the machine.

5.3. Preventive maintenance policy

With respect to the maintenance policy, the machine is submitted to
a deterioration-based major maintenance policy. In this case, every
time that a repair is conducted, the indicator of the number of repairs n
increases. Then we use the number of repairs n, as an indicator of the
level of deterioration of the production unit. Thus, the machine is send
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to preventive maintenance, upon reaching a critical level of deteriora-
tion as in Dehayem-Nodem et al. (2011a, 2011b). In order to facilitate
the characterization of the preventive maintenance policy, we define

w as a binary function with value 1, if a preventive maintenance is
conducted at time t , and 0 if not. For the conduction of preventive
maintenance, the number of repairs nmust attain the critical value np,
and the inventory level must be x (·) 0 to avoid further backlog. Thus,
the preventive maintenance policy is given by:

=x n if n t n and x
otherwise

(1, , ) 1
0

( ) (·) 0
w

p

(11)

where np is the critical number of repairs that triggers the conduction of
preventive maintenance.

5.4. Optimization of policy parameters

The primary focus of our model is to determine a combination of
control parameters (Z f f r n, , , ,p p0 1 ) that minimizes a key output per-
formance measure of direct economic importance, denoted in this case
by the expected average total cost ETC¯ (·) and at the same time satisfy
the AOQL constraint required by customers. Given that in our case we
are interested in the behavior of the system in the long-run, then we
need several indicators to calculate the key output performance mea-
sure ETC¯ (·). In our case, the expected average total cost ETC¯ (·) consists
of the sum of three components, the expected average of the inventory-
holding and backlog costs IC T¯ ( ), the expected average of the quality
control cost QC T¯ ( ) and the expected average of the maintenance costs
MC T¯ ( ).

Regarding the expected average cost of inventory IC T¯ ( ), it com-
prises three measures of performance that are functions of time, and so
time-persisting statistics are needed for its calculation, as based in Law
(2015). In this case IC T¯ ( ) is given by:

= ++ +IC T
T

C x t C x t dt¯ ( ), 1 · ( ( ) ( ))
T

0 (12)

where =+x max x(0, ), =x max x( , 0), and the constants +C and C
are used to penalize the inventory and backlog cost, respectively.
Where the integrals + +C x t dt· ( ( ))T

T1
0 and C x t dt· ( ( ))T

T1
0 denote the

mean value of the inventory and backlog costs in the time period T[0, ].
With respect to the expected average quality cost QC t¯ ( ), it can be

determined in the interval T[0, ], based on the calculation of time per-
sistent statistics of the inspection cost, the rectification cost, the cost of
accepting/selling a defective item and the cost of production, as fol-
lows:

=
+

+

+

QC T

C u t f t dt

C u t f t t dt

C u t AOQ t dt

C u t dt

¯ ( )

· · ( ( )· ( )) (inspection cost)

· · ( ( )· ( )· ( )) (rectification cost)

· · ( ( )· ( )) (defectives cost)

· · ( ( )) (production cost)

ins T
T

p

rec T
T

p

def T
T

p

pro T
T

p

1
0

1
0

1
0
1

0 (13)

where u t f t dt· ( ( )· ( ))T
T

p
1

0 , u t f t t dt· ( ( )· ( )· ( ))T
T

p
1

0 , ·T
1

u t AOQ t dt( ( )· ( ))T
p0 and u t dt· ( ( ))T

T
p

1
0 lead to define the mean value

of the inspection, rectification, defectives and production costs in the
interval T[0, ], respectively.

The expected average maintenance cost MC T¯ ( ) during the period
T[0, ] includes the cost of minimal repairs Cr and the cost of preventive

maintenance activities Cm and it is given by:

= +MC T C N T C N T
T

¯ ( ) · ( ) · ( )r r m m
(14)

where N T( )r and N T( )m are output measures that denote the number of
minimal repairs and preventive maintenance conducted in the per-
iod T[0, ], respectively. Therefore, the optimization problem is to solve

the following non-linear constrained stochastic model:

(15)

The optimization problem (15) should provide the optimal value of
the control parameters (Z n f f r n( ), , , ,p p0 1 ) that minimize the total in-
curred cost and that satisfy the quality constraint. Faced with such a
control problem, it should be ascertained that given the mathematical
difficulties of Eqs. (1)–(14), and the complex interactions between pro-
duction, quality and maintenance, closed-form solutions for this type of
stochastic, non-linear models are not available. Thus, alternative solution
methods are needed, in this case we propose a simulation-optimization
approach to replace the complex model (15) with an approximated
model that can be optimized through non-linear optimization techniques.
A simulation-based optimization approach is more suitable in this case to
determine a close approximation of the optimal solution, since it is an
effective technique to reproduce the set of dynamics and the stochastic
behavior of the production system under study. In the next section, we
shall delve in more detail of the approach applied.

6. Simulation-optimization approach

Simulation-optimization approaches combine computer simulation
with optimization techniques to solve problems that are analytically in-
tractable, such as the model (15) developed in this paper. The solution
approach combines mathematical modelling, simulation techniques, de-
sign of experiments and response surface methodology with the aim to
replace the complex model (15) with an approximated model that we can
optimize, leading to the optimal values of the control parameters
(Z n f f r n( ), , , ,p p0 1 ). The solution approach imitates the stochastic and
complex behavior of the production system and has successfully solved
many complex optimal control problems (see the papers of Lavoie, Gharbi,
and Kenné (2010), Gharbi and Kenné (2005), Rivera-Gómez et al. (2013),
Bouslah et al. (2016, 2018) and Hlioui et al. (2015a,2015b)). The resolu-
tion approach presented in Fig. 3 consists of the following systematic steps:

(1) Mathematical modelling: this step consists in the analytical for-
mulation of the production system under study as detailed in
Section 5. This step provides a detailed model of the system dy-
namics, the objective function to be minimized, the definition of the
decision variables and the problem constraint.

(2) Determination of a joint control policy: based on several studies of
the literature, a joint control policy is proposed as devised in Eqs.
(9)–(11). The control policy is characterized by the control para-
meters (Z n f f r n( ), , , ,p p0 1 ) for inventory level, quality sampling
plan and maintenance planning. The policy faces random events
like failures, repairs and the effects of deterioration.

(3) Simulation model: we transform the mathematical model into a
discrete-continuous simulation model following the logic of Section
5. The inputs of such simulation model are defined by the cost
parameters ( +C , C , Cins, etc.) presented in Table 2, the system’s
parameters (u d n, ,max max , etc.) of Table 3, the dynamics of the
mathematical model defined by Eqs. (1)–(8) and the control para-
meters (Z n f f r n( ), , , ,p p0 1 ). The purpose of the simulation model is
to generate output indicators of the total incurred cost and the limit
of the average outgoing quality, AOQL for each value of the inputs.
In the next section, we present a detailed description of the pro-
posed simulation model.

(4) Design of experiments: this step uses the outputs of the simulation
model to conduct a factorial experimental design (DOE), 3k and
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determine with a minimum number of simulation runs the main
factors, interactions and quadratic effects of the control parameters
(Z n f f r n( ), , , ,p p0 1 ) that significantly affect the simulation model
outputs (cost, AOQL) and that must be considered in the optimi-
zation step.

(5) Response surface methodology: Once significant factors are iden-
tified, we determine second-order regression metamodels, based on
the response surface methodology (RSM), for the expected total cost
ETC¯ (·) and the average outgoing quality limit AOQL (·). The
quadratic regression function of the expected total cost ETC¯ (·)takes
the following form:

=
+ + + + + + +

+ + + + + +
+ + + + + + + +

ETC
Z n f f r n Z n Z n f

Z n f Z n r Z n n f f f f r
f n f f r f n r rn n

¯ (·)
( ) ( ) ( )

( ) ( ) ( )
p p p p

p p p p

p p p p

0 1 2 0 3 1 4 5 11
2

12 0

13 1 14 15 22 0
2

23 0 1 24 0

25 0 33 1
2

34 1 35 1 44
2

45 55
2

(16)

where 0, i, ii and ij, i j( , ) (1, 2, 3, 4, 5) represent the regression
coefficients and is a random error component that incorporates all
other sources of variability from uncontrolled factors and general
background noise in the process and so forth. The quadratic re-
gression function for the average outgoing quality limit AOQL (·) is:

=
+ + + + + + +

+ + + + + +

+ + + + + + + +

AOQL
Z n f f r n Z n Z n f

Z n f Z n Z n n f f f f r

f n f f r f n r rn n

(·)
( ) ( ) ( )

( ) ( ) ( )
p p p p

p p p p

p p p p

0
'

1
'

2
'

0 3
'

1 4
'

5
'

11
' 2
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'

0
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'

1 14
'
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'

22
'

0
2

23
'

0 1 24
'

0

25
'

0 33
'

1
2

34
'

1 35
'

1 44
' 2

45
'

55
' 2 '

(17)

where 0
' , i

', ii
' and ij

' , i j( , ) (1, 2, 3) are constant parameters and '

Fig. 3. Simulation-optimization approach.

Table 2
Cost parameters for the numerical example.

Cost: +C C Cins Crec Cdef
Value: 3 150 10 15 185

Cost: Cr Cm Cpro
Value: 200 6000 20

Table 3
Parameters for the numerical example.

Parameter: nmax r b0 ur (units/time units) ui(units/time units)
Value: 20 2 0 24 60

Parameter: umax(units/time units) d(product/time units) b1 AOQLmax 12 (1/time units)
Value: 14 6 0.45 6% 0.01

Parameter: 21 (1/time units) 31 (1/time units)
Value: 1 5
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is a random error. Adequacy of the regression metamodels (16) and
(17) is checked in the region of the optimal solution with the ad-
justed coefficient of determination R-squared that should be close
to one for both expressions. Also a complete examination of re-
siduals is performed to ensure the normality assumption and their
homogeneity.

(6) Parameter optimization: Once we obtained the regression models
(16) and (17), we replace the unsolvable model (15) with an ap-
proximated model (18) that has the advantage that it can be opti-
mized with non-linear constrained optimization techniques, based
on the penalty and barrier methods, in this case the MATLAB
software was used. Calculation of the optimal solution
(Z f f r n, , , ,p p0 1 ) is given by the following non-linear constrained
problem:

(7)

(18)

Model (18) determines the best values (Z n f f r n( ), , , ,p p0 1 ) which
minimize ETC¯ (·) and at the same time satisfy the AOQL (·) con-
straint. Upon the optimization, the optimal solution is cross-
checked with extra simulation runs to define a confidence interval
for the expected total cost.

(8) Comparative study: The steps 2–6 are conducted in the comparative
study section with the aim to highlight the economic advantage of
our proposed joint control policy with respect to other re-
presentative policies from the literature. It will be shown later in
the Comparative study Section that the proposed joint control
policy provides better results in terms of the total cost than existing
control policies of the literature. The comparative study is con-
ducted in Section 10.

Regression metamodels have been a successful alternative to de-
termine an optimal solution for complex systems as suggested in Gosavi
(2014) and Myers, Montgomery, and Anderson-Cook (2009). The se-
quential procedure of DOE, regression modeling and constrained opti-
mization must be conducted in an appropriate range for the control
parameters to fully explore the entire admissible control domain and
determine a close approximation of the optimal solution.

7. Simulation model

A discrete/continuous simulation model was developed to re-
produce the stochastic behavior of the manufacturing system under
analysis. The simulation software ARENA was used to develop such
model, which was complemented with code C++ subroutines. The
option to develop a discrete/continuous simulation model was selected
because this type of models considerably accelerate the simulation ex-
ecution time, as observed in Lavoie et al. (2010). Further, time
economies are necessary given that the adopted simulation-optimiza-
tion approach requires several simulation runs to define the regression
metamodels for the simulation outputs. Additionally, the common
random number technique, (Law (2015)) was used to reduce the
variability of the model which needs less replications and reduce the
size of the confidence interval in the cross-check validation. The si-
mulation model consists of several networks and user routines each if
which describes a specific task or event in the system. The differential
equation (8) is continuously integrated in the C++ subroutine using
the Runge-Kutta-Fehlberg method. The block diagram of this model is
presented in Fig. 4, where it is evident the strong inter-relation between
the different modules of the model, the block diagram also shows the

amount of data that is updated in the model at each time instant.

7.1. Validation of the simulation model

To assess the accuracy of the simulation model, we analyze the
evolution of a set of performance indices from a numerical instance.
The dynamics of Fig. 5, were obtained when the initial production
threshold is set to =Z (0) 20,p =n 12p , =f 0,0 =f 0.51 , =r 2 and

=nmax 15. At examining Fig. 5, we note that at time =t 0, (see arrow 1 in
Fig. 5d) the production unit is in initial conditions where the effects of
deterioration are insignificant, thus it operates at the demand rate

=u t d( ) to maintain the inventory level at the initial production
threshold =Z (0) 20p . After that it experiences several random failures
(see arrow 2 in Fig. 5f), and at time =t 150, (see arrow 3 in Fig. 5d) it is
evident the effects of the deterioration process on the production unit,
since it works at rate =u t d AOQ( ) /(1 (1 ) to compensate for the
increase of the defectives rates, also we note a progressive increment in
the production threshold. Then at time =t 172, (see arrow 4 in Fig. 5f),
the machine experiences its twelfth failure and so the production
threshold reaches its maximum value =Z (12) 25.20,p implying a rate of
defectives of =(12) 0.30 (see arrow 5 in Fig. 5a). This point indicates
that preventive maintenance activities must be conducted (see arrow 6
in Fig. 5e) since the number of failures has reached the critical value

=n 12p . Once preventive maintenance is conducted we note a con-
siderable reduction in the inventory level, since preventive main-
tenance requires a considerable amount of time compared with a
minimal repair (see arrow 7 in Fig. 5f). Upon the conduction of pre-
ventive maintenance, the production unit is restored to initial condi-
tions, mitigating all the effects of the deterioration process and re-
storing the production threshold to its initial value =Z (0) 20p . At this
point the deterioration cycle reinitiates and the production unit oper-
ates at its maximum value =u t u( ) max (see arrow 8 in Fig. 5d) to in-
crease the inventory level until the optimum value =Z (0) 20p . From
this point, the system dynamics follows a similar deterioration pattern.

A closed examination of Fig. 5 shows that the simulation model
developed accurately represents the stochastic behaviour of the pro-
duction system under analysis, and this serves us to validate our re-
solution approach.

7.2. Control parameter reduction

The production policy proposed in Section 4, can be effectively
characterized at assuming that the production thresholds follow a de-
fined trajectory along the deterioration process. Thus, it is possible to
facilitate the definition of such trajectory with an analytical expression
based on the results of Mhada et al. (2011). In our case, since the AOQ
is the amount of defectives that reaches the final customer, then the
trajectory of the production thresholds Z n( )p should be adjusted as the
value of AOQ increases as proposed by the following expression:

=Z n if n n
otherwhise

( )
0

0
p

Z
AOQ n max1 ( )

po

(19)

where Zpo is the optimal production threshold at initial conditions. In
view of Eq. (19), the production threshold will progressively increase in
function of the value of the AOQ n( ), which increases as the machine
deteriorates. The technical advantage of Eq. (19) is that we can define
the production policy with just one control parameter Zpo. Conse-
quently, Eq. (19) allows us to reduce considerably the number of con-
trol parameters.

8. Numerical example

A numerical example of the proposed production system is provided
for illustration. Table 2 defines the cost parameters used in the nu-
merical instance. If we assume that at initial conditions the production
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system generates a negligible amount of defectives, as presented in
Fig. 2, thus =b 00 . This assumption then leads to define =f 00 . More-
over, at focusing in the case of increasing defectives, which happens
only when >r 0. We assume that =r 2, for a particular system based on
historical quality data. With this assumption we have an increasing
fraction inspection as presented in Equation (9). Based on these con-
jectures, the joint control policy is characterized by only three factors
(Z f n, ,po p1 ).

The rest of the system parameters are defined as indicated in
Table 3.

The statistical analysis of the simulation results was conducted with
the statistical software STATGRAPHICS, more details about this ana-
lysis are presented in the Appendix A. From such analysis we obtained
the following second-order regression equation:

=
+

+ +

+

ETC Z n f
Z n f Z

Z n Z f n

n f f

¯ ( , , )
377.495 3.83237· 4.94921· 23.5931· 0.153023·

0.0508003· 0.901778· 0.268399·

2.11406· 7.28657·

po p

po p po

po p po p

p

1

1
2

1
2

1 1
2

(20)

Eq. (20) defines the objective cost function of the approximated
model. Such Eq. (20) must be optimized considering the AOQL re-
striction required by customers. In this case the obtained second-order
regression model for the AOQL is:

=
+

+ + +

+

AOQL Z n f
Z n f

Z Z n Z f

n n f f

( , , )
0.011236 0.00149174· 0.0143175· 0.0168528·

0.00000469494· 0.0000552742· 0.000552261·

0.000242542· 0.00913539· 0.0354286·

po p

po p

po po p po

p p

1

1
2

1
2

1 1
2

(21)

At considering Eqs. (20) and (21), the optimization problem of

Section 5 is presented as follows:

The cost function (20) is minimized with non-linear programming
methods in the MATLAB software to define the optimal values of the
control parameters that satisfy the AOQL constraint (21). Fig. 6 pre-
sents the contour plot of the cost response surface ETC¯ (·) on a two-
dimensional space. Also, in Fig. 6, contour plots of the AOQL constraint
are overlaid to show the optimum point.

Solving the optimization problem leads to the optimal solution
presented in Table 4. Also a cross-check validation from 50 extra-re-
plications are used to determine the confidence interval presented in
Table 4.

The obtained optimal values (Z n f, ,po p 1 ) are the best parameters to
control the joint production, preventive maintenance and quality con-
trol policies at a minimum cost.

8.1. Influence of the AOQL constraint

In this section, we will assess the influence of the AOQL restriction
on the optimal control policy. In Table 5 we present the optimal solu-
tion of the proposed policy for different levels of the AOQL restriction.
Table 5 also includes time-persistent statistics obtained from the

Fig. 4. Simulation block diagram.
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simulation model, such as the expected average fraction of production
inspected denoted by FI T¯ ( ), which is calculated as follows:

=FI T
T

f t dt¯ ( ) 1 · ( )
T

0 (22)

Furthermore, the model reports the expected average of outgoing
quality AOQ T¯ ( ), which is calculated with the following expression:

=AOQ T
T

f t t dt¯ ( ) 1 · {(1 ( )) ( )}
T

0 (23)

The simulation model also reports the maximum value of the in-
dicator AOQ, observed in the simulation run, denoted by AOQL. From

the obtained results, we note that for cases where <AOQL 6.17%max the
quality constraint is active. While when AOQL 6.17%max , the con-
straint is inactive, reporting a minimum cost of $334.38. Furthermore,
it is evident that the total expected cost increases as the AOQLmax de-
creases, mainly because expensive preventive maintenance is con-
ducted more frequently to mitigate the effects of deterioration. Faced
with a decrease in the AOQLmax value, the optimal solution leads to
increase the severity of the optimal sampling plan in cases 1–9. In ad-
dition, we note a progressive decrement of the inspection efforts, since
FĪ steadily decreases, because it is more economical to conduct more
frequent preventive maintenance than to inspect more units, since

Fig. 5. Dynamics of the simulation model.
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preventive maintenance is a more effective measure to improve quality
process. Regarding, the maintenance policy, we note that in all the
analyzed cases, the inherent pattern implies that the conduction of
preventive maintenance is more frequent as the customer quality re-
quirements becomes more strict, then np reduces progressively. The
reason behind these results is the preventive maintenance efficiency to
eliminate defectives. Additionally, we notice that as AOQLmax becomes
more severe and as preventive maintenance is conducted more fre-
quently, the quality indices improves considerably, and so the average

Fig. 6. Cost projections for the optimal control parameters.

Table 4
Optimal solution and crosscheck validation.

Optimal solution Optimal cost

Zpo np f1 Total costETC¯ (·) Confidence interval

Optimal value 13.05 11.16 0.8093 334.38 [332.30, 337.25]
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outgoing quantity AOQ¯ and the AOQL reduces from cases 1–9. With
respect to the production policy, Zpo increases in cases 1–2, when f1
increases, as protection against defectives. However, Zpo decreases in
cases 3–9, as np reduces since less protection is needed against defec-
tives as preventive maintenance is conducted more frequently.

We complement the sensitivity analysis of the AOQL restriction
with the results presented in Fig. 7. The first observation from Fig. 7a, is
that as expected the indicator of the expected average fraction of pro-
duction inspected FĪ , is higher for all values of AOQLmax, when the
inspection cost is reduced to =C 7ins , this is because, more inspection
can be conducted at reducing Cins. However, when the inspection cost
increases to =C 12ins , we clearly observe that the FĪ indicator is always
inferior than in the previous case leading to conduct less inspection for
any AOQLmax value. This reduction in FĪ is because at increasing cins,
inspection activities are more penalized and thus less conducted.

Additionally, we present in Fig. 7b the trend of the critical number
of repairs np that triggers preventive maintenance in function of the
severity of the AOQL restriction. In particular, we observe that when
the preventive maintenance cost decreases to =C 5500m , the critical
number of repairs np reduces for all values of the AOQLmax, this implies
that preventive maintenance is conducted earlier to restore the machine
to initial conditions and mitigate the effects of deterioration. Note that
when the preventive maintenance cost increases to =C 6500m , the
conduction of preventive maintenance is delayed, increasing then np for
all the considered values of AOQLmax.

9. Sensitivity analysis

The idea behind this section is to conduct another set of simulation
runs to analyze the sensitivity of the proposed model with respect to the
variation of different cost parameters, such as the inventory, backlog,
repair, preventive maintenance, inspection, rectification, and defectives
costs and several systeḿs parameters. The objective is to have a better
comprehension of the behavior of the proposed model and compare the
total incurred cost for different system conditions derived from a basic
case.

9.1. Influence of the cost parameters

We present 16 different cost configurations derived from a basic
case by varying their values above and below from a base of compar-
ison. The obtained results of such sensitivity are presented in Table 6.

The variations of the optimal solution compared to the basic case
make sense and can be explained as follows:

• Variation of the inventory cost and backlog cost: When the backlog
cost c increases (case 13), the production threshold Zpo increases as
a countermeasure to provide better protection against shortages. At
increasing c , the unit operates more time at its maximum rate,
deteriorating more and producing more defectives. Thus, the

severity of the sampling plan increases, and FĪ increases as an at-
tempt to enhance customer protection. With more inspection efforts,
less defectives reaches the final customer then AOQ¯ and AOQL
decrease. Additionally, with more inspection efforts, the conduction
of preventive maintenance is delayed, increasing then np, because
the system prefers to inspect more units than to pay the high cost of
preventive maintenance. The decrease of c has the opposite effects
(case 12). Regarding the sensitivity of the inventory cost, +c (cases
10 and 11), we note that it has the contrary effects that the backlog
cost.
• Variation of the repair and preventive maintenance cost: at in-
creasing the preventive maintenance cost cm (case 17) it is normal to
delay this activity, increasing then np. Moreover, as less preventive
maintenance is conducted, the severity of the sampling plan rises to
compensate, hence FĪ increases. Also with the delay of preventive
maintenance, the production threshold increases to improve the
protection against shortages and defectives. The increment of the
inspection efforts FĪ , leads to reduce the amount of defectives that
reach the final customer, then AOQ¯ and AOQL decrease. Further, we
note that the decrease of cm produces the opposite effects (case 16).
From Table 6, the repair cost cr , (cases 14 and 15) has inverse effects
that the preventive maintenance cost.
• Variation of the production and defectives cost: when cpro increases
(case 19), it has the direct effect to reduce the production threshold
Zpo to limit the amount of stock to an essential level. Furthermore, at
increasing cpro more frequent preventive maintenance is conducted,
reducing np, to maintain the machine in exceptional conditions.
With more frequent preventive maintenance, the sampling plan se-
verity reduces, hence FĪ decreases. Nevertheless, with less inspec-
tion efforts, the AOQ¯ and AOQL increases. We note the contrary
effects when cpro decreases (case 18). Further, we observe that the
variation of cdef (cases 24 and 25) yields to the inverse effect of the
production cost.
• Variation of the inspection and rectification cost: when the inspec-
tion cost cins increases (case 21), it is logical that the inspection ef-
forts reduce, then FĪ decreases. Further, the production threshold
Zpo reduces because the cost of inspection is tied directly with the
production rate in the cost function (13), and this limits the stock
level to the bare minimum. Also at increasing cins, preventive
maintenance is conducted more frequently as an attempt to improve
process quality, thus np decreases. Nevertheless, with the decrease of
FĪ , more defectives reaches the final customer, then the system
capacity reduces, and AOQ¯ and AOQL, increase. We observe that a
lower inspection cost has the inverse effects (case 20). Moreover, the
variation of crec(cases 22 and 23) has similar effects that the in-
spection cost.

9.2. Influence of system parameters

The remainder of this section analyzes the influence of a number of

Table 5
Sensitivity of the AOQL restriction.

Control parameters Quality indices ETC¯ (·)($)

Case number AOQLmax (%) Zpo np f1 FĪ (%) AOQ¯ (%) AOQL(%)

Basic case 6.17 13.05 11.16 0.8093 23.38 3.70 6.17 334.38
1 6 13.06 10.04 0.9295 23.24 3.31 6 334.69
2 5.5 14.16 9.31 0.9999 19.60 3.03 5.5 335.48
3 5 13.73 6.11 0.6182 9.49 2.60 5 337.76
4 4.5 13.68 5.13 0.5056 6.39 2.28 4.5 339.27
5 4 13.65 4.37 0.4226 4.31 1.90 4 340.70
6 3.5 13.63 3.73 0.3539 2.77 1.51 3.5 342.09
7 3 13.62 3.16 0.2937 2.28 1.49 3 343.44
8 2.5 13.61 2.64 0.2396 1.35 1.11 2.5 344.77
9 2 13.60 2.17 0.1900 1.06 1.08 2 346.09
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system parameters on the optimal control factors (Z n f, ,po p 1 ). In par-
ticular, we analyze the impact of the adjustment parameter r , which
serves to modify the pace of generation of defectives units, also we
study the sensitivity of the inspection ui and rectification ur rates. We
complement the discussion with the effect of the rate of defectives q12.
Table 7 presents eight different system configurations that allow us to

analyze the effect of the variation of parameters (i.e. r , ui, ur and q12).
The interpretation of the sensitivity of the parameters is as follows:

▪ Variation of the quality deterioration rate: Recall that the adjust-
ment parameter r serves to modify the pace of generation of de-
fectives. In particular, when <r 1, the system accelerates the

a) Effect of the inspection cost on             b) Effect of the preventive maintenance cost on 
Fig. 7. Analysis of the variation of FĪ and np for each value of AOQLmax .

Table 6
Sensitivity analysis.

Control parameters Quality indices ETC¯ (·)

Par. Case number Value Zpo np f1 FĪ (%) AOQ¯ (%) AOQL(%) Remark

– Basic case – 13.05 11.16 0.8093 23.38 3.70 6.17 334.38 Based for the comparison
+C 10 2.2 16.06 11.45 0.9899 27.78 3.29 5.04 322.76 Z n FI, , ¯po p

11 3.5 10.83 10.44 0.5813 15.07 4.03 7.90 340.34 Z n FI, , ¯po p

C 12 120 10.21 9.46 0.4566 10.51 3.88 9.35 330.47 Z n FI, , ¯po p

13 185 15.04 11.81 0.9410 26.98 3.45 5.30 337.50 Z n FI, , ¯po p

Cr 14 50 13.21 11.75 0.8978 25.33 3.51 5.56 321.36 Z n FI, , ¯po p

15 400 12.72 10.11 0.6387 16.46 3.89 7.46 351.59 Z n FI, , ¯po p

Cm 16 5500 12.07 8.09 0.3036 6.25 3.72 9.21 329.79 Z n FI, , ¯po p

17 6500 13.25 12.39 0.9412 29.33 3.52 5.30 337.95 Z n FI, , ¯po p

Cpro 18 16 13.25 12.16 0.9899 30.79 3.38 5.04 312.13 Z n FI, , ¯po p

19 24 12.86 10.03 0.6110 15.78 3.96 7.67 363.63 Z n FI, , ¯po p

Cins 20 7 13.30 11.66 0.9235 26.26 3.47 5.41 334.06 Z n FI, , ¯po p

21 12 11.97 9.24 0.3332 7.62 4.04 9.03 335.54 Z n FI, , ¯po p

Crec 22 13.7 13.33 11.74 0.9377 26.70 3.44 5.32 334.11 Z n FI, , ¯po p

23 17 12.73 10.53 0.6623 17.22 3.87 7.28 334.68 Z n FI, , ¯po p

Cdef 24 170 12.23 10.72 0.5078 12.89 4.09 8.45 330.25 Z n FI, , ¯po p

25 190 13.32 11.53 0.9230 26.31 3.48 5.41 335.10 Z n FI, , ¯po p

Table 7
Sensitivity of system parameters.

Control parameters Quality indices ETC¯ (·)

Par. Case number Value Zpo np f1 FĪ (%) AOQ¯ (%) AOQL(%) Remark

– Basic case – 13.05 11.16 0.8093 23.38 3.70 6.17 334.38 Based for the comparison
r 26 1.7 13.30 11.75 0.8538 25.73 4.37 6.58 340.06 Z n FI, , ¯po p

27 2.4 12.35 10.34 0.7897 16.99 3.11 6.05 323.47 Z n FI, , ¯po p

ui 28 15 13.31 9.40 0.4042 9.15 3.99 8.59 326.10 Z n FI, , ¯po p

29 22 12.97 11.44 0.8375 24.04 3.64 5.96 334.78 Z n FI, , ¯po p

ur 30 7 13.16 9.59 0.4625 10.73 3.92 9.29 331.02 Z n FI, , ¯po p

31 12 12.80 11.93 0.8493 24.38 3.61 5.87 335.05 Z n FI, , ¯po p
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generation of defectives and vice-versa. From Table 7, when r in-
creases (case 27), the deterioration rate decreases and the model
reacts by reducing the production threshold Zpo because the system
produces less defectives and so the system capacity increases and
there is less need for shortage protection. With less defectives, the
plan severity reduces (then FĪ decreases), and so the system can
afford more frequent preventive maintenance, reducing np. Further,
the conduction of more frequent preventive maintenance and the
presence of less defectives lead to improve the quality indices, thus
AOQ¯ and AOQL reduce. The decrease of r produces the opposite
effects (case 26).

▪ Variation of the inspection and rectification rate: the increase of the
inspection rate ui (case 29) reduces the inspection time i as denoted
in Equation (5), and with the increment of ui the system increases its
production capacity. Hence, the production threshold Zpo reduces
because the system can produce and inspect items at a faster pace.
Moreover, with the reduction of Zpo, the machine deteriorates less,
hence preventive maintenance is delayed, increasing then np. Ad-
ditionally, at delaying preventive maintenance, more inspection is
conducted, thus FĪ increases. In addition, with more inspection less
defectives reaches the customer, then AOQ¯ and AOQL decrease.
From the results of Table 7, we note that the decrease of the in-
spection rate generates the contrary effects (case 28). Further, the
variation of the rectification rate ur (cases 30 and 31) has similar
effects as the variation of the inspection rate.

10. Comparative study

Based on the analysis of the set of papers presented in literature
review, in this section we conduct a comparison study to highlight the
economic advantages of our proposed control policy. In particular, we
observe that current literature dissociates production, quality inspec-
tion and maintenance decisions, and most of the researchers disregard
the importance of a dynamic inspection policy that must be adjusted in
function of the level of deterioration of the machine. We compare the
performance of the prosed control policy, which we denote as Policy-I,
to the most representatives policies from the literature. The other po-
licies considered in the comparison are described as follows:

• Policy-II: this policy is derived from the results of the paper of
Rivera-Gómez et al. (2013), where the quality sampling control is
not considered in the optimization, thus the control strategy consists
of 100% inspection of all the items produced instead of using a
sampling inspection. This Policy II can be viewed as a simplified
version of Policy-I, without the optimization of the optimal sampling
fraction.
• Policy III: this policy is based on the results of Bouslah et al. (2018),
where the optimal production threshold and the optimal sampling
fraction inspection are constants and do not evolve in function of the
deterioration of the machine. For this Policy III, Zp and f remain
constants during the simulation.
• Policy IV: this policy derives from Policy-I, with the difference that
the determination of preventive maintenance is not part of the op-
timization. In this Policy-IV, preventive maintenance is conducted
when the machine reaches the maximum allowed number of failures

nmax and the optimization only determines the optimal production
threshold and the optimal sampling fraction inspection.

Table 8 presents the total incurred cost and complementary per-
formance indices, obtained by using the same basic case data for the
considered policies.

The interpretation of the obtained results is as follows:

• Effect of Policy-II: this policy ensures the delivery of defect-free
products through the 100% inspection of the items produced. Thus,
under this policy, the quality indices AOQ¯ and AOQL are zero be-
cause all produced units are inspected. However, since in Policy-II
inspection requires more time, the production threshold Zpo in-
creases to ensure demand satisfaction. In addition, preventive
maintenance is delayed because the quality indices AOQ¯ and AOQL
improve with 100% inspection. Regarding the total cost, Policy-II
reported a 17.48% higher cost than Policy-I. The observed differ-
ence is due to the extra unnecessary inspection conducted by Policy-
II during the beginning of the deterioration process, when the pro-
cess quality is excellent, and so conducting 100% inspection un-
necessarily increases the total cost.
• Effect of Policy-III: From the results of Table 8, we note that 29.83%
of items will be inspected in the long-term. However, the quality
indices are negatively affected, since AOQ¯ and AOQL increases,
mainly because the sampling fraction is not adjusted in function of
the level of deterioration. Furthermore, the parameter Zpo increases
as protection against defectives, because in Policy-III, Zpo is not
dynamic, it is constant during the simulation. With fixed Zpo and f ,
preventive maintenance is delayed to avoid disrupting the machine
from production. In Policy-III the total cost increases, reporting a
difference of 13.70% compared to Policy-I, because in Policy-III Zp
and f are not adjusted progressively as the machine deteriorates.
• Effect of Policy-IV: In this policy, preventive maintenance is con-
ducted when the machine reaches the limit nmax of failures. Thus, it
is expected that the total cost of Policy-IV is considerably higher
than the cost of Policy-I, with an observed difference of 11.51%
because at conducing less preventive maintenance the machine
reaches higher levels of deterioration before restoration, reflected in
more defectives. Hence, with less preventive maintenance the in-
spection efforts FĪ increases as a countermeasure to detect more
defectives. Nevertheless such preventive maintenance delay has a
negative impact on the quality indices AOQ¯ and AOQL, which in-
crease. Further, with the presence of more defectives, the produc-
tion threshold Zpoincreases as protection. The increment of the
amount of defectives and inspection explain the increment of the
total cost of Policy-IV.

11. Conclusion

Traditionally the fields of production, quality and maintenance
planning has been treated as separate problems in the literature despite
their evident interaction. Currently, it exists a limited number of paper
that address these three key functions simultaneously in an integrated
model. Nowadays, the design of sampling plans has evolved from
considering only quality requirements with no economic consideration

Table 8
Comparative study.

Control parameters Quality indices ETC¯ (·) Cost difference -Cost (%)

Description Zpo np f1 FĪ (%) AOQ¯ (%) AOQL(%)

Policy-I 13.05 11.16 0.8093 23.38 3.70 6.17 334.38 –
Policy-II 18.79 15.74 – 100.0 0.00 0.00 392.83 +17.48%
Policy-III 14.43 12.60 0.2983 29.83 4.39 10.47 380.213 +13.70%
Policy-IV 14.45 20 0.7551 45.34 4.62 6.61 72.88 +11.51%

H. Rivera-Gómez, et al. Computers & Industrial Engineering 140 (2020) 106273

16



and disregarding the influence on production and maintenance plan-
ning to a more integrated view that takes into account economic re-
percussions and interactions with production and maintenance aspects.
In this paper, we have developed a new integrated model for the joint
optimization of production, preventive maintenance and quality sam-
pling plan for a quality deteriorating production system considering an
outgoing quality constraint. The proposed model contribute to the do-
main of optimal control of production systems at considering the effect
of a deterioration process on the determination of the optimal pro-
duction, quality and preventive maintenance control parameters. The
proposed control parameters for the inventory level and the quality-
sampling fraction are not constant as previously considered in the lit-
erature, they are dynamic in our formulation and their values vary in
function of the level of deterioration of the production system. In the
sensitivity analysis, we analyzed the effect of an extensive number of
cost and system parameters that highlight the strong interaction be-
tween production, quality control and preventive maintenance strate-
gies. In the comparative study, we observed significant cost economies,
if the control parameters are dynamic and evolve in function of the
level of deterioration of the machine. In a sense, it can be stated that the
obtained results are quite satisfactory and foster further research in this

domain. Possible extensions of this work could investigate more com-
plex production systems such as the case of unreliable suppliers where
the need to inspect income material are taken into account. Further
research can be conducted to study the case where imperfect main-
tenance have a relationship with the severity of the sampling plan.
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Appendix A

Simulation runs are conducted according to a complete 33 factorial design to screen out a subset of the control factors (Z f n, ,po p1 ) that have a
significant impact on the responseETC¯ (·). For each combination of independent factors (Z f n, ,po p1 ), the experimental design is replicated three
times implying a total of × =(3 3) 813 simulation runs. We are interested to take significant factors and build a metamodel of how the simulation
model transforms a particular set of input-factor values into the output response, ETC¯ (·) and the AOQL indicator. Based on off-line simulation runs
we define the minimum and maximum values of the factors (Z f n, ,po p1 ) as presented in Table A1.

Without loss of generality, we set the limit of the number of failures as =n 20max . The simulation run length is set to 100,000 units of time to
ensure steady state conditions. The simulation results are handled with the statistical software STATGRAPHICS in order to obtained an analysis of
variance (ANOVA) and determine a metamodel for the expected average total cost ETC¯ (·). The ANOVA analysis for the total cost is presented in
Table A2.

The adjusted R-squared coefficient of the data of Table A2 is =R 94.402 %, implying that about 95% of the observed variability in the total cost
ETC¯ (·) is explained by the second-order model. From Table A2 we note that all the main factor and most of the interactions are significant with a P-
value 5%. Regarding the AOQL constrained we obtained the following ANOVA Table A3.

The obtained R-squared coefficient for the AOQL constraint is equal to 98.52% implying a good fit for the data.

Table A1
Range for the independent variables.

Factor Low level High level Description

Zpo 5 25 Initial production threshold
np 5 20 Number of failure to restore the system
f1 0.05 0.95 Maximum sampling fraction inspection

Table A2
The ANOVA Table for the total cost.

Source Sum of Squares Df Mean Square F-Ratio P-Value

A:Zpo* 5029.0 1 5029.0 230.53 0.0000
B:np* 6459.01 1 6459.01 296.08 0.0000
C:f1* 959.202 1 959.202 43.97 0.0000
AA 5643.9 1 5643.9 258.72 0.0000
AB 463.892 1 463.892 21.26 0.0000
AC 462.828 1 462.828 21.22 0.0000
BB 4420.58 1 4420.58 202.64 0.0000
BC 1952.09 1 1952.09 89.48 0.0000
CC 17.7124 1 17.7124 0.81 0.3707
blocks 6.44023 2 3.22011 0.15 0.8630
Total error 1505.24 69 21.8151
Total (corr.) 26919.9 80
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