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Abstract Ladder diagram (LD) is a common programming
language at industry in order to develops control algorithms
of discrete event systems. Besides, it is one of the five pro-
gramming languages supported by the International Elec-
trotechnical Commission through the IEC-61131-3 stan-
dard. Petri net (PN) theory is both a graphical and mathe-
matical tool, which allows modeling discrete event systems
in order to obtain a useful formalization to analyze them in
a better way. LD control algorithms are continuously devel-
oped based on the experience of control system developers.
Therefore, it is still a relevant problem on how to formal-
ize a validation for the current and new control algorithms.
In the present work, an element-to-element transformation
methodology from a LD program to a PN structure is pro-
posed. The original part of this manuscript is the proposal of
five PN structures where their markings represent the states
and dynamic behavior of energized and de-energized coils,
which are not included in previous works. Furthermore, this
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methodology preserves the structural and dynamical behav-
ior of the LD in the obtained PN. Two control algorithms of
real cases are transformed using the proposed methodology.
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1 Introduction

Programmable logic controllers (PLCs) are widely applied
in an industry for the process control, mainly for discrete
event systems such as interlocks, production and/or manu-
facturing sequences, process alarms, among others. In the
IEC-61131-3 standard [1], the syntaxes and semantics of
five programming languages for logic controllers are estab-
lished: ladder diagram (LD), function block diagram (FBD),
instruction list (IL), structured text (ST), and sequential
function chart (SFC). LD is considered a graphic-type lan-
guage based on the behavior of an electromagnetic relay
constituted by a coil and contacts that can be normally open
(NO) and/or normally closed (NC). Due to its likeness and
utilization with electrical control diagrams, LD has been the
most popular language used in the industry for developing
control algorithms.

The control LD algorithms are mainly based on the
user experience applying trial-and-error techniques. There-
fore, a formalization of the validity of the existing control
algorithms remains as a relevant problem, as well as the
specification of new methodologies to validate the control
algorithms before their real implementation. In addition, PN
is both a graphical and mathematical tool which is applied
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to model discrete event systems (DES) in order to describe
their static and/or dynamic behavior [2]. A PN analysis
method for the dynamic behavior is the state equation com-
posed of an incidence matrix, an initial marking vector, and
a firing vector.

Various approaches have been presented in research
papers to study the relationship between LD and PN for
analysis, modeling, and simulation of control algorithms
and its corresponding validation. In [3], Lee and Lee pro-
pose the modulus synthesis technique for the conversion
from LD to PN, considering the LD base cores defined in
the IEC-61131-3 standard. It is important to highlight that
for the normally open and normally closed contacts, they
propose one place with two transitions joined together by
an enabler arc and an inhibitor arc, respectively, in order
to relate their active state, open state, or closed state. The
authors present an example where they show operations
AND and OR, considering that all the variables are indepen-
dent, that is, the coil they use has no contacts defined in the
code lines of the LD.

Thapa et al. [4] define five types of PN structures of
input-output units (IOU) which are equivalent to common
structures used in control algorithms developed in LD:
start-stop unit, basic unit, AND and OR unit, basic unit
with functions block, and unit of transmission concatena-
tion of logical flow. In [5], Peng and Zhou make reference
to graphical-type constructors of logics AND, OR, and
sequential modeling, showing the equivalences between PN
and LD. In [6], Lee and Hsu show the equivalences between
PN and LD, and IF-THEN rules which are logical structures
AND, OR, and parallel or concurrent distribution. Zapata
and Carrasco [7] propose a representation in a graphical
way of logical constructors AND, OR, S-R memory func-
tion, edge detection, concurrency and delays on PN and in
LD; however, they will validate the equivalences in a future
work.

In [8], Tzafestas et al. propose a technique to generate
a LD starting from a PN representing an control algorithm,
standing out the importance of the self-loop in DES, and
considering the LD rows as two parts: “conditional part”
and “action part” which are represented in the PLC memory,
assigning consequently a bit for a place in the PN at the
conditional part, and other bit for a transition in the PN at
the action part.

In [9], Korotkin et al. propose a methodology to imple-
ment PN models for discrete event control systems (DECS)
of high level. They define a 10-tuple net called “PNDEC”
and their dynamic marking equations. The PNDEC is con-
sidered as a binary net and its evaluation is performed in a
single swept of the control algorithm based on Boolean con-
ditions assigned to the output places. The dynamic marking
is generalized; however, it does not consider initial states
with energized coils.

In [10], the authors use truth tables that represent the state
of the process (Karnaugh maps) to determine the Boolean
function transitions and show an example of an engine
considering the start and stop in a single control line of LD.

The application of colored PN (CPN) for obtaining auto-
matically formal models directly from the LD is shown in
[11]. They consider that each control line in LD can be
expressed as a formula written in propositional logic. Their
focus is based on the sequential steps of the PLC: reading
inputs, cycle start. and memory access. These elements are
analyzed considering energy flows as rows, without taking
into account the scan operation of the PLC.

Another proposal of a systematic method to translate
from LD to ordinary Petri nets is presented in [12]. They
define a LD graph which is transformed into an ordinary
Petri net; this approach considers only the basic parts of
relays (contacts and coils). They define two states for the
types of contacts and coils and perform searches of the
“closed” trajectories to find energized coils and “open” tra-
jectories for de-energized coils in LD graphs. Nevertheless,
they do not include the logic operation for negated coils.

In general, to our knowledge, the transformation propos-
als consider only the behavior of the logical structures when
the input prerogatives are fulfilled to energize coils, or there
are no negated coils.

In this paper, we propose a new methodology for trans-
forming control algorithms developed in LD to PN. In
particular, we show five PN structures in order to repre-
sent the control algorithms developed in LD (logic AND,
logic OR, logic AND-OR, logic set-reset and logic crossed-
contacts). This transformation is called ladder diagram -
Petri net (LDPN). With this transformation, the original
contribution of this paper is to establish a new methodology
to model the behavior of energize and de-energize coils.

The proposed methodology was evaluated on two real
control algorithms, obtaining results that show the struc-
tural and dynamic equivalence between the original LD
and the obtained LDPN. The first case needs to ener-
gize and de-energize a coil, and the second one shows the
implementation of the methodology for a packaging system.

This paper is organized as follows. Section 2 and 3
describe the basic concepts of LD and PN, respectively.
Section 4 explains the five structures to define a LDPN and
how to transform a LD into a LDPN. Section 5 shows two
real cases, and the final section presents the conclusions of
the paper.

2 Ladder diagram

The graphic language LD models nets of electromechanical
elements operating simultaneously, such as relays contain-
ing coils and contacts, timers, and counters, mainly [13],
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Fig. 1 Equivalence between a relay and the corresponding LD code

although the last two are blocks of their respective func-
tions. Figure 1 shows the equivalence between the relays
operating principles and LD. The LD is composed of two
rails, positive rail and negative rail, and the contacts are
connected between them. Contacts are permissive to ener-
gize or de-energize a coil which closes the circuit with the
negative rail. The energy flow is analogous to the electric
power flow, and it goes from left to right in the LD.

Furthermore, running the control algorithm in the PLC is
given cyclically with well-defined tasks, from which three
are covered in this work: physical input (sensors) reading,
running of the control algorithm (LD), and physical output
(actuators) writing, as shown in Fig. 2 [10]. Internally in the
PLC, an snapshot about the state memory of the signals cor-
responding to the physical input reading is accomplished.
With this snapshop, the control algorithm is executed in LD
and subsequently other snapshop about the status kept by the
output signals in the PLC memory is generated. Then, the
snapshot is transferred to the corresponding output modules,
and so on, in a cyclic way.

Fig. 2 Cyclic running of a PLC control algorithm

3 Petri nets

DES are modeled fundamentally by using the concepts of
conditions and events, where the line contacts and places
represent conditions in LD and PN, respectively, and coils
and transitions represent events in LD and PN, respectively.
Table 1 shows the formal definition of a PN in its basic
form [2].

For the general simulation of the dynamic behavior,
based on an initial marking of the PN, the following transi-
tion rule from [2] is considered:

1. A transition t is enabled if each input place p of t con-
tains w(p, t) tokens, where w(p, t) is the arc weighting
joining p to t.

2. An enabled transition can either be or not be firing,
depending on whether the event really occurs or not.

3. The firing of an enabled transition t, moves w(p, t)
tokens of each input place and adds w(t, p) to each
output place.

There are two special transitions: the source transition
which is the one having no input places and the sink transi-
tion which has no output places. A self-loop in a PN arises
when the input place is also the output place in the same
transition. A net free of self-loops is called pure and a PN
where each arc weight is 1 is named ordinary.

3.1 Incidence matrix and state equation

In order to represent the dynamic behavior of the PNs, the
incidence matrix is used, which relates the weighings of
input and output arcs from transitions to places and vice
versa. For a PN with n transitions and m places, its incidence
matrix A = [aij] is an integer number matrix representing
the weighing of the input and output arcs; aij

+ represents
the weighting of outputs arcs from transitions, and aij

− rep-
resents input arcs to transitions. Equation 1 represents the
incidence matrix.

aij = aij
+ − aij

− (1)

The state equation shows the marking in a sequence state
through the relationship between the vector of a preceding
state with certain system markingMk−1, the transpose of the

Table 1 Formal definition of a PN

A Petri net is a 5-tuple, PN=(P,T,F,W,M) where:

P = {p1, p2, . . . , pm} is a finite set of places,

T = {t1, t2, . . . , tn} is a finite set of transitions,

F ⊆ (P × T ) ∪ (T × P ) is a set of arcs,

W : F → {1, 2, 3, . . .} is a weight function,

M0 : P → {0, 1, 2, . . .} is an initial marking, and

P ∩ T = ∅ and P ∪ T �= ∅

Author's personal copy
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incidence matrix A and a firing vector uk determining the
process firing sequence. Equation 2 shows the relationship
between them.

Mk = Mk−1 +AT uk (2)

Taking into account the previous PN concepts, the next
section describes the methodology applied to represent a
given LD by means of an equivalent PN, which is called
LDPN.

4 Formal definition of LDPN

In previous works, only the behavior of energizing coils
has been considered to transform LD into PN. In actual
control algorithms, however, depending on the system con-
trol, it is necessary to energize or de-energize coils. For
this reason, it proposed a methodology to transform LD
control lines to PN structures. This transformation is based
on the definition of five PN structures which represent the
most common instruction lines in LD. With these PN struc-
tures, this methodology is able to obtain a structural and
dynamic equivalent PN for a given LD considering as well
the behavior of energized and de-energized coils.

4.1 Representing LD signals with PN

A particular interpretation of the PN is to consider places as
input and output signals from sensors and actuators, respec-
tively, and transitions as logical conditions of the systems.
This interpretation is the generalization of a PLC-based sys-
tem: input signals (sensors) — control algorithm (LD) —
output signals (coils).

The analysis and evaluation of the transformed PN are
accomplished considering a single PLC scan cycle, that is,
considering the snapshop charts keeping the states of the
physical and memory signals during a cycle. Thus, the dyna-
mic markings of the proposed PN structures conserve their
marking in the respective analysis. Table 2 presents the gra-
phical symbols used in the transformation from LD to PN.

Considering symbols of [2], for a preset and post-set of
places, are defined:

�t = {p : (p, t) ∈ F }, the set of input places of t.

t �= {p : (t, p) ∈ F }, the set of output places of t.

The problem of token accumulation in PN places is
mainly solved in two forms. In the first one, the authors of
[9] and [11] consider the execution of control algorithms
with a state snapshot of signals in the PLC, which are only
updated, and so this updated should be represented in the
PN, i.e., they consider that tokens in places are only updated.
The second one uses inhibitor arc from output place to
transition to prevent the tokens accumulation [3].

Table 2 Graphical representation of signals

Symbol Description

Place for physical signal of input, output, and memory

Tokens for energy flow condition

Cumulative transition for timed or counting events

Transition as logical condition

Arc

Inhibitor arc

We proposed logical and arithmetic functions at places to
avoid the token accumulation. Equations 3 and 4 are applied
to avoid the token accumulation in output places.

M(t �)AND =
∑

M(�t) = | �t| OR
∑

M(t �) = 1 (3)

M(t �)OR =
⌈∑

M(�t)/| �t|
⌉
= 1 OR

∑
M(t �) = 1 (4)

where the symbol 	a
 is the ceil function for a real number
a.

Now, to reset output places, the Eqs. 5 and 6 are proposed
for the marking of input places, called G(t). As in PLC scan,
tokens are updated to evaluate the functions of reset places.

G(t)AND =
∏

M(�t) AND M(t �) = 1 (5)

G(t)OR =
∑

M(�t) AND M(t �) = 1 (6)

Table 3 shows the signal distribution (NO and/or NC con-
tacts) for a physical input, using PN elements. Notice that
this representation is analogous for a physical output or a
physical memory signal. Equations 7a, 7b, and 7c give the

Table 3 Representation of a physical input by PN elements

Signal Contact distribution

Author's personal copy
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number of NO and/or NC contacts for these types of sig-
nals. The transitions Ioi are enabled when its input place has
a token, and transitions Ici are enabled when its input place
no has a token.

Ii = Ioi I
o
i + Ici I

c
i (7a)

Oo = Oo
oO

o
o + Oc

oO
c
o (7b)

Bb = Bo
bB

o
b + Bc

bB
c
b (7c)

where I oi , Oo
o , and Bo

b are the number of NO contacts, and
I ci , Oc

o , and Bc
b are the number of NC contacts for the signals

Ii, Oo, and Bb at the corresponding LD.
Marking in output places I oi and I ci is in function of the

Eqs. 8 and 9 and is similar to the marking of output places
of signals Oo and Bb.

M(Ii) = 1 then M(I ci ) = 0 (8)

M(Ii) = 0 then M(Ioi ) = 0 (9)

Five types of control lines are the most common ones in
control algorithms developed in LD. These types are the
following: serial contacts (logical AND), parallel contacts
(logical OR), contacts using the previous connections at the
same time (logical AND-OR), logical set-reset coils, and
logical interlocking contacts.

1. Serial contacts.
In Fig. 3, when the input contacts allow the flow of
energy, the coil OUT1 is energized. If the status of any
of the input contacts changes, the coil OUT1 is de-
energized. Control lines with only serial contacts allow
that coils to behave as a logical AND.

2. Parallel contacts.
Control lines with parallel contacts allow that coils to
behave as a logical OR (see Fig. 4). If any contact
allows the flow of energy, then the coil OUT1 is ener-
gized. Only when all input contacts are inactive, the coil
OUT1 is de-energized.

3. Logical AND-OR contacts.
In order to obtain a latching behavior, it is necessary
to combine the logical AND and OR operations. In
Fig. 5, the output OUT1 is de-energized by means of
a sequence of input contacts and it keeps energized
through a contact of the output OUT1 in parallel to IN1.
The coil is de-energized when any of the serial contacts

Fig. 3 Serial contacts

Fig. 4 Parallel contacts

of the sequence changes its state. In general, a coil can
be energized by several possible arrangements of serial
and parallel contacts.

4. Logical set-reset coils.
The logic of asynchronous signals is used as well in LD
through coils called set and reset with the same address-
ing. These coils need one or more control signals to
energize OUT1-S or de-energize it by means of OUT-R
as shown in Fig. 6.

5. Logical interlocking contacts.
The interlock coils in control lines are widely used in
LD. They are constructed by placing a contact of a coil
in the control line of another one, as shown in Fig. 7.
There, a contact of OUT1 is in the control line of the
coil OUT2 and vice versa.

With the elements of Table 2, the signals distributed in
Table 3, and considering the Eqs. 3, 4, 5, and 6, five PN
structures are proposed below.

4.2 PN structures representing control lines of a LD

Initial marking of the PN structures is based on the types
of contacts in the LD, which are shown in Eq. 10. Their
dynamic markings describe the behavior of energized or de-
energized coils.

M(Ii |Oo|Bb) =
{

1, if it only has NO or NC contacts,

2, if it has NO and NC contacts.
(10)

1. Logical AND.
In Fig. 8, the transition Io1 is enabled when all its input
places have at least one token. The Io1 firing puts a mark-
ing at place O1, which denotes the behavior in a scan
of the LD. G(Io1)AND resets the place O1 if there is a
token in O1 and any place in �Io1 does not have a token.

Fig. 5 Serial and parallel contacts
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Fig. 6 Logical set-reset coils

Fig. 7 Interlocking contacts

Fig. 8 Logical AND

Fig. 9 Logical OR

Fig. 10 Logical AND and OR

Fig. 11 Logical set-reset

2. Logical OR.
Figure 9 shows the logical OR. A token in any of the
input places in �Ioi will fire the corresponding transition
and put a token in O1, for i = 1, . . . , n. Only when
all the input places do not have a token and O1 has a
token, then a token is put in the place G(Ioi )OR enabling
the transition R1 to consume the token of O1. This is
equivalent to de-energize the coil OUT1 in the LD of
Fig. 4.

3. Logical AND-OR.
The PN structure with both logical AND and OR is
shown in Fig. 10. When the transition Io1 is fired, it puts
a token in O1 in order to feed back Io2 to keep the token
in O1. G(Io2)AND resets O1 if there is a token in O1 and
any place in �Io2 does not have a token. In this case, it is
necessary to put two tokens in all the places of �Io1∩ �Io2.

4. Logical set-reset.
This PN structure set-reset, is a particular case (see
Fig. 11). A token is put in I1 if there is neither a token in
O1 nor I2 (Eq. 11). On the other hand, a token is put in

Fig. 12 Logical interlocking contacts

Author's personal copy
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Table 4 Formal definition of LDPN

A LDPN is a 5-tuple , where:

P = {I ∪O ∪ B ∪ A} is a finite set of places, where:

I =
{
I1, I

c|o
1 , I2, I

c|o
2 , . . . , Ii , I

c|o
i

}
is a finite set of places representing physical input signals. Those places with the super-index c or o

identifies the places representing NC or NO contacts, respectively.

O =
{
O1,O

c|o
1 ,O2,O

c|o
2 , . . . ,Oo,O

c|o
o

}
is a finite set of places representing physical output signals.

B =
{
B1, B

c|o
1 , B2, B

c|o
2 , . . . , Bb, B

c|o
b

}
is a finite set of places representing internal memory signals.

A = {A1, A2, . . . , Aa} is a finite set of auxiliary places.

G = {
G1,G2, . . . ,Gg

}
is a finite set of places whose marking depends on Eqs. 5 and 6.

T = {
Ic|o ∪ Oc|o ∪ Bc|o ∪ R

}
is a finite set of transitions, where:

Ic|o =
{

Ic|o1 , Ic|o2 , . . . , Ic|oi
}

is a finite set of transitions representing physical inputs signals. The super-index c or o identifies the transitions

representing NC or NO contacts, respectively.

Oc|o =
{

Oc|o
1 ,Oc|o

2 , . . . ,Oc|o
o

}
is a finite set of transitions representing physical outputs signals.

Bc|o =
{

Bc|o
1 ,Bc|o

2 , . . . ,Bc|o
b

}
is a finite set of transitions representing internal memory signals.

R =
{

Rc|o
1 ,Rc|o

2 , . . . ,Rc|o
r

}
is a finite set of transitions to reset places.

F ⊆ (P × T ) ∪ (T × P ) is a set of arcs,

W : F → {1} all arcs weights are equal to 1, and

M0 = P → {0, 1, 2} initial marking.

I2 if there is a token in O1 and there is not a token in I1

(Eq. 12).

M(I1) =
{

1, if M(O1) = 0 AND M(I2) = 0

0, otherwise.
(11)

M(I2) =
{

1, if M(O1) = 1 AND M(I1) = 0

0, otherwise.
(12)

5. Logical interlocking.
The PN structure of the Fig. 12 represents the logical
interlocking, which is composed of two logical AND
and each of them depends on the other one. In this struc-
ture, the marking in Oc

2 depends directly on the marking
in O2. This is analogous for Oc

1 and OUT1. The

transitions Oc
1 and Oc

2 are enabled only when the corre-
sponding output place O1 or O2 does not have a token
because of the inhibitor arcs. Thus, the first marked out-
put place disables the other one. The G(Io1)AND and
G(Io2)AND places reset the output places O1 and O2,
respectively.

With the previous LD analysis and the five PN logical
structures proposed above, a formal definition of LDPN is
given in next section.

4.3 Definition of LDPN

Table 4 shows the elements of a LDPN. Places are consid-
ered for input and output physical signals, memory internal

Fig. 13 A reversible motor
control in LD
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Fig. 14 LDPN of the reversible
motor control

signals, and auxiliary places to diversify a signal to its NO
and NC contacts if necessary.

The obtained LDPN of the control algorithm in LD,
graphically, is ordinary because it has the unit weight in all
its arcs, and all its places can only have one token for each
scan in the PLC. In the incidence matrix, the number of out-
put places for physical input signal transitions correspond to
NO and/or NC contacts.

4.4 Methodology to obtain a LDPN from a LD

Based on the formal definition of a LDPN and the
Eqs. 3–9, defined to represent its dynamic behavior, nine
steps are proposed to convert a LD into a LDPN. The
first three steps correspond to the structural representation.
The LDPN marking represents the energy flow through the
contacts and coils of the LD.

Fig. 15 Incidence matrix of the
LDPN of the reversible motor

Author's personal copy
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1. Identify the physical signals of inputs and outputs and
internal memory signals.

2. Distribute the physical inputs and outputs from Table 3.
3. Perform the corresponding transformations line-by-

line, based on the five PN logical structures.
4. Obtain the initial marking M0 from the PLC scan.
5. Fire first the transitions of NC contacts and those

representing the general protections of the system.

With the initial firing vector specified by the last step, the
LDPN is able to simulate the original LD by firing all the
enabled transitions. To evaluate the methodology proposed,
in the next section, two real control algorithms in LD are
analyzed.

5 Case study 1: reversible motor control

From [14], the control algorithm in LD of a reversible motor
control is taken, as presented in Fig. 13. X1 and X2 are
physical input signals (pushbutton) to start the motor, Y0
and Y1 are physical output signals for the engine start-
ing with clockwise or counterclockwise rotation, respec-
tively, and X0 to stop the motor independently of the
rotation.

The LD has two control lines with logical AND-OR and
an interlocking of the signals Y0 and Y1. Figure 14 shows
the LD transformation from Fig. 13, based on the first three
steps of the previously described methodology.

The incidence matrix Aij of the net is shown in the
Fig. 15.

The control algorithm of the motor only allows the
engine to start with a clockwise or counterclockwise rota-
tion. Physical output signal Y1 or Y0 locks the control line
of the opposite turn engine. So if you require to start the
engine in the opposite rotation, it is necessary that the phys-
ical output signals Y0 or Y1 are de-energized. In the LDPN
of the reversible motor control, it needs fire for the transi-
tions R0 or R1 to drain the token in O0 or O1, respectively.
Thus, the LDPN has the same dynamic behavior that of the
original LD of the reversible motor control.

To show the behavior of energize and de-energize action
by a coil, consider that it is required to start the engine turn-
ing right (mark in I1). The initial marking M0 is shown
in Eq. 13. All transitions that correspond to the normally
closed state are enabled, except Ic1 for the inhibitor arc.
Firing these transitions and the transition Io1 enabled the
transitions sequentially Bo

1 and Bo
2 to kept a mark in the

place O0. For Eq. 9, the marking in places Oc
0 = 0, as it is

shown in M2.

I0 I c0 I1 I o1 I c1 I2 I o2 I c2 O0 Oc
0 O1 Oc

1 G(Bo
2)AND G(Bo

4)AND

M0 = [ 0 0 1 0 0 0 0 0 0 0 0 0 0 0]
M1 = [ 0 4 0 1 0 0 0 2 0 2 0 2 0 0]
M2 = [ 0 2 0 0 0 0 0 0 1 0 0 0 0 0]
M2 = [ 0 0 0 0 0 0 0 0 1 0 0 0 1 0]

(13)

In order to start the engine to the left side (counter-
clockwise rotation), a token is needed in place I0 to enable
the transitions R0(M3). Consuming the token in place O0

restores the system conditions. A token in place I2 allows
the starting of the engine.

6 Case study 2: packaging system

The second case study is the packaging system shown in
Fig. 16. Its control algorithm involves general protections
and the possibility of working the packaging system with
a single scale, by turning off the corresponding operating
selector. It is also possible to download manually the scales.
There are interlocking contacts used in the sequence to
determine that the scale to download is the first that has got
its corresponding weight.

With the selectors in working position, the operating
sequence of the overall system is as follows: both scales

are started to be filled, if the coarse sensor of weight is
activated, then the associated piston valve is actuated, reduc-
ing the flow of product to the corresponding scale. If the
fine sensor of weight is activated, then the associated piston
valve is activated, obstructing the flow of the product into
the corresponding scale. If the system is in automatic mode
and there is a bag in the discharged duct, then the unloading

Fig. 16 Packaging system to be modeled with LDPN
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Fig. 17 LD of the packaging system, only one scale, part 1
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Fig. 18 LD of the packaging system, only one scale, part 2
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Fig. 19 LDPN of bascule, only one scale
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Fig. 20 Marking of safe and operation conditions of the scale LDPN
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Fig. 21 Marking of full scale
LDPN

sensor activates the valve of the bottom cover, discharging
the scale which was firstly filled. The system works in the
same way until there is a change in the operation conditions
(an emergency stop, a change in the operation selectors,
etc.). The activation sequence for physical inputs and out-
puts of the packaging system for two scales is described
above (Fig. 16):

a. System selectors in automatic mode and both scales in
operation (I6, I7, I8, I12, I15, I16),

b. Scales bottom cover sensors are deactivated (I3, I4),
c. Wide and fine weight piston valves are deactivated

(Q3,Q4,Q7,Q8),
d. Piston valves from the scales bottom cover are deacti-

vated (Q2, Q6). Scales filling starts,
e. Activation of wide weight sensors (I9, I13),

f. Wide weight piston valves are deactivated (Q3, Q8),
g. Activation of fine weight sensors (I10, I14),
h. Fine weight piston valves are deactivated (Q4, Q7),
i. Activation of the scales unloading sensor (I2),
j. Sack holder piston valve is activated (Q1),
k. The bottom cover piston valve of the scales that had

been filled first is activated (Q2, Q6),
l. Scales high-performance piston valves area activated

(Q5, Q9),
m. Unloading time ends, bottom cover is closed, the

process starts again.

The LD of a packaging system with one scale is shown
in Figs. 17 and 18.

The LD of a packaging system has several logic
structures: AND logic, AND-OR logic, self-loop logic,

Fig. 22 Marking of download
scale LDPN
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interlocking logic (place M5 on control line 4), and timers
logic. The last is considered as standard transitions for eval-
uation of the general behavior of the corresponding LDPN.
The LD of the packaging system with one scale has 16 con-
trol lines, and it can be seen that it is based on the basic
control structures studied in this work.

Figure 19 shows the LDPN of packaging systems, for
only one scale. LDPN (left side) shows the places represent-
ing physical input signals, the right places representing the
physical output signals, and the dashed rectangle PN struc-
ture representing the LD algorithm control. Importantly, the
locations that require modeling the behavior of energize
and de-energize or vice versa have Rr transitions with an
input place, which is a function of the input signals of the
corresponding logical structure.

Due to space limitations, the incidence matrix of 61
columns and 57 rows is not shown, but it is easy to deter-
mine it from the corresponding LDPN. The dynamic behav-
ior of the scale PLND is explained by showing a part of
the marking in the net. The safety signals I15 and I16, and
operation signals for one scale I7 and I8, are needed for the
correct operation of the system. Equation 14 only shows the
initial marking of the system protections. Others, the rest of
the places, have zero in their markings.

I1 I2 I3 I5 I7 I8 I9 I10 I15 I16 Bc
5 . . . O3 O4

M0 = [ 0 0 0 0 1 1 0 0 1 1 0 . . . 0 0]
(14)

Firings enabled transitions obtained the operate marking,
which is shown in Fig. 20. The transitions Bo

36 and Bo
37 are

enabled, and when they fired, a token is put in places Q3 and
Q4. This is the corresponding behavior in the correspondent
to energize the coils Q3 and Q4 in LD to start the filling of
the scale. Then, the coils Q3 and Q4 have initial conditions
to be energized.

When the wide sensor I9 is activated, the transition Bo
34

is enabled; after firing this, a token is put in place B13,
disabling the transition Bc

13, hence, a token is put in place
G(Bo

36)AND to drain the token from place O3, which is
equivalent to de-energize the coil Q3 in scale LD. Likewise,
when the scale has the requested weight, the fine sensor I10

is activated; the transitions Bo
32 is enabled, then a token is put

in place B12, disabling the transition Bc
12. Therefore, a token

is put in place G(Bo
37)AND to drain the token from place O4,

which is equivalent to de-energize the coil Q4 in scale LD.
In addition, the transition Bo

30 is enabled to put tokens in
places Bo

7 , which means that those places have conditions of
full scale. Only the part of this marking is show in Fig. 21.
In order to add a token to places G(Bo

31)AND , G(Bo
33)AND ,

and G(Bo
35)AND and consume the tokens in places B7, B12

and B13, a token in place I3 is necessary.

Now, unloading sensor is activated; a token is put in place
I2 to enable the transition Bo

20 and assigns tokens to places
Bo

2 and O1 as shown in Fig. 22. Tokens in places B2 and O1

depend on G(Bo
21)AND and G(Bo

2)AND , respectively. Under
these conditions and with a token in the place Bc

5, a token
can be obtained in place O2, which is equivalent to unload
the scale.

When the scale download starts, bottom cover sensor I3

is activated; when the scale download finishes and the bot-
tom cover closes, sensor I3 is deactivated and end the down-
load of scale to deactivate. In the scale PNLD, tokens in
places I c3 are applied to enable transitions and then a token
is sent to O2. Tokens in places I o3 activate the marking in
places G(Bo

23)AND , G(Bo
26)AND , G(Bo

28)AND , G(Bo
6)AND ,

G(Bo
31)AND , G(Bo

33)AND , and G(Bo
35)AND , restoring the

system condition, which is equivalent to an empty scale.

7 Conclusions and future work

PN theory has the advantage of graphically showing models
of DES, and it allows the mathematical analysis of dynamic
behavior of the respective control algorithms. Thus, the pro-
posed methodology for transforming a LD to PN model
performed line-by-line from a control program guarantees
the equivalence between the two methods (LD and PN) in
both structure and general behavior. The dynamic marking
depends on the inputs of each logical structure proposed,
and it allows the modeling of energizing and de-energizing
coils as part of the system behavior. Furthermore, the LDPN
allows the application of formal PN theory in order to sim-
ulate, verify, and validate control algorithms implemented
in any industrial process or those that had not been imple-
mented yet, but it is necessary to analyze them before
their implementation has marked dynamic function of their
own inputs in each logical structure, allowing the model-
ing of the behavior of energize and/or de-energize coils as
part of behavior systems and permitting the application to
LDPN- formalizing-theories or methods for the correspond-
ing simulation, verification, and validation of the control
algorithms having been implemented or to be developed for
some DES.

The methodology was formulated in a general way; how-
ever, there exist elements of the transformed LDPN which
could be reduced, and hence its graphical complexity could
be reduced too, as in the case when a signal has only one
contact.

Future work includes carrying out the study case of a
control algorithm in LD with a greater number of input and
output signals, therefore with more control lines; the defini-
tion of new transforming blocks for more control logics; and
a proposal to perform an analysis by parcels of the LDPN
for larger control algorithms.
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