Producción Científica Profesorado

NiMo catalysts supported on Mn-Al2O3 for dibenzothiophene hydrodesulfurization application



Guevara Lara, Alfredo

2017

NiMo catalysts supported on Mn-Al2O3 for dibenzothiophene hydrodesulfurization application, López-Benítez, A., Berhault, G., Guevara-Lara, A., Applied Catalysis B: Environmental, 213 (2017) 28-41


Abstract


Modification of the traditional Al2O3 support through addition of manganese to Al2O3 mixed Mn-Al oxides was herein envisaged to obtain highly active NiMo catalysts for hydrodesulfurization application. The effect of adding manganese was determined considering different Mn-Al2O3 supports synthetized using a sol?gel approach. The manganese-containing supports were furthermore impregnated with Ni(NO3)2 + (NH4)6Mo7O24 aqueous solutions at pH = 9 and characterized at their oxide state using UV?vis diffuse reflectance and Raman spectroscopies after drying and calcination steps. NiMo/Mn-Al2O3 catalysts were also characterized at the sulfide state mainly by X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Finally, the sulfide catalysts were evaluated in the hydrodesulfurization of dibenzothiophene. Results show that the oxidation state of manganese species directly influences the nature of the Mo oxide species and their interaction with the Al2O3 support. At low Mn content (up to 0.5 mol% Mn as MnO), Mn2+ species leads to weaker interaction with the support and a higher intrinsic activity of the NiMoS species. However, these promoted sites are also formed in a lower amount than without adding Mn to the support. At too high manganese content (?2 mol% Mn as MnO), Mn3+ species are formed and react with Ni to form a spinel phase decreasing the proportion of promoted phase to be formed after sulfidation. The highest activity is therefore observed at an intermediate Mn content of 1 mol% for which a higher intrinsic activity resulting from weaker support interaction and higher sulfidation rate combine together to achieve highly active NiMo HDS catalysts.



Producto de Investigación




Artículos relacionados

Quantum chemical study of the electrochemical reduction of the [Co(H2O)6]2+ and [Co(NH3)5(H2O)]2+ io...

Copper Electrodeposition On Glassy Carbon And Highly Oriented Pyrolytic Graphite Substrates From Per...

Underpotential deposition of cobalt onto polycrystalline platinum

Nucleation and Growth Kinetics of Electrodeposited Sulfate-Doped Polypyrrole: Determination of the D...

Characterization of Main Anthocyanins Extracted from Pericarp Blue Corn by MALDI-ToF MS

Do Spiroarsoranes Exhibit Polytopal Equilibrium in Solution?

Bioacumulación y daños genotóxicos en Pez Cebra (Danio rerio) por arsénico en aguas de Zimapán, Hida...

Estudio de las Interacciones Ácido Húmico-Metales Pesados y Determinación de sus Constantes de Estab...

A Semiempirical PM6 Study of Some Aminopyrimidine Derivatives and their Interaction with an Iron Sur...

A theoretical quantum study on the distribution of electrophilic and nucleophilic active sites on th...