
Ciencia Universitaria ◆ número 1, enero/junio 2010
1

índice

Sobre la universidad: una perspectiva antropológica
David Lagunas Arias

Análisis de la factibilidad del empleo de un consorcio microbiano en el tratamiento de vertidos
Jorge Del Real Olvera, Francisco Prieto García, Eva María Santos López, Alma Delia Román Gutiérrez y
Alberto José Gordillo Martínez

Vegetación e inventario de la flora útil de la Huasteca y la zona Otomí-Tepehua de Hidalgo
Miguel Ángel Villavicencio Nieto, Blanca Estela Pérez Escandón

Bases mínimas para la elaboración de un protocolo para la prevención, detección y el control de la fiebre roja (dengue) en
Hidalgo
Luis Mauricio Figueroa Gutiérrez, José Luis Imbert Palafox, Ana Hilda Figueroa , Gutiérrez,
Iris Cristina López Santiago, Tomás Serrano Avilés, Juan Francisco Martínez Campos

El papel del conocimiento en la construcción endógena del desarrollo
Roberto Morales Estrella

Resumen de la composición para guitarra en el México moderno
Raúl Cortés Cervantes, Mauricio Hernández Monterrubio, Carlos Edwin Jiménez Hernández

Stochastic linear programming to optimize some stochastic systems
Gilberto Pérez Lechuga, L. M. Pla-Aragones

Desarrollo de biosensores miniaturizados de bajo costo en configuración plana
Carlos Andrés Galán Vidal, María de Lourdes Pacheco Hernández, Giann Arturo Álvarez
Romero, María Elena Páez Hernández, Luis Humberto Mendoza Huizar, Araceli Sierra Zenteno.

Influencia del tratamiento térmico (tt) con CdCl2 en las propiedades estructurales y ópticas de películas
semiconductoras de CdTe crecidas por erosión magnetoplanar (sputtering)
H. Hernández Contreras, J. A. Aguilar Hernández, G. Contreras Puente, R. Juárez Del Toro, O. Montaño
Arango, J. R. Corona Armenta, J. Garnica González

A Simulator for Active Database Systems
Joselito Medina Marín, Marco A. Montufar Benítez, Aurora Pérez Rojas, Oscar Montaño Arango, José
Ramón Corona Armenta, Jaime Garnica González

Composicición del desarrollo en el Estado de Hidalgo. Demografía,
etnicidad y pobreza, de Assael Ortíz Lazcano
por Israel Cruz Badillo

Graffitis novohispanos de Tepeapulco. Siglo XVI, de Pascual Tinoco Quesnel
y Elías Rodríguez Vásquez
por Jorge Peña Zepeda

Políticas y bases de Ciencia Universitaria

4

14

23

34

43

55

63

73

82

86

92

93

94

Ciencia Universitaria ◆ número 1, enero/junio 2010
86

A simulator for active database systems
Joselito Medina-Marín,* Xiaoou Li, Marco A. Montufar-Benítez,

Aurora Pérez Rojas, Oscar Montaño-Arango, José Ramón Corona-Armenta,
Jaime Garnica-González

Centro de Investigación Avanzada en Ingeniería Industrial, Instituto de Ciencias Básicas e Ingeniería,
Universidad aUtónoma del estado de Hidalgo, Ciudad Universitaria km 4.5 carr. Pachuca-Tulancingo, Mineral de la Refor-

ma Hgo., México, C.P. 42184, tel. (771) 7172000 ext 6315, e: mail: jmedina@uaeh.edu.mx
(*) para correspondencia

Abstract
Active database systems were introduced to extend the database functionality. As well as a repository of data, active
database can detect the occurrence of events in a database system and react automatically to that event occurrence and
execute certain actions either inside or outside the database. This behavior is specified by means of ECA (event-condi-
tion-action) rules, i.e., when an event has occurred, if the condition is evaluated to true, then an action is executed. The
development of a set of ECA rules involves the knowledge of the database structure and the relationships that can exist
among the ECA rules, which may produce an inconsistent state in the database. Therefore, it is so important to verify
a rule set before its implementation in the active database, and one method to determine if a rule set will produce consis-
tent states of the database is through the simulation of ECA rule firing. In this paper a simulator for active databases,
named ECAPNSim, is described. ECAPNSim uses the definition of ECA rules like a structure of an extended Petri
net model, the Conditional Colored Petri Net (CCPN). Conditional Colored Petri Net definition involves the knowledge
and execution model, which describe the features that an active database system must have. Furthermore, in order to
simulate the occurrence of database events, ECAPNSim has been enhanced with the addition of distribution functions
for each place that denote events of the ECA rule set.

Resumen
Los sistemas de bases de datos activas se introdujeron para ampliar la funcionalidad de las bases
de datos. Además de funcionar como un repositorio de datos, las bases de datos activas, pueden
detectar la ocurrencia de eventos en un sistema de base de datos y reaccionar automáticamente ante
la ocurrencia de estos eventos y ejecutar ciertas acciones, ya sea dentro o fuera de la base de datos.
Este comportamiento puede especificarse por medio de reglas ECA (evento-condición-acción), es
decir, cuando un evento ha ocurrido, si la evaluación de la condición se evalúa como verdadera,
entonces una acción se ejecuta. El desarrollo de un conjunto de reglas involucra el conocimiento de
la estructura de la base de datos y las relaciones que pueden existir entre las reglas ECA, las cuales
podrían producir un estado inconsistente en la base de datos. Por lo tanto, es muy importante el veri-
ficar un conjunto de reglas antes de su implementación en la base de datos activa, y un método para
determinar si un conjunto de reglas producirá estados consistentes en la base de datos, es a través de
la simulación del disparo de las reglas ECA. En este artículo se describe un simulador para base de
datos activas, denominado ECAPNSim. ECAPNSim utiliza la simulación de reglas de ECA como
una estructura de un modelo de red de Petri extendido, la red de Petri coloreada condicional (CCPN,
Condicional Colored Petri Net). La definición de CCPN contiene a los modelos de conocimiento y
ejecución, los cuales describen las características que un sistema de base de datos activa debe conte-
ner. Además, para simular la ocurrencia de eventos de base de datos, ECAPNSim ha sido mejorado
con el aditamento de funciones distribución en cada lugar, que denota a un evento que está siendo
monitoreado dentro del conjunto de reglas ECA.

Keywords

◆ Petri net
◆ Active Database
◆ ECA rules
◆ Simulation

Ciencia Universitaria ◆ número 1, enero/junio 2010
87

Introduction

Traditional databases (DB) were deve-
loped to store a huge amount of in-
formation. In this DB type the infor-

mation only is accessed by insert, delete, update
and query algorithms, which were previously
programmed in a Data Manipulation Langua-
ge (DML) by the DB administrator. The set of
all this data manipulation programs is the Da-
tabase Management System (DBMS). However,
the execution of those programs is performed
only by the request of either a DB user or the
DB administrator.

Nevertheless, there are systems that can-
not be implemented by using a traditional DB
approach. Such systems are those where is well
known that if certain events occur in the DB
and if the DB state satisfies certain conditions,
then an action or procedure is performed in the
DB. Therefore, it is necessary to use an appro-
ach where a DB could have the ability to react
automatically when an event occurs either insi-
de or outside DB environment, after this, it can
verify the DB state to evaluate conditions, and
if condition is evaluated to true it can execute
procedures that modify the DB state. In order
to provide of active behavior to traditional DB,
Active Databases (ADBs) were introduced. If a
human being takes charge to detect the event
occurrences, verify conditions, and execute pro-
cedures instead an ADB system, then the system
may not work well. Thus, it is very important to
add enough information to DB about the active
behavior and convert a traditional DB into an
Active one.

Active behavior of a DB can be defined
through a base of active rules, which has the
specification of events that will be detected,

conditions that will be evaluated, and actions
or procedures that will be performed in the DB.
The model most widely used is the event-condi-
tion-action rule (ECA rule) model, whose gene-
ral form is as follows [1]:

on event e1
if condition c1
then action a1

ECA rule model works in the following way:
when an event e1 that modifies the current DB
state occurs, if condition c1 is evaluated to true
against DB state, then either an action a1 is exe-
cuted inside DB or a message is sent outside DB.

An event e1, which can trigger to an ECA
rule, can be of two types: primitive event or com-
posite event [2]. A primitive event is generated
by the execution of an operation over the DB in-
formation (insert, delete, update, or select), a DB
transaction, a clock event (which can be absolute,
relative, or periodic), or the occurrence of a DB
external event. On the other hand, composite
events (disjunction, conjunction, sequence, closu-
re, times, negation, last, simultaneous, and any)
are formed by the occurrence of a combination
of primitive and/or composite events.

Composite events increase the complexity of
a base of active rules because composite events
are represented by complex structures, which
need to be evaluated when a composite event is
raised. In the same way that a composite event
increases the complexity of a base of active rules,
relationships between ECA rules increase the
complexity of a base of active rules.

Furthermore, active rules must be validated
before its implementation into a real active data-
base system, in order to known its behavior and
to verify the presence of situations that may pro-
duce an inconsistent state in the database system.

A simulator for active database systems

Ciencia Universitaria ◆ número 1, enero/junio 2010
88

This verification can be performed trough
the simulation of the active rules. In this paper
an ECA rule simulator is presented, which uses
a Petri net model, named Conditional Colored
Petri Net (CCPN), to depict ECA rules as a Pe-
tri net structure, and with the token game ani-
mation the event occurrence and rule triggering
are analyzed in order to detect active database
problems such as No termination and confluen-
ce [2].

 Related work
There are several research studies about active
databases and the development of ECA rules.
Relational systems, such as starburst [3], Post-
gres [4], Ariel [5], SYBASE [6], INFORMIX
[7], ORACLE [8], among others, provide an
active functionality based on triggers, but they
cannot handle composite events at all.

Triggers only supports the composite event
disjunction, and structure primitive events that
are defined over a table, moreover, in the action
part of triggers cannot be executed another tri-
gger.

On the other hand, Object Oriented DB sys-
tems (such as HiPAC [9], EXACT [2], NAOS
[10], Chimera [11], Ode [12], Samos [13]) pro-
vide more elements of active systems, like the
composite event handling. Nevertheless, because
of the different structures and classes used to de-
velop Object Oriented DB systems, there is not
a standard model to define ECA rules in these
systems.

Few researches have adopted Petri nets as
ECA rule specification language [13], [14] [17].
In [17], the authors proposed an Action Rule
Flow Petri Net (ARFPN) model, and a workflow
management system was illustrated to veri-

fy their ARFPN model. However, their model
has much redundant structure because of using
many BEGIN OFs, END OFs to describe events,
conditions and actions. SAMOS is a successful
ADB system, Petri nets is partially used for com-
posite event detection and termination analysis.
But, the framework is not Petri-net-based.

Colored Petri Nets (CPN) is a high-level Petri
nets which integrates the strength of Petri nets
with the strength of programming languages.
Petri nets provide the primitives for the descrip-
tion of the synchronization of concurrent proces-
ses, while programming languages provide the
primitives for the definition of data types and the
manipulation of their data values [18]. So it is
more suitable for active database than ordinary
Petri nets since it can manipulate data values.
By using CPN one can not only revealing the
interrelation between ECA rules but also captu-
re the operational semantics. For these reasons,
CPN is very suitable for modeling and simula-
tion of active rules. References [17] adopted
CPN as rule specification language. However,
there exists much redundant PN structure for
using ”begin of”, ”end of” events, conditions and
actions repeatedly. So, Their CPN model is very
large even for a small rule set. Therefore, the
complexity of CPN management increases. In
SAMOS a SAMOS Petri Nets (S-PN) was pro-
posed for modeling and detection of composite
events. S-PN is also CPN-like where a different
perspective for colors was taken. Colors in S-PN
are token types, and one token type is needed for
each kind of primitive event.

Conditional Colored Petri Net definitions
There are several proposals to support reactive
behaviors and mechanisms inside a DBS, which

Joselito Medina–Marín, et al.

Ciencia Universitaria ◆ número 1, enero/junio 2010
89

A simulator for active database systems

is best known as an ADBS. Nevertheless, these
proposals are designed for particular systems,
and they cannot be migrated to any other sys-
tem, moreover, there is not a formal ADBS pro-
posal.

In this paper, a general model to develop
ECA rules in an ADBS is proposed, based in
PN theory, which can be used as an independent
engine in any DBS. An ADBS must offer both
a knowledge model and an execution model.
Knowledge model specifies the elements of the
ECA rule, i.e., the event, condition, and action
part. On the other hand, execution model des-
cribes the way in that the ECA rule set will be
executed.

In knowledge model, each ECA rule element
is converted into a CCPN element. The event,
which activates the ECA rule, is converted in
a CCPN structure that is able to perform the
event detection. A Primitive event is depicted by
a CCPN place, but if the event rule is compo-
site, then the corresponding CCPN structure is
generated. Both types of events finish in a place,
which will be used as an input place for a tran-
sition.

A CCPN transition holds the next element of
an ECA rule, the conditional part. It verifies if
there are tokens in its input place and evaluates
the conditional part of the ECA rule that is hol-
ding. Unlike traditional PN transitions, CCPN
transitions have the ability to evaluate boolean
expressions.

Finally, the ECA rule element action. When
action part is executed in a DBS, it modifies the
DB state. This can be viewed as an event that
modifies the DB state. Events are represented as
CCPN places, thus action part is represented by
a place too. The difference between places for

events and places for actions is that places for
events are input places to transitions, and places
for actions are output places from transitions.

CCPN execution model is based in the tran-
sition firing rule of PN theory. It provides me-
chanisms to create tokens with information, or
color, about events that are occurring inside the
DB. New tokens are placed in the corresponding
places for those events. This is the way in that an
ECA rule set is processed and both composite
and primitive events are detected.

By using Colored Petri Nets (CPN) is possible
to depict ECA rules, but only those that have pri-
mitive events. ECA rules with composite events
cannot be represented efficiently with CPN.

Definition Conditional Colored Petri Net
(CCPN) [19] is a Petri net extension, which in-
herits attributes, and transition firing rule from
classical PN [14] [15] [16]. Furthermore, CCPN
takes concepts from the CPN, such as data type
definition, color (values) assignation to tokens,
and data type assignation to places.

In the CPN case, data type assignation is per-
formed for all the places of CPN, on the other
hand, in the CCPN case, data type assignation
for places is not general, because the CCPN han-
dles a kind of place (virtual place) with the ability
to hold different types of tokens.

In order to evaluate conditional part of ECA
rule stored inside a CCPN transition, a function
is defined to do this task. Evaluation function
analyzes the boolean expression and match it
with the DB state to determine its boolean value.

Some composite events needs to verify a time
interval, hence CCPN provides a function that
assigns time intervals to a CCPN transition,
which will be the responsible to verify if events
are occurring inside time interval defined,

Ciencia Universitaria ◆ número 1, enero/junio 2010
90

likewise the evaluation of ECA rule condition is
done. These types of transition are named com-
posite transition.

Each event occurs in a point of time, thus,
CCPN provides a functions that assigns a time
stamp to every token created. Time stamp value
is the time instant in which the event has occu-
rred. It is useful to verify if an event occurred in-
side a time interval or to detect composite events
such as sequence and simultaneous.

Finally, every time that an event occurs, a
token must be created. CCPN has a function to
initialize tokens, in other words, when an event
occurs in DB, a new token is created by CCPN
and its attributes are initialized to the correspon-
ding event values. The new token is put in the
place that represents to detected event.

CCPN is an extension of PN that uses CPN
concepts [18]. In order to save event information
in tokens and to create new tokens with data
about the action part of the ECA rule, CCPN
uses the concept of “color” taken from CPN. The
values stored in tokens are used to evaluate the
conditional part of the rule stored in the transi-
tion of CCPN. CCPN uses the multi-set concept
from CPN, because a CCPN place may have
several events at the same time. Unlike CPN,
CCPN evaluates conditions inside transitions;
meanwhile CPN evaluates conditions in its arcs.

 ECAPNSim
ECAPNSim is a graphical interface developed
as a part of this research, in order to convert au-
tomatically ECA rule sets into CCPN structures.
Furthermore, ECAPNSim can provide of active
functionality to relational databases by establis-
hing communication via ODBC-JDBC drivers.
ECAPNSim detects events in the DB, it performs

the evaluation of condition, stored in transitions,
and it executes actions inside the DB, according
to the ECA rule set represented as a CCPN.

ECAPNSim has two modalities: in the first
one, ECAPNSim works as a PN simulator, whe-
re the simulation of the ECA rule set behavior
is performed; and in the second one, ECAPN-
Sim works as the engine of an active database, in
other words, ECAPNSim is placed as an upper
layer over a DB system, ECAPNSim “listen” the
events that modify the DB state and if there is
any event that is in the CCPN as a place, then
ECAPNSim takes information about the event
and create the token about the event, after that,
ECAPNSim places the new token in its corres-
ponding place and starts the token game anima-
tion (ECA rule firing).

 Incorporation of distribution functions
ECAPNSim was enhanced with the addition of
distribution functions, which are useful to simu-
late and to analyze the event occurrence in an
active rule base.

Distribution functions which are able in
ECAPNSim are beta, binomial, Cauchy, chi
square, exponential, gamma, geometric, uni-
form, and weibull, among others. The use of this
set of functions depends on the active rule base
that will be simulated.

Each place in the CCPN has the property for
the definition of a distribution function, accor-
ding to the frequency of the event occurrence.
The values for the functions can be determined
by a statistical analysis of the data about the real
occurrences of the events that fire ECA rules.

 Conclusion
Currently there are database management sys-

Joselito Medina–Marín, et al.

Ciencia Universitaria ◆ número 1, enero/junio 2010
91

A simulator for active database systems

tems that support ECA rule definition by the
use of “triggers”, however “triggers” has several
restrictions that limits the power that an active
database must offer.

On the other side, there are research pro-
totypes that support ECA rule definition, too;
and they are more powerful because composite
events such as conjunction, disjunction, etc., can
de defined. Nevertheless, like database manage-
ment systems, ECA rule definition is performed
in the syntax of every active database.

[1] A. Silberschatz, H. F. Korth, S. Sudarshan, Database Sys-
tem Concepts, Third Edition, McGraw-Hill, 1999.
[2] N. W. Paton, O. Diaz, Active Database Systems, ACM
Computing Surveys, Vol. 31, No. 1, pp. 64-103, 1999.
[3] J. Widom, The Starburst Active Database Rule System,
IEEE Transactions on Knowledge and Data Engineering, Vol.
8, No. 4, August 1996.
[4] M. Stonebraker, G. Kemmintz, The POSTGRES Next-
Generation Database Management System, Communications
of the ACM, Vol. 34, No. 10, October 1991.
[5] E.N. Hanson, The Design and Implementación of the Ariel
Active Database Rule System, IEEE Transactions on Knowled-
ge and Data Engineering, Vol. 8, No. 1, 1996.
[6] D. McGoveran, C.J. Date, A guide to SYBASE and SQL
Server : a user’s guide to the SYBASE product, Sybase, Inc,
1992.
[7] T. Lacy-Thompson, INFORMIX-SQL, A tutorial and
reference, ISBN-0-13-465121-9, Ed. Prentice Hall, 1990.
[8] C.J. Hursh, J.L. Hursch, Oracle SQL Developer’s Guide,
ISBN-0-8306-2529-1, Ed. McGraw-Hill, 1991.
[9] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy,
M. Hsu, R. Ledin, D. Mc-Carthy, A. Rosenthal, S. Sarin, M.J.
Cary, M. Livny and R. Jauhari, The HiPAC Project: combi-
ning active database and timing constraints, SIGMOD
[10] C. Collet, T. Coupaye, Composite Events in NAOS. In
7th International Conference and Workshop on Database and
Expert Systems Applications. (DEXA’96). LNCS 1134, pages
244—253, Zurich, Switzerland. 1996.
[11] S. Ceri, P. Fraternali, S. Paraboschi, L. Tanca, Active
Rule MAnagement in Chimera, Active Database Systems:
Triggers and Rules for Advanced Database Processing, Ed.
Jennifer Widom and Stefano Ceri, pages 151-176. 1996.
[12] N. Gehani, H.V. Jagadish, Active Database Facilities in
Ode, Active Database Systems: Triggers and Rules for Advan-
ced Database Processing, Ed. Jennifer Widom and Stefano
Ceri. 1996, pages 207-232.
[13] E. Gatziu, K.R. Ditrich, SAMOS, Active Rules in Data-
base Systems, Norman W. Paton, Editor. 1999, pp. 233-248.
[14] X. Li, J. Medina-Marín, and S.V. Chapa, A Structural
Model of ECA Rules in Active Database, Mexican Internatio-

Referencias

nal Conference on Artificial Intelligence (MICAI’02), Mérida,
Yucatan, México, April 22-26, 2002
[15] X. Li, J. Medina Marín, Composite Event Specification
in Active Database Systems: A Petri Net Approach, IEEE
International Conference on System, Man, and Cybernetics,
The Hague, The Netherlands, Oct, 2004.
[16] J. Medina Marín, X. Li, An Active rule base Simulator
based on Petri Nets, The Third International Workshop on
Modelling, Simulation,Verification and Validation of Enterpri-
se Information Systems MSVVEIS-2005, Miami, USA., May
24, 2005.
[17] M. Schlesinger, G. Lörincze, Rule modeling and simula-
tion in ALFRED, the 3rd..International workshop on Rules in
Database (RIDS’97) (or LNCS 1312), Skövde, Sweden, June,
pp. 83-99, 1997
[18] K. Jensen, An Introduction to the Theoretical Aspects
of Colored Petri Nets. Lecture Notes in Computer Science: A
Decade of Concurrency, vol. 803, edited by J. W. de Bakker,
W.-P. de Roever, G. Rozenberg , Springer-Verlag, pp. 230-
272. 1994.
[19] J. Medina Marín, Desarrollo de reglas ECA, un enfoque
de red de Petri, Ph. D. Dissertation, CINVESTAV-IPN,
México, 2005.

ECAPNSim is an interface that generates a
CCPN from an ECA rule de- finition typed in
the on-if-then form. It carries out the simulation
of the CCPN behavior according to the event
occurrence in a random way, which depends on
the distribution function assigned.

ECAPNSim has been improved with the
addition of distribution functions in each place
that denote an event occurrence.

