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Synchronization of two synaptically coupled neurons with memory and synaptic delay is studied using 
the Rulkov map, one of the simplest neuron models which displays specific features inherent to bursting 
dynamics. We demonstrate a transition from lag to anticipated synchronization as the relationship 
between the memory duration and the synaptic delay time changes. The neuron maps synchronize either 
with anticipation, if the memory is longer than the synaptic delay time, or with lag otherwise. The mean 
anticipation time is equal to the difference between the memory and synaptic delay independently of 
the coupling strength. Frequency entrainment and phase-locking phenomena as well as a transition from 
regular spikes to chaos are demonstrated with respect to the coupling strength.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Biological neural networks consist of a large number of indi-
vidual neurons interconnected in a complex manner usually via 
synapses through dendrodendritic microcircuits. The information 
processing tasks of neural networks are performed on the indi-
vidual neuron level by generation of temporal sequences of action 
potentials, and then elaborated at mesoscales and macroscales by 
means of a network of neuron–neuron interaction. On the level of 
a single neuron, mechanisms and the nature of the neuron activity 
have been extensively investigated over the past decade; and the 
available literature is already redundant of rigorous and important 
results concerning the neuron ability to process and compute [1].

Synchronization of coupled neurons is relevant for coding and 
signal transmission allowing better understanding of the brain 
functionality and revealing distinctive features of some brain dis-
eases. The interest in mathematical modeling of neuron syn-
chronous behavior has significantly increased after real neurobi-
ological experiments with two electrically coupled neurons [2,3], 
where various synchronization types have been identified. To sim-
ulate cooperative neuron dynamics, different models of coupled 
neurons based on either iterative maps [4–16] or differential equa-
tions [2,17–23] in various coupling configurations have been devel-
oped. Depending on both the coupling strength and the delay time, 
coupled neurons can be matched either in timings of their bursts 
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(burst synchronization) [24], in phase [21], with lag, or anticipated 
[9,15,25,26]. Neuron dynamics were studied regarding intrinsic and 
external parameters including time constants, e.g., the influence of 
the rate of synaptic activation and deactivation on synchronization 
of bursting biological neurons. Furthermore, under specific condi-
tions, intermittency between synchronized states was found when 
the time constant increased [3].

One of the important neuron functions is information transmis-
sion through a neuron network. This process is characterized by a 
certain delay time due to a finite velocity of the action potential 
propagation along the neuron axon and time lapses in dendritic 
and synaptic processes [27]. The delay in synaptic connections [28]
is required for a neurotransmitter to be released from a presy-
naptic membrane, diffuse across the synaptic cleft, and bind to a 
receptor site on the postsynaptic membrane. On the other hand, 
feedback loops involving one or more neurons are ubiquitous in a 
nervous system [29]. The brain-stem feedback loops are thought to 
be responsible for short-term memory [30] that was predicted by 
Hermann Ebbinghaus in 1885 [31].

Since there are two different delay times, the interesting ques-
tion arises: How do these time delays affect synchronization of 
synaptically coupled neurons? To answer this question, we ex-
plore one of the simplest neuron models, the Rulkov map [32,33]. 
Although this map is not explicitly referred to physiological pro-
cesses in the membrane, it is capable of extraordinary complexity 
and quite specific neuron dynamics (silence, periodic spiking, and 
chaotic bursting), thus replicating a great deal of experimentally 
observed regimes [2,3,9], e.g., spike adaptation [34], routes from 
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Fig. 1. (a) Function f (xn, yn) for σ = 0.3 and (b–f) time series showing different dynamical regimes: (b) Silence after transients for σ = −0.15, (c) tonic spikes for σ = −0.025, 
and (d–f) bursts for (d) σ = −0.30, (e) 0.15, and (f) 0.30. α = 5.3, μ = 0.001.
silence to bursting mediated by subthreshold oscillations [35], 
emergent bursting [32], phase and antiphase synchronization with 
chaos regularization [9,33], as well as complete and burst synchro-
nization [36–38].

Recently, Matias et al. [22,23] demonstrated a smooth transi-
tion from lag to anticipated synchronization of coupled Hodgkin–
Huxley neurons [39] when the inhibitory synaptic conductance 
was increased. In the map-based models the time delay is inde-
pendent of the coupling strength and only determined by the dif-
ference between the delay in coupling and neuron memory. In this 
work we will study the transition from lag to anticipated synchro-
nization as a direct function of this difference. Being computation-
ally more efficient than complex phenomenological models [39,40], 
the map-based models can improve qualitative understanding of 
the synchronous neuron behavior.

The paper is organized as follows. In Section 2 we review the 
theoretical framework of the Rulkov neuron and describe parame-
ters explored in the model. Section 3 is devoted to synchronization 
of two coupled neurons; we show how two delay times affect 
synchronization. Finally, in Section 4 we conclude our results and 
outline a possible extension of this work.

2. Model equations

2.1. Dynamics of a single Rulkov neuron

The Rulkov map is defined by the following equations [9]

xn+1 = f (xn, yn), (1)

yn+1 = yn − μ(xn + 1) + μσ, (2)

f (xn, yn)

=
{

α/(1 − xn) + yn for xn ≤ 0,

α + yn for 0 < xn < α + yn and xn−1 ≤ 0, (3)

−1 for xn ≥ α + yn or xn−1 > 0,
Fig. 2. Coupling scheme of two Rulkov neurons with synaptic delay s and mem-
ory m.

where xn and yn are the fast and slow variables and α, μ, and 
σ are intrinsic parameters. The map dynamics depends mostly 
on α and σ as shown in Fig. 1, where we plot the map func-
tion Eq. (3) [Fig. 1(a)] and typical times series illustrating different 
dynamical regimes [Figs. 1(b–f)]. The parameter σ regulates the 
neuron response under the action of the external dc bias current 
and synaptic inputs and therefore it is used as a control parameter 
to select a desired dynamical regime. For σ < −0.3 the neuron is 
in a silent state (subthreshold oscillations). For larger σ , the neu-
ron generates repetitive spike bursts; the number of spikes in a 
burst train increases with σ , as seen from Figs. 1(c–f). Such a be-
havior of the Rulkov map mimics real neuron dynamics.

2.2. Two coupled Rulkov neurons

Now, we consider the scheme of two coupled Rulkov neurons 
shown in Fig. 2, where a memorized state of a postsynaptic neuron 
is coupled with a delayed state of a presynaptic neuron. While the 
presynaptic neuron is described by Eqs. (1)–(3), the postsynaptic 
neuron is modeled by the following equations
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Fig. 3. Time series of fast variables of two coupled Rulkov maps demonstrating frequency entrainment to (a) 1:1 for m = 16, s = 4, and η = 0.04, (b) 2:1 for m = 1, s = 0, 
and η = 0.009, and (c) 3:1 for m = 1, s = 0, and η = 0.02101. α = 4.2, μ = 0.001, σ = −0.025. The open and closed dots connected by the blue and red lines correspond 
to the presynaptic and postsynaptic neurons, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
un+1 = f (un, vn + βn), (4)

vn+1 = vn − μ(un + 1) + μσ + μσn, (5)

where un and vn are the fast and slow variables of the postsynap-
tic neuron, the function f is defined by Eq. (3), and βn and σn
are related to an external stimulus under the action of the dc bias 
current and the synaptic input.

For simplicity, we consider only an electrical synaptic connec-
tion, i.e., the coupling causes an immediate physiological response 
of the postsynaptic neuron that depends linearly on the differ-
ence between membrane potentials of presynaptic and postsynap-
tic neurons [41,42]. Therefore, the coupling between the cells can 
be defined as

βn = σn = η(xn−s − un−m), (6)

where s and m are, respectively, synaptic and memory delay times 
(in units of the number of iterations) and η is the synaptic cou-
pling strength.

3. Synchronization

3.1. Frequency entrainment

We study synchronization of the two Rulkov neurons in the 
regime of tonic spikes shown in Fig. 1(c). To obtain this regime, 
we fix the parameters of the presynaptic neuron at σ = −0.025, 
α = 5.3, and μ = 0.001. Since for any random initial condition 
the maximum transient duration does not exceed 5000 iterations, 
we neglect the first 10 000 iterations in all simulations. Our re-
sults show that synchronization of the neurons with synaptic de-
lay and memory is determined by both the relation between two 
delay times and the coupling strength η. When η is too weak, 
the neurons fire asynchronously. For a strong enough coupling, 
spikes of the postsynaptic neuron are entrained by the presynap-
tic neuron as a rotation number ω = p : q, where p and q are 
the numbers of spikes of the postsynaptic and presynaptic neuron, 
respectively. Fig. 3 illustrates typical examples of the frequency 
entrained states with ω = 1:1 [Fig. 3(a)], 2:1 [Fig. 3(b)], and 3:1 
[Fig. 3(c)].

3.2. Phase locking

While the frequency is entrained, the phase of the postsynaptic 
neuron can drift over time, so that the difference �ϕ = ϕpost −ϕpre
between instantaneous phases of the postsynaptic and presynaptic 
neuron spikes (ϕpost and ϕpre) fluctuates around its mean value 
equal to θ = m − s. This is the case of imperfect phase locking. 
For certain η the phase locking becomes perfect. Fig. 4 shows the 
alternation between imperfect and perfect phase locking when η
is changed.
Fig. 4. Phase difference (in units of number of iterations) versus coupling strength 
for θ = 1. While the postsynaptic neuron frequency is entrained to 1:1, the phase 
difference drifts in time (imperfect phase synchronization) around its mean value 
θ = 1 shown by the dotted line. Only for certain η, the phase is locked with antici-
pation time θ .

We find that the relation between memory m and synaptic de-
lay s is crucial for neuron synchronization. As seen from Fig. 5, the 
type of synchronization is determined by a sign of the difference 
θ = m − s. When θ < 0 the neurons synchronize with lag, other-
wise they synchronize either with anticipation (for θ > 0) or with 
zero lag (for θ = 0). Fig. 5 shows the location of the 1:1 frequency 
entrained states in the (θ, η)-parameter space. One can see that 
inside of this triangle region, lag and anticipated synchronization 
occur, respectively, in neurons with short (m < s) and long mem-
ory (m > s).

3.3. Anticipated synchronization

Both lag and anticipated synchronization can be quantitatively 
characterized by similarity function S2(φ) [43] that can be de-
fined as the normalized averaged-in-time difference between the 
fast variables xn and un of the presynaptic and postsynaptic neu-
rons:

S2(φ) = 〈un − xn+φ〉2

[〈x2
n〉〈u2

n〉]1/2
, (7)

where φ is a delay time used to compare waveforms of coupled 
oscillators. If the variables x and u are uncorrelated, S2(φ) ≈ 1
for all φ, otherwise S2(φ) reaches its minimum at a certain value 
φ = θ which indicates either lag (if φ < 0) or anticipation (if 
φ > 0) time. In particular, the similarity function in Fig. 6 reveals 
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Fig. 5. Synchronization state diagram in 1:1 frequency entrained region in parameter 
space of difference θ between memory m and synaptic delay time s, and coupling 
strength η. The red dots and blue triangles indicate, respectively, lag and anticipated 
synchronization. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 6. Similarity function of two Rulkov neurons synchronized with anticipation 
time θ = 10.

Fig. 7. Rotation number ω of frequency entrained states versus coupling strength η
for m = 3 and s = 2. The inset is the enlarged part of the main graph.

synchronization with anticipation time θ = 10, meaning that the 
postsynaptic neuron is activated before the postsynaptic neuron. 
Such a contradictory behavior of coupled oscillators discovered in 
2000 [44] has attracted much attention because it gives possibility 
to predict the future of the system state. Later, this type of syn-
chronization has been found in many systems [45–47], including 
neuron models based on difference [9,10,13–16] and differential 
equations [2,19,21].

The number of spikes in a burst train of the postsynaptic neu-
ron depends on the coupling strength η. Fig. 7 shows that the 
rotation number ω of the frequency entrained states is a non-
monotonous piece-wise function of η. The number of spikes in the 
train grows as η is increased and saturates to 13 at η = 0.6. When 
η is further increased, ω goes down and reaches its local mini-
mum at η ≈ 0.8. Such a nontrivial behavior is explained by the 
fact that at η = 0.6 the train duration becomes equal to the inter-
train interval [Fig. 8(a)] and a further increase in η gives rise to an 
irregular spiking behavior shown in Fig. 8(b).

3.4. Intermittency and chaos

For intermediate values of the coupling, where the spike fre-
quency is not entrained, intermittent switches between states with 
different ω occur. One such regime with intermittent switches be-
tween 1:1 and 2:1 entrained states is shown in Fig. 9.
Fig. 8. Time series for strong coupling (a) η = 0.6 and (b) η = 0.8. The blue triangles and red traces show respectively the time series of the presynaptic and postsynaptic 
neurons. The large number of spikes in the burst train results in irregularity in the spiking sequence of the postsynaptic neuron. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. Intermittent switches between 1:1 and 2:1 frequency entrained states for 
η = 0.00401, m = 1, and s = 0. The lower frame is the enlarged part of the upper 
frame.

Fig. 10. Poincaré map at u = 0 of postsynaptic neuron versus coupling strength for 
m = 3 and s = 2.

As we already mentioned above, a very strong coupling leads to 
chaotic oscillations when the burst train of the postsynaptic neu-
ron becomes longer than the distance between the trains. Such a 
transition from a regular motion to chaos is illustrated in Fig. 10, 
where we show the times of intersection of the postsynaptic neu-
ron trajectory with the Poincaré section at u = 0. The periodic 
structure represents the frequency-locked spikes which are con-
verted to chaotic unlocked spikes at η = 0.71.

4. Conclusions

The type of synchronization of synaptically coupled neurons is 
determined by the difference between synaptic delay time s and 
memory m. While for s > m lag synchronization takes place, for 
s < m anticipated synchronization occurs. Depending on the cou-
pling strength, the neuron spikes of the postsynaptic neuron can 
either be locked to a rotation number from 1 to 13 or vary in 
time. Such a behavior has been demonstrated in coupled Rulkov 
maps whose dynamics represents main features inherent to a real 
neuron. Future research should be directed towards understand-
ing the mechanisms behind learning and memory, that may lie 
in synchronization of neurons coupled in complex networks with 
memory loops.
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