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ABSTRACT 
A Petri net (PN) is a powerful tool that has been used to 
model and analyze discrete event systems. Such 
systems can be concurrent, asynchronous, distributed, 
parallel, non-deterministic, and/or stochastic. A problem 
in PN modelling is related to its graphical 
representation because it increases for each element of 
the system. Consequently, incidence matrix of the PN 
also increases the number of rows and/or columns. To 
verify properties in PN such as liveness, safeness, and 
boundedness, computer time is required, even more if 
we need to verify huge Petri nets. There are six simple 
reduction rules, which are used to produce a smaller PN 
preserving the properties of the original PN. In order to 
apply these reduction rules, we have to find the pattern 
and then apply the corresponding rule. In this paper, we 
propose to apply the reduction rules directly in the 
incidence matrix of the PN modelled, detecting the 
pattern of each rule on the incidence matrix and 
applying the corresponding changes on the incidence 
matrix. 

 
Keywords: Petri nets, reduction method, incidence 
matrix 

 
1. INTRODUCTION 
Petri net (PN) is a powerful tool that gives support to 
theoretical and practitioners to develop models 
representing Discrete Event Systems (DES). It has been 
widely used in several fields to model and analyse 
flexible manufacturing systems (FMS) and information 
processing systems trough the application of analysis 
methods of PN theory, such as the coverability tree, the 
incidence matrix and state equation, and the reduction 
rules (Murata 1989).  

There are several works where analysis methods of 
PN are applied in the study of DES. 

In (Henry, Layer, and Zaret 2010) a framework 
that incorporates an application of the coverability 
analysis is presented. The coverability analysis was 
coupled with process failure mode analysis in order to 
quantify the risk induced by potential cyber attacks 
against network-supported operations.   

The work presented in (Cabastino, Giua, and 
Seatzu 2006) uses the coverability graph to determine a 
PN system from the knowledge of its coverability 
graph. The authors faced the following problem: given 
an automaton that represents the coverability graph of a 
PN, determine a PN system whose coverability graph is 
isomorph to the automaton.  

In (Latorre-Biel, and Jimenez-Macias 2011), four 
incidence matrix-based operations are applied to 
perform transformations in PN models in order to 
validate and verify them as models of discrete event 
systems. Properties of the initial PN model are 
preserved with these matrix operations. 

A process to convert A and B contacts in the ladder 
diagrams into a PN model is described in (Lee, and Lee 
2000). The authors construct the incidence matrix for 
each contact in order to obtain their corresponding state 
equation and perform their analysis. 

In (Verbeek, et. al. 2010) the reduction method is 
applied to PNs with reset and inhibitor arcs. This PN 
extension is used to model cancellation and blocking. In 
(Xi-zuo, Gui-ying, and Sun-ho 2006) the reduction 
method of PN is applied to verify the correctness of 
workflow models. 

Reduction rules and deadlock detection methods 
are proposed in (Lu, and Zhang 2010). This proposal is 
based on Object Oriented Petri net models and the 
authors take advantage of object oriented concepts to 
develop their methods. In (Uzam 2004) the PN 
reduction approach is used to set a policy for deadlock 
prevention in FMS. 

We can notice the importance of the use of 
analysis methods in PN theory and applications. 
Nevertheless, the structures of the PN models obtained 
from DES have several places and transitions, which 
produces huge coverability trees and very big matrices. 
Hence, the importance to apply reduction rules in order 
to have smaller petri net models and perform faster 
analysis to DES. Therefore, the use of reduction rules 
and its application on the incidence matrix of the PN, 
instead of its graphical representation, is proposed in 
this work. 

The remainder of the paper is organized as follows. 
Section 2 gives fundamental concepts of PNs and 



introduces the incidence matrix and reduction rules 
method. Section 3 describes the proposal of using 
incidence matrix operations to apply reduction rules. 
Section 4 presents two illustrative examples. Finally, 
section 6 shows conclusions of the work and further 
research. 
 
2. PETRI NET FUNDAMENTALS  
A PN is a graphical and mathematical tool that has been 
used to model concurrent, asynchronous, distributed, 
parallel, non-deterministic, and/or stochastic systems. 

The graph of a PN is directed, with weights in their 
arcs, and bipartite, whose nodes are of two types: places 
and transitions. Graphically, places are depicted as 
circles and transition as boxes or bars. PN arcs connect 
places to transitions or transition to places; it is not 
permissible to connect nodes of the same type. The state 
of the system is denoted in PN by the use of tokens, 
which are assigned to place nodes. 

A formal definition of a PN is presented in table 1 
(Murata 1989). 

 
Table 1: Formal definition of a PN 

A Petri net is a 5-tuple, PN = {P, T, F, W, M0) where: 
P = {p1, p2, �…, pm} is a finite set of places, 
T = {t1, t2, �…, tn} is a finite set of transitions, 
F  {P  T}  {T  P} is a set of arcs, 
W = F  {1, 2, 3, �…} is a weight function, 
M0 = P  {0, 1, 2, 3, �…} is the initial marking, 
P  T =  and P  T  . 

 
 
The token movement through the PN represents 

the dynamical behaviour of the system. In order to 
change the token position, the following transition 
firing rule is used (Murata 1989): 

 
1. A transition t  T is enabled if every input 

place p  P of t has w(p,t) tokens or more. 
w(p,t) is the weight of the arc from p to t. 

2. An enabled transition t will fire if the event 
represented by t takes place. 

3. When an enabled transition t fires, w(p,t) 
tokens are removed from every input place p of 
t and w(t,p) tokens are added to every output 
place p of t. w(t,p) is the weight of the arc from 
t to p. 

 
2.1. Analysis methods 
PN theory considers three groups of analysis methods: 
a) the coverability tree method, b) the matrix-equation 
approach, and 3) the reduction method. For the intention 
of this paper, the matrix equation approach and 
reduction methods are presented. 

 
2.1.1. Incidence matrix and state equation 
A PN with n transitions and m places can be expressed 
mathematically as a n  m matrix of integers A = [aij]. 
The values for each element of the matrix are given by: 

aij = aij
+ - aij

-, where aij
+ is the weight of the arc from ti 

to pj, and aij
- is the weight of the arc from pj to ti. 

The state equation is used to determine the 
marking of a PN after a transition firing, and it can be 
writt  aen s follows: 

 
  (1) 

 
where uk is a n  1 column vector of n - 1 zeros and 

one nonzero entries, which represents the transition tj 
that will fire. The nonzero entry is located in the 
position j of uk. AT is the transpose of incidence matrix. 
Mk-1 is the marking before the firing of tj. And Mk is the 
reached marking after the firing of tj denoted in uk. 

 
2.1.2. Reduction rules 
In order to work with smaller PN models and analyse 
them in an easier way, six simple reduction rules have 
been proposed (Murata 1989; Zhou and Venkatesh 
1999). These rules guaranty the preservation of system 
properties in the system modelled, such properties are 
safeness, liveness and boundedness.  

 
1. Fusion of Series Places (FSP). 
2. Fusion of Series Transitions (FST). 
3. Fusion of Parallels Places (FPP). 
4. Fusion of Parallels Transitions (FPT). 
5. Elimination of Self-loop Places (ESP) 
6. Elimination of Self-loop Transitions (EST). 
 
Figure 1 shows the transformations in the PN 

through the application of reduction rules. 
 

 
 

Figure 1: Reduction rules applied to PN models. 
 



3. REDUCTION RULES ON INCIDENCE 
MATRIX 

3.1. Fusion of Series Places (FSP) rule 
In the FSP rule, the transition tx located between the 
places pi and pj is deleted and both places are merged. 
Then, the result is a unique place pij with the sum of 
input and output arcs of places pi and pj less the arcs 
connected to tx. (Figure 1a). 

The incidence matrix for PN of figure 1a is the 
following. 

 

  (2) 

 
On the incidence matrix we have to do the next 

steps: 
 
1. ncidence matrix.  Delete the x row from the i

 
 

 

u
 

2. m j f Ar,  Su  col mns i and  o

 
 

3. Replace column in position i by the column 
e the column in vector resulting A34, and remov

s  po ition j from Ar. 

 
 

 
 

 
The column vector A34 can be placed either on 

position i or j. In this case, column in position i is 
replaced by the column vector resulting A34. At the end, 
the dimension of incidence matrix Afsp is n-1  m-1. 

 
3.2. Fusion of Series Transitions (FST) rule 
Now, place pi will be deleted and transitions tx and ty 
will be merged (figure 1b). As result of this rule, we get 
a single transition txy whose input and output arcs are 
the join of input and output arcs of tx and ty less those 
arcs connecting from tx to pi and from pi to ty.  

The incidence matrix of PN depicted in figure 1b is 
the next. 

 

  (3) 

 
For the application of the FST rule on the 

incidence matrix, we have to perform the following 
steps. 

 
1.  from the incidence Delete the i�–th column

matrix.  
 
 

 
o

 
2.  ,  Sum rows x and y f Ar

 
 

3. Replace row in position x by the row vector 
 in position y resulting A34, and remove row

ofr m Ar. 

 
 

 

 

 
Afst is a n-1  m-1 matrix, after the elimination of pi 

and the fusion of tx and ty. 
 

3.3. Fusion of Parallel Places (FPP) rule 
The aim of this rule is to fuse places with the same 
input transition, same output transition, and only with 
one input arc and one output arc. 

In order to apply FPP rule on the incidence matrix, 
parallel places involved are deleted except one of them. 
The incidence matrix related to PN of figure 1c is the 
following. 

 

  (4) 

 
In this case, there is only one operation to perform 

on the incidence matrix. 
 
1.  from the incidence Delete the j�–th column

matrix. 
 
 

 
 
The fusion of places pi and pj is denoted on the 

incidence matrix with the elimination of either pi or pj. 
Both places have the same arcs, then A[1�…n, i] = 
A[1�…n, j]. The dimension of Afpp is n rows by m-1 
columns. 



 
3.4. Fusion of Parallel Transitions (FPT) rule 
For this rule, the rows of merged transitions are deleted 
except one of them. The transitions that will be fused 
have the same input place and output place, so the rows 
in incidence matrix corresponding to these transitions 
are similar. 

The incidence matrix representing the PN with 
parall l tra siti ing. e n ons (figure 1d) is the follow

 

  (5) 

 
To apply the FPT rule on incidence matrix, either tx 

or ty must be deleted, and the other one must be kept.  
 
1. e incidence matrix. Delete the y�–th row from th

 
 

 

 
Afpt is a matrix of n-1 rows by m columns. 

 
3.5. Elimination of Self-loop Places (ESP) rule 
Self-loop places can be seen in the PN graph, moreover 
on the incidence matrix this kind of places have only 
zero entries in their corresponding column. However, 
isolated places also present only zero entries on the 
incidence matrix, but in the intention of reduction 
method isolated places can also be deleted. 

Incidence matrix for PN depicted in figure 1e is 
defined as ollows f . 

 

   (6) 

 
The elimination of the self-loop place on the 

incidence matrix is done through the following step: 
 
1.  from the incidence Delete the i�–th column

matrix. 
 
 

 
 
After the elimination of i-th column, the Aesp 

matrix has n rows by m-1 columns. 
 

3.6. Elimination of Self-loop Transitions (EST) rule 
EST rule indicates that transitions with only an input arc 
and an output arc to the same place have to be deleted. 
On the incidence matrix, rows with zero entries in all 
values denote a self-loop transition or even an isolated 
one. In both cases the row must be removed from the 
matrix. 

The PN depicted in figure 1f has the following 
incide ce matrn ix. 

 

   (7) 

 
tx row is a zero row vector because pi is an input an 

output place of tx, i.e. A(tx,pi) = 1+ - 1-  = 0. 
The elimination of tx on the incidence matrix can 

be done with the following instruction. 
 
1. e incidence matrix. Delete the x�–th row from th

 
 

 

 
Incidence matrix Aest has one row less that A, and 

the dimension of the matrix now is n-1 rows by m 
columns. 

 
4. ILLUSTRATIVE EXAMPLES 
In order to show the applicability of reduction rules on 
incidence matrix of PN, two examples taken from the 
literature are presented. 

 
4.1. Example 1 
The PN used in this example was presented in (Murata 
1989) and it is shown in figure 2. 

The incidence matrix is the following. 

 

 

 
Places p3 and p4 are serial places. To reduce the PN 

firstly we apply the steps described for FSP rule in 
section 3.1. 

 
1. Delete the 4th row from the incidence matrix.  
2. Sum column vectors 3 and 4. 
3. Replace the 3rd column with the values 

obtained in the sum, and remove the 4th 
column. 

 



 
 

 
Figure 2: PN model for example 1. 
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Figure 3 shows the evolution in the PN when the 

reduction rules are applied. 
 

 
After these operations, the resulting incidence 

matrix is the following.  
 

 

 
Now, the rule that can be applied is the FST, 

because transitions t1 and t2 are series transitions. 
 
1. Delete the 1st column from the incidence 

matrix (place p1). 
2. Sum row vectors 1 and 2. 
3. Replace the first row by the result of the sum 

and delete row 2.  
  

Figure 3. PN changes after the application of some 
reduction rules. 
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t3
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The incidence matrix after these operations is the 
following. 

 

  
4.2. Example 2 
The second example is a PN model that was reduced 
applying the reduction method by (Zhou and Venkatesh 
1999). Figure 4 shows the initial PN model and its 
incidence a n

 
In this phase, the ESP rule can now be applied to 

this incidence matrix, because the place of second 
column of Afst is a self-loop place. The instruction for 
ESP rule is applied. 

m trix is the followi g. 
 

 

 
1. Delete the second column from the incidence 

matrix. 
 
The incidence matrix e llowing. is th  fo

 
 

  
Finally, EST rule can be applied on incidence 

matrix Aesp because the transition of first row represents 
a self-loop transition. 

FSP rule is applied to fuse places p2 and p3, where 
transition t2 is between these places. 

 
  
1. Delete the first row from the incidence matrix 

Aesp. 
1. Delete the 2nd row from the incidence matrix 

(t2).  
  
Applying the EST instruction the last incidence 

matrix is as follows. 



 

 
Figure 4. PN model used in example 2. 
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Parallel transitions t6 and t7 are reduced with the 
rule FPT. 

 
1. Delete the 7 w f m  inc enc atr .  t ro ro the id e m ix

 

 

 
 

 

 
Serial transitions t1 and t3 are fused through FST 

rule. Place p2 is the output and input place from t1 and 
to t3, respectively. 

 
1. Delete the p2 column from the incidence 

matrix.  

 

 

 
2.  c ns  3 of Aesp,  Sum olum 2 and

 
 

2.  rows t1 nd 3 f fst,  Sum  a  t rom A
 

 
 

 

3. Replace the column in position 2 by the result 
of the sum, and remove the column in position 
3 from esp A . 
 

 

 
3. Replace the row in t1 position by the result of 

the sum, and re ove o  of rom fst. m  the r w t3 f  A
 

 

 
Next, rule FPP is applied to parallel places p5 and 

p6. 
 

Next, FST rule is used to fuse serial transitions t4 
and t5. Place p5 is between t4 and t5.  

1. Delete the column corresponding to p6 from 
the incidence matrix. 

 
1. Delete the p5 column from the incidence 

matrix.   
 



 
 

 
2. 4 and t6 from Afst’’’,  Sum rows t

 
 

 
 

 
2. from Afst’,  Sum rows t4 and t5 

 
 

 
 

 
3. Replace the row in the position of t4 by the 

result of the sum, and remove the row of t6 
from Afst’’’. 

 

 

3. Replace the row in t4 position by the result of 
the sum, and rem  th w of 5 fr  Afst’. ove e ro  t om

 

 
 

 
Finally, place p1 is removed because it is a self-

loop place. 
  
1. Delete the column of p  from the incidence 

matrix Afst’’’. 
Then, serial transitions t6 and t8 are fused through 

the application of FST rule. Place p8 is the output place 
from t6 and the input place to t8. 

1

 

 
 
1. Delete the p8 column from the incidence 

matrix.  

 

 
 Aesp is the incidence matrix of the PN model 

obtained in (Zhou and Venkatesh 1999). Figure 5 shows 
the reduced PN after the application of the reduction 
rules. 

 

 
2. d t8 from Afst’’,  Sum rows t6 an

 
 

 
 

 
Figure 5. Reduced PN after the application of reduction 
rules. 

p4t1 t4

  
3. Replace the row in the position of t6 by the 

result of the sum, and remove the row of t8 
from Afst’’. 

5. CONCLUSIONS AND FUTURE WORK 
The reduction method in PN is used to generate smaller 
PNs that preserve structural properties from the initial 
model. 

 

 
Other analysis method in PN is the state equation, 

which uses the concept of incidence matrix. The 
incidence matrix is the mathematical representation of 
PNs, and denotes the relationship between places and 
transitions of the PN. 

 
 

Reduction rules have been applied on the PN 
graphical representation; however, this work shows that 
reduction method can be applied on the incidence 
matrix, with the same results. This result is important 
because now the reduction method, based on matrix 
operations, can be inserted in a computational 
algorithm. 

Serial transitions t4 and t6 are merged with the FST 
rule, where p7 is the output place from t4 and the input 
place to t6. 

 
1. Delete the p7 column from the incidence 

matrix.  
 

Two examples were developed to show the 
feasibility of matrix operations on PN reduction 
method. 



As further research, it is possible to develop an 
algorithm taking into account the matrix operations 
proposed, and reduce very big PNs into smaller ones. 
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