2014
Jjavier Flores Badillo, Juan Hernández Ávila, Francisco Patiño Cardona, Norma Yacelit Trápala Pineda, José Abacú Ostos Santos, Developing alternative building material from mining waste, Advanced Materials Research vol. 976 2014, 202-206, issn: 1662-8958, factor de impacto 0.13, online available since 2014/jun/30 at www.scientific.net (2014) Transtechpublications, Switzerland, doi:10.4028.
Abstract
In this paper we present the production of alternative industrial materials from the mining waste in the form of tailings, this study was made with the tailings of Dos Carlos, establishing 4 sampling zones, dividing them into three strata in the bottom, middle and top. The sampling method used is quartering, to homogenize the material and anticipate the possible use of it as a building material, having for this purpose 12 ceramic mixtures for subsequent treatment. Chemical composition was determined as 70.43% SiO2, 7.032% Al2O3, 2.69% Fe2O3, 0.46% MnO2, 3.98% K2O, 3.34% CaO, 2.50% Na2O, 56 grams per tonne of Ag y 0.6 grams per tonne of Au. In the mineralogical characterization the tailings presents silica, albite, berlinite, orthoclase and potassium jarosite as the main mineral phases, among other mineral phases in lesser concentration such as gypsum, calcite, anorthoclase, pyrite, sphalerite and galena. The determinations of the tailing material granulometry in the range of 60% in a size less than 270 mesh (53 ?m). Afterwards, the alternative industrial materials were produced by using the tailings and heavy clay in order to give the composite a good green strength and plasticity during development, but above all to give it a compressive strength similar or higher than that of products derived from conventional processes. Keywords: Tailings, green strength, compressive strength, plasticity, heavy clays, alternative industrial materials.