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Abstract 

Following the classical definition of factorization of matrix-functions, we in-
troduce a definition of factorization for functional operators with involutive 
rotation on the unit circle. Partial indices are defined and their uniqueness is 
proven. In previous works, the main research method for the study scalar 
singular integral operators and Riemann boundary value problems with Car-
lemann shift were operator identities, which allowed to eliminate shift and to 
reduce scalar problems to matrix problems without shift. In this study, the 
operator identities were used for the opposite purpose: to transform operators 
of multiplication by matrix-functions into scalar operators with Carlemann 
linear-fractional shift. 
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1. Introduction 

A large number of works have been dedicated to Riemann boundary value prob-
lems and to the related singular integral equations. We point out some mono-
graphs that have already become classic on this subject [1] [2] [3] [4]. A special 
place is occupied by problems with shift in boundary conditions and equations 
with shift [5]. Listed monographs and their authors played a significant role in 
the development of this topic. 

The problem of factorization of matrix functions is closely connected with the 
solution of matrix Riemann boundary value problems, for which effective solu-
tion methods have not yet been found [5] p. 24, Theorem 6. This explains the 
interest in and motivation for the study of this topic. 
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In [6], we constructed operator identities with invertible operators, which 
transform a singular integral operator A with involutive fractional linear shift 
into a vector singular integral operator D without shift. Applications have been 
identified in which the main method of investigation was operator identities [7] 
[8] [9] [10]. 

Simplicity of the shift under consideration permits us, when studying the op-
erator A, to avoid associated operators, and to avoid the appearance of compact 
operators and to obtain the operator identity, which directly connects the class 
of singular integral operators with shift and the class of matrix characteristic 
singular integral operators without shift. For an orientation-preserving shift, this 
corresponds to a similarity transform 1A D− =  .  

Moreover, it was noted that the operator identity transforms functional oper-
ators with shift and singular integral operators independently of each other, and 
the results of the transformations are not mixed. This makes it possible to di-
rectly apply the operator identity to operators with a shift and to transform them 
into the operator of multiplication by a matrix-function without the appearance 
of any shifts or singular operators. 

The advantages of the proposed approach are manifested when considering 
various applications. In [8] [9], we proved invertibility conditions for singular 
integral operators with a direct shift and for matrix characteristic operators with 
coefficients having an automorphic structure generated by piecewise constant 
functions. 

In [7], based on the known results on factorization [11], invertibility condi-
tions in weighted Lebesgue spaces for singular integral operators with linear 
fractional involution and piecewise constant coefficients with three points of 
discontinuity were obtained. For homogeneous equations with such operators, 
the number of linearly independent solutions was calculated [10], the case when 
the coefficients of singular integral operators with four values has been consi-
dered and conditions for the non-triviality of the kernel of such operators were 
found. 

Following this method, we studied a Riemann boundary value problem with a 
shift inward of the domain with piecewise constant coefficients taking two values 
[8] [9]. The conditions of existence and uniqueness of the homogeneous prob-
lem were found, as well as the formula for calculating the number of linearly in-
dependent solutions. 

In this paper, we propose new applications of operator identities. We consider 
functional operators with involutive rotation on the unit circle. The main results 
are:  
 A definition of factorization for these operators is given. The correctness of 

the definition is proven. Partial indices are defined and their uniqueness is 
proven. 

 A relationship between the factorization of the matrix function and the fac-
torization of the corresponding functional operator with shift is obtained. 
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2. Factorization of the Operators with Carlemann Rotation  
on the Unit Circle 

Let T denote the unit circle. We review definitions that we are going to use [5] 
[12]. 

Factorization of non-degenerate matrix function ( )tG , ( )det 0t ≠G  in the 
space ( )2

2L T  is expressed by the representation  

( ) ( ) ( ) ( ) ,t t t t+ −= ΛG G G                     (1) 

were matrix functions ( )t+G , ( )t−G  are the boundary values of analytic, 
non-degenerate within D+  and outside D−  of unit circle T, matrix functions 

( )z+G  and ( )z−G , ( )det 0z+ ≠G  and ( )det 0z− ≠G , respectively;  

( ) 1 2diag , ,t t tκ κ Λ =                         (2) 

were 1 2,κ κ  are integers and 1 2κ κ≥ . The numbers 1 2,κ κ  are called partial 
indices. 

It is known [5] [11] that the partial indices are invariants of the factorization 
and do not depend on a particular type of representation, and that the numbers 

1 2,κ κ  are uniquely defined. 
We use the following notations for projectors acting in space ( )2L T , 

( )1
2

I W= + , ( )1
2 TI W= −  where I is the identity operator, operator W is 

the rotation operator:  

( )( ) ( ).W t tϕ ϕ= −  

We introduce similar notation for identity operator I in the space ( )2
2L T . 

The operation of square root extraction is denoted by ( )( ) ( )N t tϕ ϕ= . 
Let us see how the factorization of a functional operator with shift looks if we 

proceed from the defition of the second-order matrix function factorization in 
the space ( )2

2L T . Let functions ( )a t , ( )b t  be bounded measurable functions 
given on T. Factorization of an invertible operator  

( ) ( )A a t I b t W= +  

in the space ( )2L T  is expressed by its representation in the form  

( ) ( ) ( ) ( ) ,A t I B t W A t I B t W+ + − −   + Ω +                  (3) 

were 

( ) ( )1 2 1 22 2 2 21 1 ,
2 2

t t I t t Wκ κ κ κΩ = + + −                  (4) 

so that functions  

( ) ( ) ( )( ) ( ) ( ) ( )( )11 12, ,g t N A t B t g t N t A t B t± ± ± ± ± ± = + = −    

( ) ( ) ( )( ) ( ) ( ) ( )( )21 22
1 , ,g t N A t B t g t N A t B t
t

± ± ± ± ± ± = + = −  
   

have to be boundary values of analytic non-singular functions  
( ) ( ) ( ) ( )11 22 12 21, , ,g z g z g z g z  in D+  and outside D−  of unit circle T respec-
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tively, and the following inequalities have to be fulfilled  
( ) ( ) ( ) ( )11 22 12 21 ,g z g z g z g z z D D+ −≠ ∈  . We also provide other forms of re-

presentation (3), of operator A and of (4) through the projectors  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ,A t B t A t B t A t B t A t B t+ + + + − − − −   + + − Ω + + −        

( ) ( )A a b a b= + + −   

1 22 2t tκ κΩ = +   

We call integers 1κ  and 2κ  partial indices of A. 
In works [6] [7] [9], a similarity transformation was constructed that trans-

forms the identity operator I, acting in the space ( )2L T  to the identity opera-
tor I, acting in the space ( )2

2L T ; the shift operator W, acting in space ( )2L T  
to the matrix operator V, acting in the space ( )2

2L T :  

1 1 0
, .

0 1
W−  

= =  − 
V V                  (5) 

We also note that the operator of multiplication by a function transforms into  

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 .1

a t a t t a t a t
a t I

a t a t a t a t
t

−

  + − − −  
=  

  − − + −   

      (6) 

To describe the similarity transformation structure we need some definitions 
and operators. 

Let Γ  and γ  be contours, and let γ ⊂ Γ . The extension of a function 
( )f t , t γ∈ , to \ γΓ  by the value zero, will be denoted by ( )( )\ ,J f t tγΓ ∈Γ . 

The restriction of a function ( )tϕ , t∈Γ  to γ  will be denoted by ( )( )C tγϕ , 
t γ∈ . 

The operator ( ) ( )2
2 2,L T L T ∈    is determined by the composition of the 

operators M GNΠZ . 
In our case, these operators have the following form  

1 1
1 2

2

, ,T

T

T T T T

C
M J WJ M

C W

ϕψ
ψ ϕ ϕ

ψ ϕ
+

+ − − +

+

−
  
 = + = 
    

 

where T+  and T−  are the upper and the lower parts of the unit circle, respec-
tively,  

( ) ( ) ( )
1

1 1 1 2 1 2
1 11 , diag 1, , , ,
1 12 T Tt N t t N t tζ ζ ζ ζ

+ +

± ± ± −     = Π = = =       −   
Z  

( ) ( ) ( ) ( ) ( ) ( )1 2 2 2 2
2 2 2 2 2 2, , , , , .T T TM L T L T M L T L T N L T L T

+ + +

−
+ + +     ∈ ∈ ∈       

3. Uniqueness of Factorization and Partial Indices 

Theorem 1. The invertible operator A in the space ( )2L T   

( ) ( )T TA a t I b t W= +  

admits factorization  
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( ) ( ) ( ) ( ) ,A A t I B t W A t I B t W+ + − −   = + Ω +     

if and only if the matrix function ( )tG :  

( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 1

1 11
T W T T T W T T

T W T T T W T T

P a t b t tQ a t b t
t

Q a t b t P a t b t
t

+ +

+ +

− −

− −

  + −  
=   + −    

N N
G

N N
 

admits factorization  

( ) ( ) ( )1 2diag ,t t t t tκ κ+ − =  G G G  

in the space ( )2
2L T .  

Proof. We apply the operators 1−  and   on the left and right to the fac-
torization (3) of the operator A:  

( ) ( ) ( ) ( ) ( ) ( )T Ta t I b t W A t I B t W A t I B t W+ + − −   + = + Ω +    ,  

( ) ( )
( ) ( ) ( ) ( )

1

1 1 1 .

T Ta t I b t W

A t I B t W A t I B t W

−

− + + − − − −

+  
   = + Ω +   

 

   
 

We calculate  

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1
12

1 .12

T T

T T T T

T T T T

T T T T

T T T T

a t I b t W

a t a t t a t a t

a t a t a t a t
t

b t b t t b t b t

b t b t b t b t
t

− +  
  + − − −  

=  
  − − + −   

  + − − −  
+  

  − − + −   

I

V

 

 

Then we calculate  
1

1 2 1 2

2

2 2 2 21 1 01 1 .
2 2 0

tt t I t t W
t

κ
κ κ κ κ

κ
− −      Ω = + + − =         

I     

and  

( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1
12

1 .12

TA t I B t W

A t A t t A t A t

A t A t A t A t
t

B t B t t B t B t

B t B t B t B t
t

− ± ±

± ± ± ±

± ± ± ±

± ± ± ±

± ± ± ±

 + 
  + − − −  

=  
  − − + −   

  + − − −  
+  

  − − + −   

I

V

 

       (7) 

Formulas (7) describe the relationships between the factors of the operator A 
and the matrix ( )tG . The matrix from (7) coincides with the matrix  

( ) ( ) ( )
( ) ( )

11 12

21 22

g t g t
t

g t g t

± ±
±

± ±

 
=  
  

G , composed of functions included in the definition of  
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factorization of a functional operator. Taking into account the requirements that 
are imposed on the functions ( ) ( ) ( ) ( )11 22 12 21, , ,g t g t g t g t± ± ± ±  in the definition of 
factorization of functional operator with shift A, we come to the classical defini-
tion of factorization (1), (2) of a second-order matrix-valued function ( )tG  in 
the space ( )2

2L T . 
From Theorem 2, it follows that the partial indices 1 2,k k  in our representa-

tion (3), (4) are uniquely determined, because they are uniquely determined by 
the classical factorization of the matrix ( )tG . 

Corollary 1. Partial indeces 1κ  and 2κ  of the invertible functional operator  

( ) ( )T TA a t I b t W= +  

in the space ( )2L T  are uniquely determined and do not depend on the specific 
realization of factorization (3), (4) and coincide with the partial indices of the 
matrix function ( )tG .  

4. Conclusion 

This paper presents the concept of functional factorization operator with Carle-
mann rotation on the unit circle. The main method of investigation was operator 
identities. Operator identities present a convenient mathematical tool for study-
ing Riemann boundary value problems, singular integral equations and with in-
volutive fractional rational shift and factorization problems. 
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