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We study dynamics of two bistable Hénon maps coupled in a master-slave configuration. In the case of
coexistence of two periodic orbits, the slave map evolves into the master map state after transients, which
duration determines synchronization time and obeys a −1/2 power law with respect to the coupling
strength. This scaling law is almost independent of the map parameter. In the case of coexistence of
chaotic and periodic attractors, very complex dynamics is observed, including the emergence of new
attractors as the coupling strength is increased. The attractor of the master map always exists in the slave
map independently of the coupling strength. For a high coupling strength, complete synchronization can
be achieved only for the attractor similar to that of the master map.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Multistability is a phenomenon in a dissipative system when
several stable states coexist for a given set of system parame-
ters. This phenomenon was observed in many fields of science,
including electronics [1], optics [2], mechanics [3], and biology [4].
Among many mechanisms responsible for the emergence of multi-
stability, we find homoclinic tangencies in weakly dissipative sys-
tems, increasing complexity in coupled nonlinear systems, delayed
feedback, and uncertain destination dynamics. In spite of different
origin of multistability, the overall behavior of multistable systems
is rather similar. All they are characterized by extremely high sen-
sitivity to initial conditions; very small perturbations may already
cause a change in the final state. Furthermore, the qualitative be-
havior of the system changes often drastically under a very small
variation of a system parameter; the intervals of the coexistence
of attractors can be rather small so that a slight perturbation in
a control parameter may cause a rapid change in the number of
coexisting attractors giving rise to a very complex dynamics.

One of the simplest ways to construct a multistable system is to
take a conservative system and add a small amount of dissipation.
This way the island of a marginal stable motion in the conservative
system turns into attractors. For a sufficiently small dissipation,
many coexisting attractors emerge, they are mainly low-periodic
orbits as it has been shown for the single and double rotor, the
Hénon map, and the optical cavity map [5–7]. Multistability can
appear in coupled systems due to increasing complexity [8,9]. Most
studies performed so far had dealt with dynamical systems which
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being uncoupled were monostable, with some notable exceptions
[10–13]. For example, Yanchuk and Kapitaniak [9] considered two
identical Rössler systems and observed coexistence of chaotic at-
tractors induced by weak mutual coupling. Multistability in mu-
tually coupled Hénon maps and neuron maps has been studied
by Astakhov et al. [14,15]. Synchronization of two mutually cou-
pled bistable chaotic Lorenz systems with negative feedback has
been studied by Kapitaniak [16]. He found that the final attractor
of the synchronized state strongly depends on the actual position
of trajectories on their attractors in the moment when coupling
is introduced. Synchronization of bistable systems coupled in a
master–slave configuration has been studied using chaotic Rössler
oscillators [10–12]. This coupled system displays a very rich dy-
namics including different types of synchronization, intermittency,
shift of natural oscillator frequencies, frequency locking, etc. Simi-
lar problem has been considered in a bistable semiconductor laser
subject to the injection of the radiation from another identical
laser [13]. In continuous time systems, one deals with differen-
tial equations, where for a very strong coupling the master sys-
tem becomes monostable and complete synchronization is always
achieved.

In this work we study complex dynamics of two bistable dis-
crete systems coupled in a master–slave configuration, namely, we
choose the Hénon map as a paradigm system which exhibits the
coexistence of attractors. Therefore, the results obtained with the
Hénon map may be generalized to a wide class of multistable
systems, taking into account that an iterative map can be inter-
preted as a Poincare section of a continuous system. The principal
difference in synchronization of continuous and discrete systems
occurs for a very strong coupling, when the contribution of the
coupling variable of the master system dominates over the corre-
sponding variable of the slave system. We will show that even for a
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Fig. 1. State diagram of the Hénon map Eq. (1) in the ( J ,μ)-parameter space. 10,
20, 40, C0 and 31, 61, C1 indicate, respectively, period 1, 2, 4, and chaos and period
3, 6, and another chaotic state. The bistability region exists for 1.1 � μ � 1.6.

very strong coupling, while the similar attractor exists in the slave
map as in the master map, another attractor also presents, i.e. the
slave subsystem remains bistable. Complete synchronization can be
achieved only when the master and the slave maps stay in similar
attractors.

The rest of the Letter is organized as follows. In Section 2 we
show how multistability emerges in the Hénon map and present
the fixed points analysis of the system of two unidirectionally cou-
pled identical Hénon maps. Sections 3 and 4 are devoted to a study
of synchronization of the Hénon maps with two coexisting periodic
orbits and with coexistence of a limit cycle and chaos. Finally, the
main conclusions are given in Section 4.

2. Multistable Hénon map

The Hénon map [17] is a classical example of a two-dimensional
multistable system:

xn+1 = 1 − μx2
n + yn,

yn+1 = − J xn. (1)

By varying the parameters μ and J it is possible to find regions
where different attractors coexist, as shown in Fig. 1. Two in-
tersected cascades of period-doubling bifurcations terminated in
chaos are presented in the figure; one cascade starts from the pe-
riod 1 (denoted by super-index 0) and another cascade starts from
the period 3 (denoted by super-index 1). The period-doubling bi-
furcation lines separate different periodic regimes. The coexistence
of two different attractors can be found within the intervals of
μ ∈ [1.1,1.6] for J > 0.12.

For definiteness, in this work we fix the parameter J = 0.166
and vary the parameter μ to explore the coexistence of the pe-
riod 20 with the period 31 and the period 20 with chaos C1. The
bifurcation diagram of the variable x with μ as a control parame-
ter is shown in Fig. 2.

2.1. Two unidirectionally coupled Hénon maps

Using the difference coupling via variable y, the slave map dy-
namics is described as follows

un+1 = 1 − μu2 + νn + ε(yn − νn),

νn+1 = − J un, (2)

where u and v are the state variables of the slave map and ε ∈
[0,1] is the coupling strength. Note, that the master map dynamics
is guided by Eq. (1).

Fig. 3 shows the state diagram of the coupled system in the
(ε,μ)-parameter space. The coupling strength gives rise in new
Fig. 2. Bifurcation diagram of the Hénon map Eq. (1) with μ as a control parameter
for J = 0.166. The period-20 limit cycle coexists with the period-31 branch.

Fig. 3. State diagram of the slave system in the (ε,μ)-parameter space for J =
0.166. 21, 41, 81, and C1 are the period-2, -4, -8 periodic and chaotic regimes which
coexist with the period-20 regime of the master system.

periodic and chaotic regimes which coexist with the period 20 of
the master system.

The bifurcation diagram of the slave map variable u with μ as
a control parameter for ε = 1 is shown in Fig. 4 (red dots). In the
same figure for reference we plot the bifurcation diagram of the
master map variable x (blue dots). One can see that even for the
total 100% coupling (at ε = 1 the variable v is substituted by the
variable y), the slave map is still multistable. The attractor similar
to that of the master map also exists; the maps are completely
synchronized only if the slave map stays in the similar attractor.

2.2. Fixed points analysis

To find the difference in steady-state solutions of the solitary
and the two coupled Hénon maps, we make the fixed point anal-
ysis. The characteristic equation for the master map Eq. (1) is
μx2 + ( J + 1)x − 1 = 0 and therefore it has two fixed points:

x∗
1,2 = −( J + 1) ± √

( J + 1)2 + 4μ

2μ
,

y∗
1,2 = − J x∗

1,2. (3)

For two coupled maps, using Eqs. (1) and (2) we get the char-
acteristic equation μu2 + ( J + 1 + ε J )u − (1 + εy∗

1,2) = 0 which
yields four fixed points:
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Fig. 4. Bifurcation diagram of the slave map (red dots) for ε = 1 and J = 0.166 with
μ as a control parameter. Blue dots show the master map state which coexists in
the slave map. The slave map is completely synchronized with the master map only
if it stays in the similar attractor. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this Letter.)

u∗
k =

−( J + 1 − ε J ) ±
√

( J + 1 − ε J )2 + 4μ(1 − ε J x∗
1,2)

2μ
,

ν∗
k = − J u∗

k , (4)

where k = 1,2,3,4 is the fixed point number.
When the maps is completely coupled, i.e. ε = 1, the fixed

points of the slave map are

uk =
−1 ±

√
1 + 4μ(1 − J x∗

1,2)

2μ
,

yk = − J uk. (5)

By comparing Eqs. (3) and (5), one can see that the fixed points
of the solitary and coupled maps are different even for 100% cou-
pling, i.e. when one of the variables of the slave map is substituted
by the variable of the master map in Eq. (2). This is the important
difference from continuous time systems [10–13].

3. Coexistence of two different periodic orbits

In this section, we study synchronization of two identical
Hénon maps in the range of the coexistence of two different peri-
odic orbits, in particular, when the uncoupled maps (ε = 0) exhibit
the coexistence of the period-2 and the period-3 orbits. This case
occurs for the parameters μ = 1.4 and J = 0.166 (see Fig. 2). Two
different situations are possible: (i) the master map stays in the
period 2 and (ii) the master maps stays in the period 3. In the fol-
lowing, we will analyze the bifurcation diagrams with respect to
the coupling strength ε and measure the synchronization time as
a function of ε.

3.1. Master in period 2, slave in period 3

First, we consider the situation when the master map stays in
the period 2 and the slave map initially (ε = 0) stays in the pe-
riod 3. Fig. 5(a) shows the bifurcation diagram of the slave map
variable u with ε as a control parameter. One can see that the ini-
tial period-3 orbit exists in the slave system only for a very weak
coupling strengths (ε < 0.05), and for a larger coupling this at-
tractor disappears. Meanwhile two other attractors coexist, these
are the period-2 orbit which coincides with the period-2 attrac-
tor of the master system (u ≡ x) and does not change with ε, and
another different period-2 attractor which with increasing ε un-
dergoes a cascade of period-doubling bifurcations leading to chaos.
Fig. 5. Bifurcation diagram of slave map variable u with respect to coupling strength
ε when (a) master map stays in period 2 and slave map initially stays in period 3
and (b) master map stays in period 3 and slave map initially stays in period 2.
μ = 1.4 and J = 0.166.

3.2. Master in period 3, slave in period 2

Another situation occurs when the master map is in the pe-
riod 3 and the slave map initially stays in the period 2. The cor-
responding bifurcation diagram is shown in Fig. 5(b). As in the
previous case, the initial attractor (period 2) exists only for a very
low coupling strength (ε < 0.01), and the period-3 attractor of the
master map always exists and does not change with ε. Meanwhile,
a new period-6 attractor appears and changes when ε is increased.
Moreover, another different period 6 arises in the saddle-node bi-
furcation at ε ≈ 0.27 and undergoes a cascade of period-doubling
bifurcations leading to chaos. Thus, for ε > 0.27 the slave map ex-
hibits the coexistence of as many as three attractors.

The analysis of the bifurcation diagrams calculated for differ-
ent parameters μ and J in the range of coexistence of different
periodic regimes allows us to reveal the following main properties.

• The initial attractor of the slave map exists only for a very low
coupling strength and disappears when the coupling strength
is increased.

• The attractor of the master map always exists in the slave map
independently of the coupling strength.

• The increasing coupling strength gives rise to new periodic
orbits in the slave map which undergo period-doubling bifur-
cations leading to chaos.

3.3. Synchronization time

As was already mentioned above, the initial attractor of the
slave system loses its stability at a certain critical coupling
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Fig. 6. (a) Critical coupling strength ε0 at which the initial attractor of the slave map losses its stability, versus parameter μ. (b) Synchronization time (in number of
iterations N) as a function of coupling strength in the log–log scale for μ = 1.4 and J = 0.166. The master map is in the period 2, while the slave map initially stays in the
period 3.
strength ε0. We find that this value increases linearly as μ is in-
creased, as shown in Fig. 6(a).

For ε > ε0, the initial periodic orbit is observed only in tran-
sients after which the trajectory is attracted to the periodic orbit
similar to that of the master map. In other words, the transient
time is a time needed to synchronize the slave and the mas-
ter maps towards the same periodic orbit. Fig. 6(b) shows how
this synchronization time depends on the coupling strength. For
small ε, we find that this dependence obeys a −0.50 ± 0.08 power
law. It seams that this value is universal, because it is almost inde-
pendent of μ and of the periodicity of master map attractor.

4. Coexistence of periodic and chaotic orbits

In this section, we will consider the coupled maps in the pa-
rameter region where the period 2 coexists with chaos, i.e. we
explore the parameters μ = 1.45 and J = 0.166 (see Fig. 2). Here,
also two situations are possible: (i) the master map stays in the
period 2 and (ii) the master map stays in chaos. In the following
we will analyze both situations.

4.1. Master in period 2, slave in chaos

Fig. 7(a) shows the bifurcation diagram of the slave variable u
with ε as a control parameter when the master map is in the pe-
riod 2 and the slave map initially stays in chaos.

We see again that the master map attractor (period 2) always
exists in the slave map and it does not change with ε, whereas
the initial chaotic attractor undergoes inverse period-doubling bi-
furcations and disappears in crisis. Meanwhile, even a very small
coupling gives rise to a different period-2 attractor which under-
goes a cascade of period-doubling bifurcations terminated in chaos,
as the coupling strength is increased.

4.2. Master in chaos, slave in period 2

The most complex dynamics is observed when the master map
is in chaos, while the slave map initially stays in the period 2.
The bifurcation diagram for this case is shown in Fig. 7(b). The
slave map is always chaotic, including the coexistence of different
chaotic attractors. It is remarkable, that for ε > 0.6 there are no
empty spaces and periodic windows within a certain range of the
variable, that makes this regime very prominent for chaotic cryp-
tography [18].

5. Conclusions

We have studied complex dynamics of two identical unidirec-
tionally coupled Hénon maps with coexisting attractors. In par-
ticular, we explored the parameter ranges where the uncoupled
Fig. 7. Bifurcation diagram of slave map variable u with respect to coupling strength
ε when (a) master map is in the period 2, while slave map initially stays in chaos
and (b) master map is in chaos, while slave map initially stays in period 2. μ = 1.45
and J = 0.166.

maps exhibit the coexistence of different periodic attractors, and
one periodic and one chaotic attractor. In the former case, the syn-
chronization time obeys a −1/2 power law with respect to the
coupling strength and is almost independent of the map parame-
ters and of the periodicity of the periodic orbit. In the latter case,
an increase in the coupling strength gives rise to new attractors
resulting in multistability, including the coexistence of different
chaotic attractors. For a high coupling strength, the slave map re-
mains bistable and complete synchronization can be achieved only
when the slave map stays in the similar attractor as the master
map.

Given the importance, the Hénon map has held as the canonical
models for simple systems that exhibit multistability, we believe
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that the results of this work will have wider-reaching implications
for investigation of more complex dynamical systems with coexist-
ing attractors.
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