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Abstract:We consider a stationary distribution of a finite, irre-
ducible, homogeneousMarkov chain. Our aim is to perturb the
transition probabilities matrix using approximations to find re-
gions of feasibility and optimality for a given basis when the
chain is optimized using linear programming. We also explore
the application of perturbations bonds and analyze the effects
of these on the construction of optimal policies.
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I. INTRODUCTION

A perturbation in a Markov chain can be referred as a
slight change in the entries of the corresponding transition
stochastic matrix, resulting in structural changes in the un-
derlying process, for example, sets of states which in the
original case do not communicate, do so after a perturba-
tion is imposed. Also, passages times that originally were
not well defined random variables, may become so after the
perturbation. In this sense, a square matrix is stochastic if its
entries are real and non-negative and the sum of the entries
in each row is equal 1.

Their importance is related with the dynamics that these
represent, particularly, the singularly perturbed Markov
chains have a few time scales. One time scale may cor-
respond to the more frequent transitions occurring among
states which communicate also in the unperturbed case.

In this investigation we are interested in the matrix per-
turbation procedure from a probabilistic point of view, where
the perturbation quantity of the original stochastic matrix φ,
can be approximated by a given matrix A such that φ(ε) =
φ+A(ε) = φ+ εA.

Given the perturbed φ(ε) matrix we approach the pro-

blem of analyzing the effects of the perturbation on the op-
timal policies of a Markovian decision process, sustained in
the Frobenius norm of φ(ε).

The Markovian process describes the productive and re-
productive lifespan of herd sows, where, under an infinite
planning horizon. Linear programming (LP) is used as an
optimization technique.

II. THE REPLACEMENT PROBLEM

In this investigation we approach the problem of re-
placement management of animals in a herd, sows in this
case. Regular time intervals are considered whether it should
be kept a sow in the herd for an additional period or it should
be replace by a new animal (gilt) and to optimize the expect-
ed return associated to the decisions made during the pro-
cess, like in the investigation of Tijms [1].

Several authors have approached this problem with
Markovian models or some of their variants, see for instance,
Howard[2], van der Wal and Wessels[3], White and White
[4], Kristensen [5] and Plá [6].

To illustrate our proposal we consider the sow replace-
ment problem developed in Plá, Pomar and Pomar[6]. The
system consist in a sow farm where sows are allowed to
reach nine reproductive cycles as a maximum and at the end
of each cycle, two actions can be taken: keep or replace. The
problem is represented as a regular Markov decision process
and solved using a linear programming model.

The transition probabilities and reward values are arbi-
trary but near to what are observed in actual systems; the co-
rresponding transition probabilities matrix is perturbed using
the mentioned techniques and the optimal policies are cha-
racterized in terms of these.
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III. THE STOCHASTIC PROCESS NAMED

MARKOV CHAIN

A stochastic process {M (n)}n=0,1,... with finite state
space Z = {z1, . . . , zS} is a Markov chain with discrete
time, if for all n ∈ N and all w0, . . . , wn ∈ Z

P (M (0) = w0,M (1) = w1, . . . ,M (n) = wn) =

P(M (0) = w0) γ(i, i − 1),

where γ(i, i−1) = Πn
i=1P(M (i) = wi |M (i−1) = wi−1)

Consider a Markov chain with S states z1, . . . , zS

where, in each stage k = 1, 2, . . . , the analyst should made
a decision d, among ξ possible. Denote by z(n) = zi and
d(n) = dk the state and the decision made in stage n respec-
tively, then, the systems moves at the next stage, n+ 1, into
the state zj with perhaps, an unknown probability given by

φk
ij = P [z(n + 1) = zj | z(n) =

zi, d(n) = dk] .

When the transition occurs, it is followed by the reward
rk
ij, and the payoff at state zi after the decision dk is made is

given by ψk
i =

∑S
j=1 φ

k
ij r

k
ij

Since we assume that for every policy ϑ(k1, . . .kS),
the corresponding Markov chain is ergodic, then, the
steady state probabilities of this chain are given by φϑ

i =
limn→∞ P [Z(n) = zi], i = 1, . . . , S, and the problem is
to find a policy ϑ for which the expected payoff

Ωϑ =
S∑

i=1

φϑ
i ψ

k
i , (1)

is maximum.

IV. OPTIMIZING MARKOV CHAIN BY LP

When the model involves an infinite horizon, the LP can
be used to optimize (1), i.e., if the termination stage is un-
known, usually the problem is described by an infinite plan-
ning horizon where the number N of stages is considered in-
finite. In this case the optimal policy is constant over stages
and the objective function is given by

gϑ =
S∑

i=1

φϑ
i r

ϑ
i , (2)

where φϑ
i is the limiting state probability under the policy ϑ

(i.e., when the policy is kept constant over an infinit number
of stages). This criterion maximizes the average net revenues

per stage. Thus, the LP problem associated to the chain is
[5]:

maximize

⎧⎨
⎩

S∑
i=1

ξ∑
d=1

rd
i x

d
i :

ξ∑
d=1

xd
i −

S∑
j=1

ξ∑
d=1

φd
ix

d
j = 0,

⎫⎬
⎭

{
S∑

i=1

ξ∑
d=1

xd
i = 1, xd

i ≥ 0,

}
(3)

where d is optimal in state i if and only if xd
i from the optimal

solution is strictly positive, and the xd
i are the unconditional

steady-state probabilities that the system is in the state i and
decision d is made.

A replacement policy is a specification of a sequence of
“keep” or “replace” actions, one for each period.

An optimal policy is a policy that achieves the greatest
reward (or the smallest total net cost) of ownership over the
entire planning horizon. In Pérez et al. [7] is demonstrated
that the problem (3) has a degenerate solution.

             V. THE APROXIMATIONS METHOD

The following questions are discussed; given the
Markov chain of the problem (2), which is optimized using
LP ? How affects to the optimal policy of the chain a pertur-
bation on the optimal solution of the LP problem?

Consider the general LP problem:

minimize f(x) = ct x
subject to Ax = δ, x ≥ 0,
Am×n, c, x ∈ R

n, δ ∈ R
m

(4)

The number ρ of basic feasible solutions that the pro-
blem has, is less than or equal to (m

n ), and Bm×m (submatrix
of A) is a feasible basis of the LP model if B ∈ S, where
S = {Bi ∈ A : B−1

i δ ≥ 0 }.
Suppose B is perturbed to a matrix B̃, that is the tran-

sition probability matrix of an n finite state, irreducible, ho-
mogeneous Markov chain as well. Denoting the stationary
distribution vector of B by x�, and of B̃ by x̃, the goal is to
describe the change (x�− x̃) in the stationary distribution in
terms of the changes dB using an approximations method.

In this sense, x� and x̃ satisfy the systems

x�B = x�, x� > 0, x� e = 1

and
x̃ B̃ = x̃, x̃ > 0, x̃ e = 1

where e is the column vector of all ones.
The approximations method used can be described as

follows. Given a basis B ∈ S, we difference the matrix
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equation Bx = b, and obtain, dBx + Bdx = 0, i.e.,
dx = −B−1dB x.

Let dij ∈ dB be the perturbation on bij ∈ B, and x� an
optimal solution of the problem (4).

Defining f� = f(x�) = ctx� ← min, the resulting per-
turbation b̃ij ∈ B̃ can be written as

b̃ij = bij + dij, (5)

and therefore,
x̃ = x� + dx, (6)

constitutes a perturbated solution around of x�. Thus,

f̃ = f(x̃) = f� + ctdx, (7)

is a new solution, not necessarily feasible (since Ax̃ =
δ+Adx) of the problem (4) evaluated in the perturbed point
x̃. This is also an approximate solution to the modified pro-
blem:

minimize f(x) = ct x

subject to Ã x = δ, x ≥ 0,
Ãm×n, c, x ∈ R

n, δ ∈ R
m

(8)

where Ã is the resulting matrix after incorporating the per-
turbations dij in B. Let x̂ be an optimal solution of the pro-
blem (8), then we can write

x̂ = x̃+ ε, ε ∈ R
n, (9)

and there holds

f̂ = f(x̂) = f̃ + ct ε , (10)

The quantities, x̃ + ε and, f̃ + ct ε can be viewed as
approximations to x̂ and f̂ respectively, and ε is an error
measure of the approximation. Naturally, we would want an
error zero.

To evaluate the existent relationships among the ε quan-
tity and the matrix dB we use the Frobenius norm ‖ · ‖F of
dB, and the Euclidian norm of ε defined as

‖ dB ‖2F = Trace (dBt dB),

and
‖ ε ‖2 = (x̂− x̃)t(x̂− x̃), (11)

                    VI. PERTURBAION BOUNDS

The norm perturbation bound used in this section is of
the following form (Schweitzer [8])

‖ x� − x̃ ‖1 ≤ ‖ Z ‖∞ ‖ dB ‖∞, (12)

where ‖ x�− x̃ ‖1 is the 1-norm of the vector x�− x̃ defined
as the absolute entry sum, ‖ ϕ ‖∞ is the ∞-norm of the
matrix ϕ defined as the maximum absolute row sum, and Z
is the fundamental matrix associated to the matrix B.
Z has the form

Z ≡ [
I − B + e (x�)t

]−1
, (13)

Likewise, the stationary distribution vector x̃, of the per-
turbed matrix dB can be expressed in terms of x� and the
fundamental matrix Z as (Kemeny and Snell [9])

(x� − x̃)t = x̃t dB Z (14)

Using (14) we formalize an important result that relates
to f̂ and x̃ with f�.

−ct dx = ctZtdBtx̃

equivalently

f̃ = f� − ctZtdBtx̃, (15)

f̂ = f� − ct [Zt dBt x̃+ ε], (16)

To evaluate the permissible maximum value for each
perturbation, we propose the alternative LP problem

Maximize ϕ(d) = {de : −B dB dx ≤ x�} , (17)

where e ∈ R
ζ , ζ is the number of elements of the matrix

B that will be perturbed, and d = dij is the perturbations
vector.

If the problem (4) has an optimal solution, then, the pro-
blem (12) also has an optimal solution because the inequality
allows to slack the constrains.

To finding a feasible region ϕ for the perturbed basis
B̃, We define the functions g(dxi) = −CtB−1

i dB x�, i =
1 . . . , ρ.

Then, a feasible region for B̃ is given by

ϕ = {dij ∈ g(dxk) : g(dxk) ≤ g(dxi),

i = 1, 2 . . . , ρ}, (18)

where the basis Bk used to evaluate g(dxk) is that on which
the perturbation will be made.
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  VII. NUMERICAL EXAMPLE

Consider the following transition probabilities matrices
reported in Pla et al. [7], which represent a markovian deci-
sion process with D = 2:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0.30 0 0.70 0 0 0 0 0 0 0
0.25 0 0 0.75 0 0 0 0 0 0
0.20 0 0 0 0.80 0 0 0 0 0
0.20 0 0 0 0 0.80 0 0 0 0
0.20 0 0 0 0 0 0.80 0 0 0
0.20 0 0 0 0 0 0 0.80 0 0
0.25 0 0 0 0 0 0 0 0.75 0
0.25 0 0 0 0 0 0 0 0 0.75
1 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
d = 1 (m ≡ keep)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
d = 2 (r ≡ replace)

The corresponding LP problem is to maximize the ob-
jective function f(y) given by:

190y1m + 226y2m + 232y3m + 202y4m + 202y5m +

202y6m + 202y7m + 202y8m + 202y9m − 200Br

y1m + y1r − Bm = 0,

y2m + y2r − 0.70y1m = 0,

y3m + y3r − 0.75y2m = 0,

y4m + y4r − 0.8y3m = 0,

y5m + y5r − 0.8y4m = 0,

y6m + y6r − 0.8y5m = 0,

y7m + y7r − 0.8y6m = 0,

y8m + y8r − 0.75y7m = 0,

y9m + y9r − 0.75y8m = 0,

Br + Bm − y1r − y2r − y3r − y4r−
y5r − y6r − y7r − y8r − y9r − 0.3y1m

−0.25y2m − 0.2y3m − 0.2y4m − 0.2y5m

−0.2y6m − 0.25y7m − 0.25y8m − y9m = 0,

Br + Bm + y1m + y2m + y3m + y4m+

y5m + y6m + y7m +8m +y9m

+y1r + y2r + y3r + y4r + y5r

+y6r + y7r + y8r + y9r = 1

y1m, y2m, y3m, y4m, y5m,

y6m, y7m, y8m, y9m ≥ 0,

y1r , y2r, y3r , y4r, y5r ,

y6r , y7r, y8r , y9r, B ≥ 0.

he optimal inverse basis B−1 of the LP problem associated to this
solution is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−0.78 −0.82 −0.82 −0.76 −0.69 −0.6
0.21 −0.82 −0.82 −0.76 −0.69 −0.6
0.14 0.42 −0.57 −0.53 −0.48 −0.42
0.11 0.31 0.56 −0.40 −0.36 −0.31
0.08 0.25 0.45 0.67 −0.29 −0.25
0.07 0.20 0.36 0.54 0.76 −0.20
0.05 0.16 0.29 0.43 0.61 0.83
0.04 0.12 0.23 0.34 0.49 0.67
0.03 0.09 0.17 0.26 0.36 0.5
0.02 0.07 0.13 0.19 0.27 0.37
1 1 1 1 1 1

−0.48 −0.36 −0.21 0 0.21
−0.48 −0.36 −0.21 0 0.21
−0.34 −0.25 −0.14 0 0.14
−0.19 −0.11 0 .11
−0.20 −0.15 −0.08 0 0.08
−0.16 −0.12 −0.07 0 0.07
−0.13 −0.09 −0.05 0 0.05
0.89 −0.07 −0.04 0 0.04
0.67 0.94 −0.034 0 0.034
0.5 0.7 0.97 0 0.02
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The optimal solution and the basic variables of the in-
verse basis are (presented in order): Bm = 0.2106, y1m =
0.2106, y2m = 0.1474, y3m = 0.1105, y4m =
0.08847, y5m = 0.07078, y6m = 0.05662, y7m =
0.04529, y8m = 0.03397, y9m = 0.02548, S10 = 0. The
optimal objective function is f� = 163.7765. The ba-
sis B that will be perturbed is formed by the columns:
y1m, y2m, y3m, y4m, y5m, y6m, y7m, y8m, y9m, Bm, S10 i.e.,
and

‖ dB ‖2
F = (d21 − 1)2 + (d32 − 1)2 + (d43 − 1)2 + (d54 − 1)2+

(d65−1)2+(d76−1)2+(d87−1)2+(d98−1)2+d2
21+d2

32+d2
43+

d2
54 + d2

65 + d2
76 + d2

87 + d2
98.

Note that the convex function ‖ dB ‖2F achieves its minimum
in d�

ij = 0.5, i = 2, . . . , 9, j = 1, . . . , 8, and ‖ dB� ‖F = 2.
In this point, ‖ ε ‖= 0.7280.

Using (12) we obtain that ‖ Z ‖∞= 3.9512, ‖ dB ‖∞=
1.85, and therefore ‖ x� − x̃ ‖1≤ 7.3098If x represents
the optimal solution of the LP problem, then, the perturbed
solution x̃ ≈ x� − B−1dBx is given by

B̃m ≈ 0.21− 0.17d21 − 0.17d32 − 0.11d43 − 0.07d54 − 0.05d65

−0.03d76 − 0.02d87 − 0.01d98

ỹ1m ≈ 0.21− 0.17d21 − 0.17d32 − 0.11d43 − 0.07d54 − 0.05d65

−0.03d76 − 0.02d87 − 0.01d98

ỹ2m ≈ −.9em0.14+0.08d21−0.12d32−0.07d43−0.05d54−0.03d65

−0.02d76 − 0.01d87 − 0.01d98

ỹ3m ≈ 0.11+0.06d21 +0.11d32 − 0.05d43 − 0.04d54 − 0.02d65

−0.01d76 − 0.01d87 − 0.005d98

ỹ4m ≈ 0.08+0.05d21 +0.09d32 +0.10d43 − 0.03d54 − 0.02d65

−0.01d76 − 0.01d87 − 0.003d98
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ỹ5m ≈ 0.07+0.04d21 +0.07d32 +0.08d43 +0.08d54 − 0.01d65

−0.01d76 − 0.007d87 − 0.003d98

ỹ6m ≈ 0.05+0.03d21 +0.06d32 +0.06d43 +0.06d54 +0.07d65

−0.01d76 − 0.005d87 − 0.002d98

ỹ7m ≈ 0.04+0.02d21 +0.04d32 +0.05d43 +0.05d54 +0.05d65

+0.06d76 − 0.004d87 − 0.002d98

ỹ8m ≈ 0.03+0.02d21 +0.03d32 +0.03d43 +0.04d54 +0.04d65

+0.04d76 + 0.05d87 − 0.001d98

ỹ9m ≈ 0.02+0.01d21 +0.02d32 +0.02d43 +0.030d54 +0.03d65

+0.03d76 + 0.03d87 + 0.04d98

S̃10 ≈ 0.94

For the previously developed system we use the per-
turbations: d21 = 0.20, d32 = 0.20, d43 = 0.12, d54 =
0.14, d65 = 0.18, d76 = 0.10, d87 = 0.15, d98 = 0.20; and
from these, we obtain f̃ = 184.9326, ctdx = 21.2314.

Similarly, the optimal solution x̂ of the perturbed pro-
blem is:

(Bm = 0.3062, y1m = 0.3062, y2m = 0.1531,

y3m = 0.0842, y4m = 0.0572, y5m = 0.0377,

y6m = 0.0234, y7m = 0.0164, y8m = 0.0098,

y9m = 0.0054)

and f̂ = 142.6643.
Using (9) we get the ε value defined as:

(-0.0160, -0.0160, -0.0303, -0.0112, -0.0019, 0.0062,
0.0141, 0.0160,0.0179, 0.0103), and the inner product ctε =
−42.2814.

The Frobenius norm, the x̃ − x� norm, the ε error and
other parameters were evaluated for different values of dij.
In table 1 we summarize our findings and figure 1 sketch the
numerical results. In the next page is the Table 2 , that shows
the samples of x̂, x�, dx and ε2 for the proposed dij.

d21 d32 d43 d54 d65 d76 d87 d98 ‖ dB ‖F ‖ x̃ − x� ‖ ‖ ε ‖ f̃ f̂

0 0 0 0 0 0 0 0 0 0 0.4704 163.7765 95.1337
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 2.5612 0.1148 0.5219 177.2500 102.0440
0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 2.3323 0.2296 0.5842 190.7235 109.6893
0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 2.1540 0.3443 0.6337 204.1971 240.1141
0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 2.0396 0.4591 0.6841 217.6704 265.7273
0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2 0.5739 0.7280 231.1442 291.1452
0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 2.0396 0.6887 0.7633 244.6177 315.0898
0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 2.1540 0.8035 0.7904 258.0910 335.7125
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 2.3323 0.9183 0.8140 271.5647 351.2073
0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 2.5612 1.0330 0.8423 285.0382 360.8219
1 1 1 1 1 1 1 1 2.8284 1.1478 0.8835 298.5116 365.4715

Table 1: Comparative aspects of the proposed dij

Let us consider the linear programming model defined
in (12). In our example it become

maximize = d21 + d32 + d43 + d54 + d65 + d76 + d87 + d98

Subject to

0.1741d21 + 0.1729d32 + 0.1124d43 + 0.0763d54+

0.0344d76 + 0.0208d87 + 0.0095d98 ≤ 0.2106

−0.0886d21 + 0.1210d32 + 0.0787d43 + 0.0534d54+

0.0371d65 + 0.0180d76 + 0.0109d87 + 0.0050d98 ≤ 0.1474

−0.0665d21 − 0.1198d32 + 0.0591d43 + 0.0401d54+

0.0278d65 + 0.0180d76 + 0.0109d87 + 0.0050d98 ≤ 0.1105

−0.0532d21 − 0.0958d32 − 0.1d43 + 0.0320d54+

0.0222d65 + 0.0144d76 + 0.0087d87 + 0.0039d98 ≤ 0.0884

−0.0425d21 − 0.0766d32 − 0.0800d43 − 0.0848d54+

0.01784d65 + 0.0115d76 + 0.0070d87 + 0.0032d98 ≤ 0.0707

−0.0341d21 − 0.0612d32 − 0.0641d43 − 0.0678d54−
0.0741d65 + 0.0092d76 + 0.0056d87 + 0.0025d98 ≤ 0.0566

−0.0271d21 − 0.0490d32 − 0.0512d43 − 0.0542d54−
0.0593d65 − 0.0632d76 + 0.0044d87 + 0.0020d98 ≤ 0.0452

−0.0204d21 − 0.0368d32 − 0.0384d43 − 0.0407d54−
0.0444d65 − 0.0474d76 − 0.0532d87 + 0.0015d98 ≤ 0.0399

−0.0153d21 − 0.0275d32 − 0.0288d43 − 0.0304d54−
0.0333d65 − 0.0356d76 − 0.0399d87 − 0.04407d98 ≤ 0.0254

d32 ≤ 1, d43 ≤ 1, d54 ≤ 1, d65 ≤ 1,

d76 ≤ 1, d87 ≤ 1, d98 ≤ 1,

dij ≥ 0, i = 2, . . . , 9, j = 1, . . . ,8

which solution is d21 = 0.1222, d32 = 0.0407, d43 =
0.3672, d54 = 1, d65 = 1, d76 = 1, d87 = 1, d98 =
1, ϕ(d�) = 5.5302. The corresponding Frobenius norm is
‖ dB ‖F = 2.6912, and ‖ ε ‖= 0.8688
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dij Bm y1m y2m y3m y4m y5m y6m y7m y8m y9m
0 x̂ 0.5 0.5 0 0 0 0 0 0 0 0

x� 0.21 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx 0 0 0 0 0 0 0 0 0 0
ε2 0.08 0.08 0.02 0.01 0.01 0.05 0.003 0.002 0.001 0.001

0.4 x̂ 0.37 0.37 0.15 0.06 0.024 0.01 0.00 0.001 0.001 0.0002
x� 0.21 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx −0.26 −0.26 −0.09 0.01 0.06 0.09 0.11 0.11 0.11 0.10
ε2 0.18 0.18 0.01 0.003 0.01 0.02 0.02 0.01 0.01 0.005

0.5 x̂ 0.33 0.33 0.16 0.08 0.04 0.02 0.01 0.005 0.002 0.001
x� 0.21 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx −0.32 −0.32 −0.12 0.012 0.08 0.12 0.14 0.14 0.14 0.12
ε2 0.2 0.2 0.02 0.001 0.01 0.03 0.03 0.01 0.01 0.005

0.6 x̂ 0.28 0.28 0.17 0.10 0.06 0.03 0.02 0.01 0.01 0.05
x� 0.21 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx −0.39 −0.39 −0.14 0.01 0.10 0.14 0.17 0.17 0.16 0.15
ε2 0.22 0.22 0.03 0.00 0.01 0.03 0.04 0.01 0.01 0.005

0.7 x̂ 0.23 0.23 0.16 0.11 0.08 0.05 0.04 0.02 0.01 0.01
x� 0.21 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx −0.45 −0.45 −0.17 0.01 0.11 0.17 0.19 0.20 0.19 0.17
ε2 0.23 0.23 0.03 0.00 0.01 0.03 0.04 0.01 0.01 0.00

0.8 x̂ 0.18 0.18 0.15 0.12 0.09 0.07 0.06 0.04 0.03 0.03
x� 0.2106 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx −0.52 −0.52 −0.19 0.02 0.13 0.19 0.22 0.23 0.22 0.20
ε2 0.25 0.25 0.04 0.00 0.01 0.03 0.04 0.01 0.01 0.01

0.9 x̂ 0.14 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.06
x� 0.21 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx −0.58 −0.58 −0.22 0.02 0.15 0.21 0.25 0.26 0.25 0.22
ε2 0.26 0.26 0.04 0.00 0.01 0.03 0.05 0.01 0.00 0.00

1 x̂ 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
x� 0.21 0.21 0.14 0.11 0.08 0.07 0.05 0.04 0.03 0.02
dx −0.65 −0.65 −0.24 0.02 0.16 0.24 0.28 0.29 0.28 0.25
ε2 0.29 0.29 0.03 0.00 0.02 0.04 0.05 0.01 0.01 0.01

Table 2: Samples of x̂, x�, dx and ε2 for the proposed dij .

                             VIII. CONCLUSIONS

In this document we use a method of approximations to
perturb the transition probabilities matrix of a Markov chain.
The Froebinous norm was used as a measure of the generated
error in the approximation.

It was demonstrated that the error is minimum when
dij = 1/2. We also obtained expressions that relate to the
value of the optimal reward with the perturbed values of the
gain function.

We propose an alternating model of PL to obtain the
maximum bounds allowed on dij and we derive the corres-
ponding conditions to maintain the feasibility of the pro-
blem.

In our new investigation we approach the problem as-
suming that the perturbations matrix dB can be written in
terms of a Fmatrix valued function of B and given a matrix
E we solve the following problems:

1. Approximate F (dB + E)

2. Bound ‖ F (dB + E)− F (dB) ‖
3. Computing the series expansion for the mean passage

time matrix and for the deviation matrix of a perturbed
Markov chain.
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[7] Pérez, L.G., Suárez, A.M.M., Garnica, G.J., Niccolas, M.H., Venegas,
M. F. 2006. Stochastic linear programming to optimize some stochastic sys-
tems. WSEAS Transactions on Systems 5 , 2263-2268.

[8] Schweitzer, P. 1968. Perturbation theory and finite Markov chains. Jour-
nal of Applied Probability (5), pp 410-413.

[9] Kemeny, J. and Snell, J. 1960. Finite Markov chains . Van Nostrand, NY.

996




