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The problem of assigning buffers in a production line to obtain an optimum production rate is a combinatorial problem of type
NP-Hard and it is known as Buffer Allocation Problem. It is of great importance for designers of production systems due to
the costs involved in terms of space requirements. In this work, the relationship among the number of buffer slots, the number
of work stations, and the production rate is studied. Response surface methodology and artificial neural network were used to
develop predictive models to find optimal throughput values. 360 production rate values for different number of buffer slots and
workstations were used to obtain a fourth-ordermathematical model and four hidden layers’ artificial neural network. Bothmodels
have a good performance in predicting the throughput, although the artificial neural networkmodel shows a better fit (𝑅 = 1.0000)
against the response surface methodology (𝑅 = 0.9996). Moreover, the artificial neural network produces better predictions for
data not utilized in the models construction. Finally, this study can be used as a guide to forecast the maximum or near maximum
throughput of production lines taking into account the buffer size and the number of machines in the line.

1. Introduction

The Buffer Allocation Problem (BAP) can be defined in
three different ways by means of different objective functions
as presented in [1]. These objective functions are expressed
taking into account the maximum performance rate in a
production line, the minimum buffer size to obtain a fixed
throughput rate, and minimizing the average inventory of
work in process. The mathematical models of these ver-
sions of the problem are given in the following paragraphs
[2].

Problem BAP-A (The Dual Problem). In this problem we
assume that there are 𝐾 machines and 𝐾 − 1 storage areas
with 𝑁 total integer buffer slots to be allocated. Possible
solutions have the form 𝑛 = (𝑁1, 𝑁2, . . . , 𝑁𝐾−1). The
objective is to maximize the throughput of the production
line subject to a fixed quantity of buffer slots (𝑁) distributed
among the 𝐾 machines. The problem may be denoted as
follows:

max 𝑋(n) = max𝑋(𝑁1, . . . , 𝑁𝐾−1)

s.t.
𝐾−1

∑
𝑖=1

𝑁𝑖 = 𝑁 𝑁𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝐾 − 1.
(1)

Problem BAP-B (The Primal Model). This problem is focused
to minimize the total number of buffer slots to be allocated in
between every machine𝐾, given a minimum throughput𝑋0.
The problem may be stated as follows:

min 𝑁 =
𝐾−1

∑
𝑖=1

𝑁𝑖

s.t. 𝑋 (n) = 𝑋 (𝑁1, . . . , 𝑁𝐾−1) ≥ 𝑋0
𝑁𝑖 ≥ 0, ∀𝑖 = 1, . . . , 𝐾 − 1.

(2)

Problem BAP-C (Minimize the Average Work in Process).
In this case, the problem consists in minimizing the aver-
age work in process (WIP), given a predefined minimum
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throughput 𝑋0. The problem may be stated mathematically
as follows:

min 𝐿 (n) = min 𝐿 (𝑁1, . . . , 𝑁𝐾−1)

s.t. 𝑋 (n) = 𝑋 (𝑁1, . . . , 𝑁𝐾−1) ≥ 𝑋0
𝐾−1

∑
𝑗=1

𝑁𝑗 ≤ 𝑁 𝑁𝑗 ≥ 0, 𝑗 = 1, . . . , 𝐾 − 1,

(3)

where 𝐿(n) = 𝐿(𝑁1, . . . , 𝑁𝐾−1) indicates the average of the
WIP inventory, as a function of the buffer size vector, and the
desired throughput𝑋0.

Metaheuristic methods are widely employed for solving
combinatorial optimization problems, and these have been
applied successfully in many types of problems of production
lineswhere it is impossible to findoptimumsolutions by exact
methods in a short amount of time when the problem size
increases. Our objective is to study the relationship among
the production rate, buffer size, and the number of machines
in production lines. Then, we can propose the use of an RSM
or ANN that models the behavior of the algorithms used to
calculate the throughput of serial production line to obtain
similar results in a shorter time, by knowing the number of
workstations𝐾 and the total space of the buffer𝑁.

The reminder of this paper is organized as follows. In
Section 2, we present previous work related to this topic.
In Section 3, we describe the basic concepts of the RSM
and ANNs, the fitting techniques applied in this study.
In Section 4, we show the steps in the development of
both models and the numerical experiments performed. In
Section 5, we give some results and compare the performance
of the RSM and ANN obtained. Finally, Section 6 concludes
this paper.

2. Related Work

The BAP has been studied for over 50 years and numerous
articles have been published. The first study associated with
this subject was done by Koenigsberg [3], presenting an
analysis and a review of the problems associated with the
effective functioning of production systems.

The solution methods of the BAP has fallen in two
big groups: generative and evolutionary methods. The use
of these methods is combined in a closed configuration.
Generative methods are focused on the search of the optimal
size of the temporal storage for a better performance of the
system. The simpler algorithm uses a method that considers
a complete enumeration of the line. However, it is only
applicable for small systems since the total number of feasible
solutions grows exponentially. Thus, for big systems it is
impossible to look for through the space of solutions. In
the last years, many search methods and metaheuristics have
been highly adapted by investigators to solve the combinato-
rial problem of the size of temporary storage.

In [4], a two-stage heuristic algorithm is developed to
solve the problem of minimization of the total temporal
storage.However, thismethod cannot always find the optimal
solution and it also does not converge in all cases. Seong et al.

adopt the concept of a pseudo gradient and the projection
of this method, to figure out the problem of maximization
of the production rate for a line of fabrication [5]. A year
later, Seong et al. employed a method of gradient for the
maximization of the production rate for a problem with
exponential fabrication [6]. Other researchers also employed
the gradient, such as Gershwin and Schor, who faced the
problem of the temporal storage capacity, minimizing the
total capacity, based on the observation of whether the
production rates are expanded in a first order; this may be
formulated as a problem of integer linear programming [7].

Search algorithms tend to solve the exponential explosion
of the number of solution vectors. In this case, some algo-
rithms apply a primal-dual approach to minimize the total
temporal storage, subject to the restriction of the production
speed. The main problem is to reduce the total size of
temporal storage in a defined production rate, while the dual
formulation is maximizing the throughput of the production
line, subject to a limitation of total space of storage. Vouros
and Papadopoulos studied the maximization of the benefits
of the production line through a nonlinear method that
is fast and precise [8]. Nevertheless, the limitation of the
production rate is not taken into account. The authors based
their research on a system called ASBA2 that contains a
knowledge based system.This system determines the optimal
plans of storage capacity, whose objective is to maximize the
performance of the production lines. In order to validate the
ASBA2 results, the authors executed an exact algorithm to
calculate the production rate and compare them.

In [9], Nahas et al. utilized a local search heuristic to
obtain the allocation plan for a given number of buffers slots.
Aksoy and Gupta developed a near optimal buffer allocation
plan (NOBAP) for a cellular remanufacturing system with a
certain number of buffer slots [10]. The algorithm that Aksoy
and Gupta proposed uses an open queueing network, and
it is based on the decomposition principle and expansion
methodology.

There are primarily two disadvantages of the traditional
search methods. The first one is that the traditional search
sometimes cannot jump over local optimal solutions in the
search of the global optimal solution. The second disadvan-
tage is that, with these approximate methods, it is difficult to
observe small changes in the buffer size that will affect the
system.

Metaheuristics are search methods using strategies that
guide the search process and explore the search space. The
aim is to find optimal solutions or almost optimal. The algo-
rithms are approximated and are generally nondeterministic.
The typical methods applied in this area include Tabu Search
[11–13], Simulated Annealing [14], Genetic Algorithms [15],
and Ant Colony Optimization [16]. In order to search for
the best solution space, a recent tendency is to hybridize
metaheuristics with othermethods like nested partitions [17],
the Branch and Bound method [18], and the local search
[15]. These hybrid search methods have an advantage over
the traditional ones because they can jump over local optimal
solutions in the search of the global optimal. The main
disadvantage of thesemethods is that they only can be applied
to resolve specific problems.
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On the other hand, dynamic programming [19, 20],
artificial neural networks [21], genetic programming [22],
and immune algorithm systems [23] have been applied with
success in the solution of BAP in production lines. Moreover,
some studies utilize diverse experimental designs for the
evaluation of the solutions for the BAP [24–28].

There are two methods mainly used to evaluate the
results produced by the strategies described above: analysis
and simulation methods. The exact analytical method shows
results based on queueing theorymethods, which are difficult
to obtain and are only available for line systems of short
productions. The methods of approximate evaluation are
decomposition, aggregation, and expansion. These are the
most utilized methods to resolve BAP; in particular, decom-
position method is used by many researchers [7, 16, 29]. The
main idea of thismethod is to decompose the originalmodule
through the analysis of a conjunction of smaller subsystems
that are much easier to solve. The main advantages of the
decomposition method are the computational efficiency and
the precision to find a solution. However, the disadvantage
is that it can be applied only under the assumption that
the production rates are deterministic or they follow an
exponential distribution and the rates formachine failure and
repair are geometrical or exponential randomly distributed.

The expansion method takes up the method of queueing
theory. It is a method of general expansion that is used under
certain assumptions and can be used for service times in
general. This method was applied to solve series and merge
and split topologies of production lines with finite buffers
[30, 31].

The evaluation by the aggregation method has been also
used to solve the BAP [18, 32]. It was applied to evaluate the
performance of the buffer allocation in production lines. The
idea of this method is to define two stations and a buffer as a
subline; then it will be replaced for just one equivalent station.
Next, this station is combined with a buffer and station of the
original line to form again a subline of two stations and one
buffer. This new subline is aggregated into a new equivalent
station. This process is repeated until all the stations are
added.

On the other hand, simulation provides many advantages
for modeling realistic and complex systems instead of ana-
lytical methods. Nevertheless, the development of simulation
models is a time consuming task. Simulation is more suitable
to analyze problems of production lines at a detailed level,
when mathematical analysis is not able to be applied to these
kinds of problems.

Several research works [15, 21] can be cited as applications
of simulationmodels to search the solution of BAP.The study
of the transference lines without restrictions in the stations
and finite temporal intermediate buffer was performed by
Hillier and So in 1991 and Hillier et al. in 1993 [33, 34].
In these research papers, the stations have exponential time
in the process; both articles employ a complete evaluation
of all the buffers for minimizing the space and maximizing
the throughput. The authors employed an exact method
to determine the production rate. The difficulty with this
approach is that exact solutions can be only applied to small
systems.

ANNs have been applied to model the behavior of many
systems with a good acceptance. In medicine, there is a
study where ANNs where used to identify patients with hard
risk for dying after suffering an acute myocardial infarction
[35]. Furthermore, Pesko et al. present a comparative study
between the use of ANNs and support vector machines,
which are used to estimate costs and duration time of the
construction of urban roads [36].

Tsadiras et al. propose the application of an ANN in the
development of a decision support system, in order to assist
production line designers in making decisions related to
buffer distribution in reliable production lines.The proposed
ANN contains one hidden layer with 10 hidden neurons [37].

In this research work, a response surface model and
an artificial neural network are proposed to represent the
relationship among the number of buffer slots, the number
of workstations, and the throughput of the production line.
Furthermore, the ANN models were created with different
combination of neurons, and with 1, 2, 3, and 4 hidden layers,
which provide awide range of possibilities instead of only one
hidden layer of neurons.

3. Data Fitting Techniques

In this paper, two techniques have been applied to obtain
models representing the relationship among the throughput
of a production line and the parameters𝑁 (number of buffer
slots) and𝐾 (number of machines in the production line).

3.1. Response Surface Methodology. Response surface meth-
odology (RSM) is a group of mathematical and statistical
techniques used to describe the relationships between a
response of interest, 𝑦, and a number of associated control
(or input) variables denoted by 𝑥1, 𝑥2, . . . , 𝑥𝑘 [38]. The most
extensive applications of RSMare in cases where several input
variables potentially influence some performance measure
or quality characteristic of a process. Thus, performance
measure or quality characteristic is called the response. The
objectives of RSM include the determination of variable
settings, for which the mean response is optimized, and
the estimation of the response surface. In general, such a
relationship is unknown but can be approximated by a low
degree polynomial model of the form

𝑦 = 𝑓 (𝑥) 𝛽 + 𝜖, (4)

where 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑘)
, 𝑓(𝑥) is a vector function of

𝑘 elements, 𝛽 is a vector of unknown constant coefficients
referred to as parameters, and 𝜖 is a random experimental
error assumed to have a zero mean. RSM has been widely
applied in optimizing various processes in environmental
studies for modeling and analysis of water and wastewater
treatment processes [39].

Some stages in the application of RSM are [40] (1) the
selection of independent variables of major effects on the
system through screening studies; (2) the choice of the exper-
imental design and carrying out the experiments according
to the selected experimental matrix; (3) the mathematic
and statistical treatment of the obtained experimental data
through the fit of a polynomial function; (4) the evaluation
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Figure 1: Numerical experiments used for training and testing the
ANN.

of the model and fitness; (5) the verification of the necessity
and possibility of performing a displacement in direction to
the optimal region; (6) obtaining the optimumvalues for each
studied variable.

3.2. Artificial Neural Network. An artificial neural network
(ANN) consists of a set of processing units, also called neu-
rons, that are connected with each other. It can be described
as a directed graph, and each neuron is a transfer function.
A neuron is generally a nonlinear element of multiple inputs
and a single output. The architecture of a neural network is
determined by all the connections in the network and transfer
functions of the neurons [41]

The backpropagation algorithm proposed by [42] is the
most popular algorithm to train ANNs. Moreover, advanced
methods like Marquardt [43–45], Quasi-Newton [46], or
conjugating gradient algorithms [47, 48] are also very popu-
lar. Due to their application in dynamic environments, these
classic learning methods have to be modified to fulfill three
important requirements:

(i) The capacity to work in online mode
(ii) The capacity to adjust its control parameters
(iii) The capacity to adapt its structures, all of them in

accordance with the learning process.

4. Numerical Experiments

In this work, two sets of numerical experiments were con-
sidered. The first one consists of 360 experiments taken from
[2], where 𝐾 = 3, 4, . . . , 20 and 𝑁 = 1, 2, . . . , 20 (Figure 1);
it was considered for the development of the RSM and ANN
models. The second one consists of 55 experiments (Table 1);
these data were utilized for the validation process of the
obtained models.

In the latter case, the experiments are classified in three
categories: small, medium, and large lines (Table 2). In all
cases, reliable exponential and balanced lines were consid-
ered with equal mean service rate 𝜇𝑖 = 𝜇 = 1

Table 1: Sets of numerical experiments used to validate the ANN.

ID Problem size 𝐾 𝑁
(1) Small 11 22
(2) Medium 21 10
(3) Medium 22 11
(4) Medium 23 11
(5) Medium 24 12
(6) Medium 25 12
(7) Medium 26 13
(8) Medium 27 13
(9) Medium 28 14
(10) Medium 29 14
(11) Medium 30 15
(12) Medium 20 21
(13) Medium 21 22
(14) Medium 22 23
(15) Medium 23 24
(16) Medium 24 25
(17) Medium 25 26
(18) Medium 26 27
(19) Medium 27 28
(20) Medium 28 29
(21) Medium 29 30
(22) Medium 30 31
(23) Medium 12 24
(24) Medium 13 26
(25) Medium 14 28
(26) Medium 15 30
(27) Medium 16 32
(28) Medium 17 34
(29) Medium 18 36
(30) Medium 19 38
(31) Medium 20 40
(32) Medium 21 42
(33) Medium 22 44
(34) Medium 23 46
(35) Medium 24 48
(36) Medium 25 50
(37) Medium 26 52
(38) Medium 27 54
(39) Medium 28 56
(40) Medium 29 58
(41) Medium 30 60
(42) Large 40 41
(43) Large 50 51
(44) Large 60 61
(45) Large 70 71
(46) Large 80 81
(47) Large 90 91
(48) Large 100 101
(49) Large 40 80
(50) Large 50 100
(51) Large 60 120
(52) Large 70 140
(53) Large 80 160
(54) Large 90 180
(55) Large 100 200

4.1. Statistical Analysis for Response Surface Methodology.
As we mentioned above, the first dataset of numerical
experiments composed of 360 data was employed for the
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Table 2: Classification of lines.

Small lines 𝐾 = 3, 4, . . . , 11
Medium lines 𝐾 = 12, 13, . . . , 30
Large lines 𝐾 = 40, 50, . . . , 100

construction of the RSM model. Two numerical factors, 𝐾
(number of machines) and 𝑁 (buffer size), designated as
𝑥 and 𝑦, respectively, were considered in the experimental
design. In addition, a fourth-order mathematical model was
chosen for modeling the relationship among 𝐾, 𝑁, and the
throughput, which is sufficiently complex to approximate the
main features of the system. The data were analyzed using
multiple regressions through the least squares method to fit
the following:

Th (𝑥, 𝑦) = 𝜃0 + 𝜃1𝑥 + 𝜃2𝑦 + 𝜃3𝑥
2 + 𝜃4𝑥𝑦 + 𝜃5𝑦

2

+ 𝜃6𝑥
3 + 𝜃7𝑥

2𝑦 + 𝜃8𝑥𝑦
2 + 𝜃9𝑦

3 + 𝜃10𝑥
4

+ 𝜃11𝑥
3𝑦 + 𝜃12𝑥

2𝑦2 + 𝜃13𝑥𝑦
3,

(5)

where Th is the throughput response; 𝜃0 is the intercept;
𝜃1, . . . , 𝜃13 are the linear coefficients, and 𝑥, 𝑦 are the coded
independent variables.

For this task, a specialized Matlab toolbox was used to
carry out the regression analysis.

4.2. Artificial Neural Network Development. A Matlab script
was used to generate the ANN models using the Matlab
Neural Network toolbox, starting with a three-layer model,
where the first layer (input layer) contains two neurons (𝐾
and 𝑁). The number of hidden layers was varying from 1 to
4, and the output layer, composed of one neuron, represents
the throughput of the production line.

Each hidden layer was composed of 5, 8, 10, 12, or
15 neurons. Thus, a total of 780 ANN configurations were
created, and for each of them 50 iterations were executed in
order to find the best model for every configuration. After
the 780 best ANNs were generated and saved in a.mat file,
anotherMatlab script was implemented to find theANNwith
the lowest error and a coefficient of correlation near to 1.

The obtained ANNs were trained with a Levenberg-
Marquardt backpropagation algorithm [49].

The design of the ANN is as follows:

(i) 2 input variables,𝐾 and𝑁
(ii) One output variable, Throughput, which is the maxi-

mum or near maximum performance of the produc-
tion line

(iii) The ANNs containing 1 to 4 hidden layers, which
employ the hyperbolic tangent sigmoid transfer func-
tion as an activation function in every hidden layer:

𝑓 (𝑥) = 1
1 + 𝑒−𝑎𝑥

, (6)

where 𝑎 is a slope parameter

(iv) The ANNs contains an output layer of one neuron; it
employs the linear transfer function.

𝑓 (𝑥) = 𝑎𝑥, (7)

where 𝑎 is a slope parameter.
All the experiments were run in a desktop PC with the

following specifications: Intel(R) Core(TM) i5-2450M CPU
@2.50GHz, 4.00GB RAM.

4.3. Validation. The mean squared error (MSE) and the
coefficient of correlation (𝑅) were used as indicators to
measure the performance of the RSM obtained and every
ANN generated. These errors are defined as follows.

(a) The Mean Squared Error (MSE) [50]

MSE = 1
𝑛

𝑛

∑
𝑖=1

(Target𝑖 −Output𝑖)
2 , (8)

where 𝑛 is the number of the input data to the ANN andRSM,
Target𝑖 is the target output value of the ANN and RSM for
Input𝑖, and Output𝑖 is the predicted value of the ANN and
RSM to Input𝑖.

(b) The Coefficient of Correlation [50]. It measures the cor-
relation between the Output and Target values. It is defined
as

𝑅 =
Cov (Target,Output)
𝜎Target𝜎Output

− 1 ≤ 𝑅 ≤ 1, (9)

where Cov(Target,Output) is the covariance between the
values of Target and the ANN and RSM Output. 𝜎Target and
𝜎Output are the standard deviations of Target and Output,
respectively. The maximum value of 𝑅 = 1 is reached
when the linear relationship is perfect between the target
and output values, whereas when 𝑅 = 0 it means that a
linear correlation does not exist between the output and target
values.

5. Results

In the present study, the data utilized to develop the RSM and
ANNmodels were gathered from a total of 360 experiments,
varying the values of𝐾 and𝑁.

The regression model in terms of the actual values that
described the throughput is presented in (10). The results
indicated that this quadratic model can be used to navi-
gate the design space. The value of 𝑅 for the model was
0.999603176, and the MSE = 1.22796 × 10−5.

Th (𝑥, 𝑦) = 0.8661 − 0.1342𝑥 + 0.04927𝑦

+ 0.01331𝑥2 − 0.001985𝑥𝑦

− 0.002671𝑦2 − 0.0005775𝑥3 − 8.568

× 10−5𝑥2𝑦 + 0.0002081𝑥𝑦2 + 4.734

× 10−5𝑦3 + 9.157 × 10−6𝑥4 + 4.064
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Figure 2: Performance indicator 𝑅 for the RSMmodel.
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Figure 3: ANN with the best performance.

× 10−6𝑥3𝑦 − 2.961 × 10−6𝑥2𝑦2 − 3.058

× 10−6𝑥𝑦3,
(10)

where Th is the throughput, 𝑥 is the number of machines 𝐾,
and 𝑦 is the buffer size𝑁.

The prediction of the model was validated for a corre-
lation between experimental data and predicted throughput
(Figure 2).

On the other hand, theANNwith theminimumerrorwas
one composed of four hidden layers and their corresponding
neurons (8 : 8 : 10 : 10). It is shown in Figure 3.

Figure 4 shows the correlation between experimental
values and predicted throughput in production lines for
training dataset, validation dataset, and test dataset.

For 360 experiments: R = 1
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Figure 4: Performance indicator 𝑅 for the ANN model.

Most of the data are on the bisector or in its vicinity which
represents a proper correlation between experimental data
and predicted outputs. Figure 4 indicates the closeness among
the experimental data and the predicted results using the
ANN. The maximum error and MSE are 0.34% and 1.150 ×
10−7, respectively.

Furthermore, a second dataset was used to prove the
effectiveness of the RSM andANN to forecast the throughput
of a production line from the 𝐾 and 𝑁 values. Table 3
shows experimental and predicted values, as well as the
errors of the RSM and ANN models in the throughput
forecasting. Indeed, experimental data and predicted out-
puts obtained with the ANN model have a good fit with
each other. On the contrary, the RSM model cannot pre-
dict adequately the numerical experiments of the second
dataset.

Values in both models were near those of the experimen-
tal data of the first dataset. But, the ANN showed a better
performance with the second dataset (Table 4).

In the case of the ANN model, the correlation between
experimental data and predicted throughput is illustrated
in Figure 5. It can be observed that there is an appropriate
correlation between experimental values and predicted data.
The maximum error and MSE obtained from this dataset are
2.76% and 3.57 × 10−5, respectively.

Figure 6 shows that the ANN is able to predict small lines
(𝐾 = 3, 4, . . . , 11) and medium lines (𝑘 = 12, 13, . . . , 30)
accurately. Moreover, errors in predicting the throughput in
BAP for large lines (𝐾 = 40, 50, . . . , 100) are small. However,
the graphic of the RSMmodel is quite different to the graphic
of the experimental values.
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Table 3: RSM and ANN errors for the 55 data samples.

ID 𝐾 𝑁 Th from experiments Th from ANN Th from RSM % error ANN % error RSM
(1) 11 22 0.63892 0.639236 0.647968 0.05 1.42
(2) 21 10 0.43869 0.438564 0.447065 0.03 1.91
(3) 22 11 0.44135 0.441200 0.463878 0.03 5.10
(4) 23 11 0.43656 0.436088 0.477474 0.11 9.37
(5) 24 12 0.43927 0.438463 0.512036 0.18 16.57
(6) 25 12 0.43494 0.433669 0.546250 0.29 25.59
(7) 26 13 0.43739 0.435921 0.608091 0.34 39.03
(8) 27 13 0.43345 0.432226 0.672812 0.28 55.22
(9) 28 14 0.43586 0.434505 0.773369 0.31 77.44
(10) 29 14 0.43234 0.431178 0.880447 0.27 103.65
(11) 30 15 0.43447 0.433623 1.033058 0.19 137.77
(12) 20 21 0.52608 0.525900 0.522454 0.03 0.69
(13) 21 22 0.52465 0.524538 0.524495 0.02 0.03
(14) 22 23 0.52361 0.523318 0.530127 0.06 1.24
(15) 23 24 0.52247 0.522231 0.540554 0.05 3.46
(16) 24 25 0.52146 0.521265 0.557152 0.04 6.84
(17) 25 26 0.52051 0.520410 0.581470 0.02 11.71
(18) 26 27 0.51962 0.519653 0.615230 0.01 18.40
(19) 27 28 0.51892 0.518983 0.660328 0.01 27.25
(20) 28 29 0.51815 0.518388 0.718831 0.05 38.73
(21) 29 30 0.51747 0.517859 0.792980 0.08 53.24
(22) 30 31 0.5168 0.517385 0.885189 0.11 71.28
(23) 12 24 0.63556 0.636344 0.648968 0.12 2.11
(24) 13 26 0.6322 0.634189 0.647653 0.31 2.44
(25) 14 28 0.63005 0.632574 0.641090 0.4 1.75
(26) 15 30 0.62789 0.631348 0.625888 0.55 0.32
(27) 16 32 0.626 0.630397 0.598202 0.7 4.44
(28) 17 34 0.62428 0.629639 0.553727 0.86 11.30
(29) 18 36 0.62277 0.629014 0.487706 1 21.69
(30) 19 38 0.62159 0.628481 0.394921 1.11 36.47
(31) 20 40 0.62033 0.628011 0.269700 1.24 56.52
(32) 21 42 0.61926 0.627583 0.105914 1.34 82.90
(33) 22 44 0.6183 0.627184 −0.103023 1.44 116.66
(34) 23 46 0.61743 0.626804 −0.364154 1.52 158.98
(35) 24 48 0.61666 0.626437 −0.684977 1.59 211.08
(36) 25 50 0.61583 0.626078 −1.073447 1.66 274.31
(37) 26 52 0.61517 0.625725 −1.537977 1.72 350.01
(38) 27 54 0.61458 0.625376 −2.087435 1.76 439.65
(39) 28 56 0.61399 0.625029 −2.731146 1.8 544.82
(40) 29 58 0.61345 0.624684 −3.478891 1.83 667.10
(41) 30 60 0.61288 0.624339 −4.340910 1.87 808.28
(42) 40 41 0.51223 0.514290 3.455109 0.4 574.52
(43) 50 51 0.50949 0.512086 11.769262 0.51 2210.01
(44) 60 61 0.50768 0.510035 31.093176 0.46 6024.56
(45) 70 71 0.50639 0.508186 68.420859 0.35 13411.49
(46) 80 81 0.50544 0.505767 132.474799 0.06 26109.80
(47) 90 91 0.5047 0.500121 233.705964 0.91 46205.92
(48) 100 101 0.50412 0.490193 384.293803 2.76 76130.62
(49) 40 80 0.60928 0.620941 −21.824940 1.91 3682.09
(50) 50 100 0.60714 0.617804 −65.388150 1.76 10869.86
(51) 60 120 0.6037 0.615156 −152.801820 1.9 25410.89
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Table 3: Continued.

ID 𝐾 𝑁 Th from experiments Th from ANN Th from RSM % error ANN % error RSM
(52) 70 140 0.60475 0.611799 −306.402750 1.17 50766.02
(53) 80 160 0.60244 0.606839 −553.093260 0.73 91908.85
(54) 90 180 0.60205 0.604855 −924.341190 0.47 153632.30
(55) 100 200 0.60302 0.603219 −1456.179900 0.03 241581.19

Table 4: Comparison of errors from RSM and ANNmodels.

ANN RSM
Test set for 360 data samples

MSE 1.1505𝐸 − 07 1.22796𝐸 − 05
𝑅 1 0.999603176
Maximum error 0.34% 2.36%

Test set for the 55 data samples
MSE 3.57115𝐸−05 66032.89926
𝑅 0.99875 −0.225360965
Maximum error 2.70% 241581.1947%

Throughput of zone out: R = 0.99875
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Figure 5: 𝑅 value for predicted throughput with the ANN on the
second dataset.

6. Conclusions and Further Research

The Buffer Allocation Problem is a combinatorial problem
that requires a high amount of computational time for
medium and large lines. It is necessary to have a model
that could predict the production line throughput in a short
time.

Solutions with ANN, RSM, and throughput from experiments
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Figure 6: Comparison of RSM and ANNmodels.

In this work, the relationship among the number of
buffer slots (𝑁), the number of workstations (𝐾), and the
throughput in production lines was accurately modeled with
RSM and ANNs. In order to study this relationship, a total of
360 experimental data were used in the construction of both
models.

A fourth-order mathematical model was obtained by
applying the RSM, with a coefficient of correlation 𝑅 =
0.9996. On the other hand, 780 ANNs models were created
in order to obtain the ANN with a coefficient of correlation
near to 1, with models from 1 to 4 hidden layers and 5, 8,
10, 12, or 15 neurons for each layer. The ANN with the best
performance has 4 hidden layers, with 8, 8, 10, and 10 neurons
in each hidden layer, respectively, obtaining a coefficient of
correlation 𝑅 = 1.

Both models have a good performance with the initial
360 experimental data; however, for a second dataset not con-
sidered in the model creation, composed of 55 experimental
data, the ANN shows a higher performance (𝑅 = 0.99875)
than the equation obtained by the RSM (𝑅 = −0.22536).

These results show that the ANN model provides a
good fit and it can represent accurately the behavior of the
throughput in production lines with different sizes, even for
large lines.

As further work, this ANN model can be used to find
optimal or near optimal values of the throughput forminimal
number of buffer slots between each machine in the system,
in order to minimize the total buffer size.
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