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Abstract 
The replacement problem can be modeled as a finite, irreducible, homogeneous Markov Chain. 
In our proposal we modeled the problem using a Markov decision process and then, the instance 
is optimized using linear programming. 
Our goal is to analyze the sensitivity and robustness of the optimal solution across the 
perturbation of the optimal basis ( *B ) which is obtained from the simplex algorithm in order to 
comprehend  how  the optimal solution changes with a slight change in the transition 
probabilities matrix . The perturbation ( B~ ) can be approximated by a given matrix H  such 
that HkBB +=~ . Some algebraic relations between the optimal solution ( *B )  and the solution 
of the perturbed instance ( *B ) are obtained, this is our approach, to establish some perturbation 
bounds through theorems and propositions. 
Keywords: 
Markov chains; linear programming; replacement problem. 
1. Introduction 
Machine replacement problem has been studied by a lot of researchers and is also an important 
topic in operations research, industrial engineering and management science.  Items which are 
under constant usage, need replacement at an appropriate time as the efficiency of the operating 
system using such items suffer a lot. 

In the real-world the equipment replacement problem involves the selection of two or more 
machines of one or more types from a set of several possible alternative machines with different 
capacities and cost of purchase and operation. When the problem involves a single machine, it is 
common to find two well-defined forms of this; the quantity-based replacement, and the time-
based replacement. In the quantity-based replacement model, a machine is replaced when an 
accumulated product of size q is produced. In this model, one has to determine the optimal 
production size q . While in a time-based replacement model, a machine is replaced in every 
period of T with a profit maximizing. 

When the problem involves two or more machines this problem is named the parallel machine 
replacement problem, and the time-based replacement model consists of finding a minimum cost 
replacement policy for a finite population of economically interdependent machines. 
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 A replacement policy is a specification of “keep” or “replace” actions, one for each period. Two 
simple examples are the policy of replacing the equipment every time period and the policy of 
keeping the first machine until the end of a period N . An optimal policy is a policy that achieves 
the smallest total net cost of ownership over the entire planning horizon and it has the property 
that whatever   the initial state and initial decision are, the remaining decisions must constitute an 
optimal policy with regard the state resulting from the first decision. In practice, the replacement 
problem can be easily addressed using dynamic programming and Markov decision processes. 

The dynamic programming uses the following idea: The system is observed over a finite or 
infinite horizon split up into periods or stages. At each stage the system is observed and a 
decision or action concerning the system has to be made. The decision influences 
(deterministically or o stochastically) the state to be observed at the next stage, and depending on 
the state and the decision made, an immediate reward is gained. The expected total rewards from 
the present stage and the one of the following state is expressed by the functional equation. 
Optimal decisions depending on stage and state are determined backwards step by step as those 
maximizing the right hand side of the functional equation. 

Howard (1960 combines the dynamic programming technique with the mathematically well 
established notion of a Markov chain, creating the new concept called the Markov Decision 
processes and developing the solution of infinite stage problems. The policy iteration method was 
created as an alternative to the stepwise backward contraction methods. The policy iteration was 
a result of the application of the Markov chain environment and it was an important contribution 
to the development of optimization techniques (Kristensen 1996). 

In this document, we consider a stochastic machine replacement model. The system consists of a 
single machine and this is assumed to operate continuously and efficiently over N periods. In 
each period, the quality of the machine deteriorates due to its use, and therefore, it can be in any 
of the N states, denoted 1, 2, …, N . In our proposal we modeled the problem using a Markov 
decision process and then, the instance is optimized using linear programming. Our goal is to 
analyze the sensitivity and robustness of the optimal solution across the perturbation of the 
optimal basis from the simplex algorithm. 

Specifically the methodology used in this work is to model the replacement problem through a 
Markov decision process, optimize the instance obtained using linear programming, and finally, 
analyzing the sensitivity and robustness of the solution obtained by the perturbation of the 
optimal basis from the simplex algorithm and obtain algebraic relations between the initial 
optimal solution and the solution of the perturbed instance.    In a real problem this will help to 
know if there is any change in the optimal solution when there are changes in the transition 
probabilities matrix. This transition probabilities matrix is not known with certainty,  knowing 
exactly how much can be altered without affecting the optimal solution could lead to making 
better decisions regarding the replacement problem. 

In our proposal we assume that for each new machine it state can become worse or may stay 
unchanged, and that the transition probabilities ijp  are known, where 

ijp =P {next state will be j    current state is i  } =0, if ij <  
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ijp is the probability of passing on her next stage to state j  given that the current was in the state 
i.  Also be assumed that the state of the machine is known at the start of each period, and we must 
choose one of the following two options: a) Let the machine operate one more period in the state 
it currently is, b) Replace the machine by a new one, where every new machines for replacement 
are assumed to be identical. 

2. Literature Review 
There are several theoretical models for determining the optimal replacement policy. 
The basic model considers maintenance cost and resale value, which have their standard behavior 
as per the same cost during earlier period and also partly having an exponential grown pattern as 
per passage of time. Similarly the scrap value for the item under usage can be considered to have 
a similar type of recurrent behavior. 

In relation to stochastic models the available literature on discrete time maintenance models 
predominantly treats an equipment deterioration process as a Markov chain.  

Sernik and Marcus (1991) obtained the optimal policy and its associated cost for the two-
dimensional Markov replacement problem with partial observations. They demonstrated that in 
the infinite horizon, the optimal discounted cost function is piecewise linear, and also provide 
formulas for computing the cost and the policy. In (Sethi et al. 2000), the authors assume that the 
deterioration of the machine is not a discrete process but it can be modeled as a continuous time 
Markov process, therefore, the only way to improve the quality is by replacing the machine by 
one new. They derive some stability conditions of the system under a simple class of real-time 
scheduling/replacement policy. 

Some models are approached to evaluate the inspection intervals for a phased deterioration 
monitored complex components in a system with severe down time costs using a Markov model 
(see Sherwin and Al-Najjar 1999, for example). 

In (Lewis 1987) the problem is approached from the perspective of the reliability engineering 
developing replacement strategies based on predictive maintenance. Moreover in (Childress and 
Durango-Cohen 1999) the authors formulated a stochastic version of the parallel machine 
replacement problem. They analyzed the structure of optimal policies under general classes of 
replacement cost functions. 

Another important approach that has received the problem is the geometric programming (Cheng 
1999). In its proposal, the author discusses the application of this technique to solving 
replacement problem with an infinite horizon and under certain circumstances he obtains a 
closed-form solution to the optimization problem. 

A treatment to the problem when there are budget constraints can be found in (Karabakal et al., 
2000). In their work, the authors propose a dual heuristic for dealing with large, realistically sized 
problems through the initial relaxation of budget constraints. 

Compared with simulation techniques, Dohi et al. (2004), propose a technique based on obtaining 
the first two moments of the discounted cost distribution, and then, they approximate the 
underlying distribution function by three theoretical distributions using Monte Carlo simulation 
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The most important pioneers in applying dynamic programming models in replacement problems 
are: Bellman (1955), White (1969), Davidson (1970), Walker (1992) and Bertsekas (2000). 
Recently the Markov decision process has been applied successfully to the animal replacement 
problem as a productive unit (see Plà et al. 2004, Nielsen and Kristensen 2006, Nielsen et al. 
2009, for example). 

Although the modeling and optimization of the replacement problem using Markov decision 
processes is a topic widely known (Hillier and Lieberman 2002). However, there is a significant 
amount about the theory of stochastic perturbation matrices (see Schrijner and Doorn 2009, 
Meyer 1994, Abbad et al. 1990, Feinberg 2000, and references therein). 

In literature there are hardly any results concerning the perturbation and robustness of the optimal 
solution of a replacement problem modeled via a Markov decision process and optimized using 
linear programming. In this paper we are interested in addressing this issue with a stochastic 
perspective. 

3. Problem formulation 
We start by defining a discrete-time Markov decision process with a finite state space Z  states 

Zzzz ,...,, 21 where, in each stage ,...2,1=s  the analyst should made a decision d between ξ  
possible. Denote by znz =)( and idnd =)(  the state and the decision made in stage  

n respectively, then, the system moves at the next stage 1+n in to the next state j with a know 
probability given by 

=k
zjp P [ ]kn ddznzjnz ===+ ,)()1(  
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is maximum. In this system, the time interval between two transitions is called a stage.  

 An optimal policy is defined as a policy that maximizes (or minimizes) some predefined 
objective function. The optimization technique (i.e. the method to obtain an optimal policy) 
depends on the form of the objective function and it can result in different alternative objective 
function. The choice of criterion depends on whether the planning horizon is finite or infinite 
(Kristensen 1996). 
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In our proposal we consider a single machine and regular times intervals whether it should be 
kept for an additional period or it should be replaced by a new. By the above, the state space is 
defined by Z  = {Keep ( 1z ), Replace ( 2z )}, and having observed the state, action should be 
taken concerning the machine about to keep it for at least an additional stage or to replace it at the 
end of the stage. 

The economic returns from the system will depend on its evolution and whether the machine is 
kept or replaced, in this proposal this is represented by a reward depending on state and action 
specified in advance.  If  the action replace is taken, we assume that the replacement takes place 
at the end of the stage at a known cost, the planning horizon is unknown and it is regarded 
infinite, also, all the stages are of equal length. 

The optimal criterion used in this document is the maximization of the expected average reward 
per unit of time given by 

,)(
1

ϑϑπϑ i

Z

z
i rh ∑

=

=
                                                    (2)

 

 

where ϑπ i  is the limiting state probability under the policy ϑ , and the optimization technique 
used is the linear programming (LP). Thus, we may maximize the problem (1) using the 
equivalent linear programming (Ross 1992) given by 

 

where k
zx  is the steady-state  unconditional probability that the system is in state z  and the 

decision k is made; similarly k
zr  is the reward obtained when the system is in state state z  and 

the decision k is made.  In this sense, k is optimal in state z  if and only if, the optimal solution 
of (2) satisfy the unconditional probabilities k

zx  that the system visit the state Z , when making 
the decision k are strictly  positive.  Note that, the optimal value of the objective function is equal 

to the average rewards per stage under an optimal policy.  The optimal value of  k
z

k
x∑

=

ξ

1
 is equal 

to the limiting state probability zπ under an optimal policy.  Model (3) contains ( 2+ξ  ) 
functional contraints and )1( +ξk  decision variables.  In (Pérez et al. 2006) it was showed that 
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problem (3) has a degenerate basic feasible solution.  In the remainder of this document, we are 
interested in the optimal basis associated with the solution of the problem (3) when it is solved 
via the simplex method. 

4. Properties of the perturbed optimal basis associated with the replacement problem. 
Without generality, a LP model (3) that optimizes a Markov chain can be defined as: 

 

In the LP model (4), the number of basic solutions ρ is less than or equal to the number of 
combinations ),( mnC   and mxmB  (submatrix of A ) is a feasible basis of the LP model  SB∈ that 
satisfies { }.0: 1. ≥∈= − bBABS i  
Let SB ∈* the optimal basis associated to the problem (4), and *~B  the perturbed matrix of *B , 
defined by HkBB += **~  where 1=k  and H  is a matrix with the same order  than  *B .   The 
optimal solution is bBx 1*)(* −=  and any feasible solution is bBx 1*)~(~ −= . From these assumptions 
we state and prove the next propositions and theorems. 

Proposition 4.1:  Let ),~*( xxdx −=−  

 

Proof:By the definition of HkBB += **~  

 

so 

 

 

Similarly 
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Proposition 4.2:The matrix  H is defined by 

 

where ijh  are the entries of H  that could be perturbed. 

The columns of the optimal basis *B and the perturbed basis *~B  must sum 1. 

 

Proof:The proof is trivial.  The optimal basis is composed by the transitions probabilities matrix 

of P, considering the properties of the Markov chain we have 

 

where 
n
zjnj p∞→= limπ , the equation (10) is defined by  ππ =tP , then for  is fulfilled that.  This 

property is valid also for *~B  

Theorem 4.3:The Euclidean norm is used to establish perturbation bounds between the optimal 

basis *B  and the perturbed basis *~B , such that 

 

 

Proof:   
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Proposition 4.4:   

 

 

Proof:  From the LP model (4) 

 

premultiplying the equation (14) times *B  , 

 

similarly, premultiplying the equation (15) times *~B , 

 

equalizing (16) and (17), 

 

isolating *B results the equation (13)                                                                       

 

Theorem 4.5:A feasible solution satisfies that niDi ,...,2,1,01 =≥   where .)*( 1−+= HBD  
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Proof:   Let HkBB += **~ and 0*)~(~ 1 ≥= − bBx , then for 1=k  

 

 

 

 

 

 

 

5. Numerical example. 
Consider the following transition probabilities reported in (Kristensen 1996), which represented a 
Markovian decision process with { }RKd ,=  

 

Therefore the transition probabilities matrices are: 
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In order to maximize the objective function the cost coefficients are 

 

The corresponding LP problem is: 

 

 

The optimal inverse basis 1*)( −B  of the LP problem associated to this solution is: 
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The optimal solution and the basic variables of the inverse basis (are presented in order): 

)375.0,4375.0,0,1875.0(),,,( 3121212 == xxaxX B . The optimal value of the objective function is 

50.187,12 .  The basis *B  that will be perturbed is formed by the columns ),,,( 3121212 xxax  

 

Note that *B  satisfies the Proposition 4.2 that corresponds with the equation (9), this property 
must be conserved for *~B . 

Suppose that we are interested to perturb 12x .  This decision variable has associated the transition 
probability 3/1)2(11 =p .  Simplifying the restriction of the state 1 in the LP model (21), the value 

for this variable is 121212 3
2

3
1 xxx =− . 

Continuing with the process, the restrictions of the states 2 and 3 are respectively: 

 

Because the restrictions of the LP model (3) the probability is affected by a minus sign.  In *~B , 
the variable  12x is associated with the vector t)3/1,3/1,3/2,1( −− , and the  positions that could be 
perturbed 3/1,3/1,3/2 −− considering the equation (9).  Note that the first element of the vector 
does not have any perturbation, because it corresponds to the first restriction of the LP model (3). 

Suppose also, that the column vector t)3/1,3/1,3/2,1( −− of the matrix *~B  that corresponds to 

the variable 12x  will be perturbed in the second position, from 
3
2 to )

3
2( ∈+ , 0∈≠ .  The 

perturbed vector is  

 

So the H  matrix is: 
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therefore the perturbed matrix is 

 

Every value of tthhhhH )
2

,
2

,,0(),,,( 413121111
∈

−
∈

−∈== is associated with the decision 

2=k (replace) and the state 1=z  (the variable associated with this column vector is 12xxzk = ), 
because of this, any perturbation in 1H  will affect the R  matrix in the first column 

The R  matrix is now 

 

The K  matrix has not changes 

Considering the equation (19) of the Theorem 4.5, x~ is obtained, 
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Solving the inequality associated with the first element 0
)20/1315/8(10

1
≥

∈+ ,
 an 

interval ),39/32( ∞− is obtained.  The second element fulfills with the equality.  The third element 

have an inequality 0
20/1315/8
20/730/7

≥
∈+
∈+ , the solution is [ )∞−∪−−∞ ,3/2)39/32,( .  In the 

inequality 0
20/1315/8

10/35/1
≥

∈+
∈+ , the solution interval is ),3/2( ∞− . The intersection of the 

intervals is ),3/2( ∞− , considering  that the probabilities  are between 0 and 1, the extent to 
perturb ∈  in this particular case is ]1,3/2(−  to conserve the feasibility of the perturbed 
solution x~ .  Considering this perturbation interval we have that 

1. Numerical comparative of equation (6), Proposition 4.1 (1).  The second column of the 
Tables 3 and 4 of the Appends is obtained directly from de LP model doing the 
perturbation of epsilon presented in the first column.  The third column is found by 
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subtracting the optimal solution of the perturbed solution.  The fourth column is obtained 
doing the matrix operations to demonstrate that the third and fourth columns are equal. 

2. Also the numerical comparative of equation (6), Proposition 4.1 (2) is presented in the 
Tables 5 and 6 of the Appends.  The second and third columns of the tables are obtained 
directly from de LP model doing the perturbation of epsilon of the first column.  The 
fourth column is obtained doing the matrix operations to demonstrate that the third and 
fourth columns are equal.   

3. Note in Tables 7 and 8 that the second column is obtained with the LP model doing the 
perturbation showed in the first column.  The third column is obtained doing the matrix 
operations to demonstrate that the second and third columns are equal.  This results 
corresponds to equation (13), Proposition 4.1  

4. Finally the numerical comparative of equation (11), Theorem 4.3  is presented in Tables 
9 and 10 of the Appends.  Again the first column presents the value of the perturbation, 
the second one shows  the euclidean norm  of the difference between optimal and 
perturbed solutions, and the third column presents the  euclidean norm between the 
optimal and the perturbed basis.  Note that the second column is always less than the third 
one.   Figure 11 also shows this. 

6. Conclusions and future work 
In this document we considered a stochastic machine replacement problem with a single machine 
that operates continuously and efficiently over N   periods, we were interested in the matrix 
perturbation procedure from a probabilistic point of view, because there is no assurance that the 
probabilities of transition matrices from one state to another could change and with this, make the 
solution and the decision problem associated with the replacement problem could change also. 
Additionally, a perturbation could cause structural changes in the probability transitions matrices, 
causing that two states that were originally communicated, now do not, and thus also affect the 
decision. 

The replacement problem was solved for different authors using dynamic and linear 
programming.  However, the perturbation associated with the transition probability matrices is a 
recent topic (Pérez, 2006), with a lot to explore.  The original contribution in this work is 
perturbed the optimal basis *B , demonstrated that the perturbation in this optimal basis affected 
the transition probability matrices (K, M),    found that a feasibility region of perturbation exist, 
finally, that the optimal basis *B , the perturbed basis *~B , the optimal solution *x  and the 
perturbed solutions x~  are related.   These results are obtained observed by experimentations and 
then demonstrate them mathematically.  

The algebraic relations obtained, is proved in a numerical example of the literature, also are 
proved when the perturbation of the optimal basis is done is several elements of the matrix at 
once.  We conclude that is possible to establish perturbation bounds between the optimal solution 

*x  and the perturbed solution x~ across the perturbation of the optimal basis *B . 

Future work could be consider other perturbations over the optimal basis *B  (in this document 
the perturbation used is HkBB += **~ ) and perturb the entries of the matrix as random variables, 
because because it would be interesting to evaluate how the optimal solution and the decision 
change with other types of perturbations. 
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