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This paper investigates collisions of gliders generated by one-dimensional Rule 110 cel-
lular automaton. A specific value associated with each glider and an algebraic equation
that describes the collision between two gliders were found. Because the products of the
collision between two gliders may result in no gliders or one, two or more gliders, this
equation states that the total sum of the associated values corresponding to colliding
gliders equals the sum of the values of the gliders which are products of the collision.
Moreover, an analogy is proposed between the glider collisions and the collisions of phys-
ical particles with the equation corresponding to colliding gliders being similar to the
equation of energy conservation in physics. In this scheme, even without carrying out
the temporal evolution for a collision, it can be determined if a possible combination of
resulting gliders accomplishes the equation corresponding to that collision.
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1. Introduction

In recent years, cellular automata (CA) have gained attention by proving their ca-

pacity for analyzing complex systems, generating new concepts and even their ap-

plication to physical systems. Hence the characterization of these types of systems

is very important, with specific examples of CA applications being1: the character-

ization of complex dynamic systems based on statistical properties, proving crite-

ria for self-organization using statistical complexity in models of excitable media

and the behavior of physical systems without taking into account small-scale de-

tails.2,3 Also, there have been reports of particle-like objects that propagate in sev-

eral spatially-extended dynamic systems and interact among them.4 In particular,
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the one-dimensional Rule 110 Cellular Automatona has been widely studied in the

last decade because of its capacity to produce universal complex behaviors; however

a cell takes into account the actual state of just three neighborhoods and each cell

has only two states.5 Moreover, it was first conjectured by Wolfram that this cellular

automaton may be universal. This statement was proved by Cooks implementing a

cyclic tag system using Rule 110.4,5

A distinctive feature of the Rule 110 is the formation of a periodic background

in space and time which is called ether. In conjunction with this regular mosaic,

other structures known as gliders are formed as time evolves. Such gliders move

with constant lateral displacement. However, such displacement may be different

between one glider and another, resulting in collisions between them.

Collisions may yield other or even the same combinations of gliders also called

products here. This feature has been studied to obtain both a theoretical under-

standing of this behavior and implement unconventional computer systems.6,7

Most of the work of Rule 110 has been done from the perspective of Computer

Theory or from using Complex Systems analysis.8 Moreover, there are previous

research findings for Rule 110 with a general scope, which have considered algebraic

features of cellular automata to provide invariant attributes in the sense of group

theory.9,10 Collisions among gliders have been analyzed by controlling their relative

period as a way of producing them more easily.11 However, to date, there has

been a lack of published research on the characterization of gliders in this cellular

automaton, which considers them as interacting objects.

In general according to Rule 110, gliders may be generated with specific initial

conditions or as products of collisions with other gliders.5,12 However, in this work,

all gliders used have been created from initial conditions and are considered to be

particles with a fixed trajectory provided they do not collide with other gliders. The

aim of this paper is to state a quantitative characterization of the structures from

the Rule 110 and to establish relations derived from collisions among gliders as an

analogy with collisions of physical particles. The analysis is based on computational

experimentation by causing two gliders to collide and observing the products of the

collision.

The remainder of the paper is organized as follows: Sec. 2 is devoted to exposing

the basic concepts of one-dimensional cellular automata. Section 3 explains how

collisions among gliders are expressed in terms of algebraic equations. Section 4

provides the values for found constants as well as their interpretation. Section 5

states the conclusions reached about the utility of the constant associated with

each glider.

2. Basic Concepts

In general, cellular automata are defined by means of a tuple {Σ, r, φ, C}, where

Σ is a finite set of allowed states for each cell, r ∈ Z
+ is the number of neighbors

aFrom here onwards, we will just use “Rule 110” to refer to Rule 110 Cellular Automaton.
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with respect to each side of a cell, φ : Σ2r+1 → Σ is the evolution rule determining

the next state for every cell as a function of its own state and the states of its

2r neighboring cells at current time, and C : Zm → Σ is the initial configuration,

Zm = {0, . . . , m − 1}, and m ∈ Z
+ is the size of C. Hence, C contains the initial

state of every cell at the starting time of the evolution. In this way, CA are dynamic

systems, not only with discrete spatial domain, but also with discrete temporal

domain, where their spatial evolution is carried out through interactions with their

nearest neighbors.

The particular case being analyzed is a cellular automaton whose rule of evolu-

tion is the Rule 110 defined in Table 1. For this rule, the set of states is Σ = {0, 1}

and r = 1 (a single neighbor to each side of the cell), therefore an initial configura-

tion may be specified by a one-dimensional finite chain of 0’s and 1’s. A particular

evolution can be seen in Fig. 1.

In this cellular automaton there are 14 known individual gliders represented

by the set M = {A, B, B̄, B̄8, C1, C2, C3, D1, D2, E, Ē, F, G, H} plus a glider called

Gun, which produces several of the gliders of M as time evolves. So the glider

Gun is not considered an individual structure.5,6 Here, we consider only binary

Table 1. Evolution for cellular automaton based on Rule 110.

Neighborhood Evolution Neighborhood Evolution

000 0 100 0

001 1 101 1

010 1 110 1

011 1 111 0

Fig. 1. A typical glider (darker structure) moving through ether (light gray color). Temporal
evolution follows the downward direction. The detail shows ether structure.
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Fig. 2. 6 of the 14 gliders defined in M traveling downward in ether; each is labeled with its own
name.

collisions among gliders belonging to M . Some elements of this set are shown in

Fig. 2, however, a complete list can be found in the McIntosh catalog.13

In order to generate ether as well as a specific glider, it is necessary to choose

the appropriate initial conditions for the beginning of the evolution. In particular,

the ether in Rule 110 is generated by a sequence consisting of 14 cells. In the case

of gliders, the length of the sequence is variable, for example, to generate gliders A,

C1 and E, the lengths of the ships are 6, 23 and 29 cells, respectively. It is possible

to generate gliders with more than one set of initial conditionsb; for example, glider

A can be generated with the following two sequences (phases) of 6 cells: 111110,

and 100011.6

Most of the possible combinationsc of binary collisions among gliders of M have

been studied and classified previously in atlases and catalogs.4,5,13 However, up to

now, there has not been a collision-based analysis that provides features useful for

exploring the underlying quantitative properties from the interaction among gliders.

3. Quantitative Relations in Binary Collisions of Gliders

A schematic representation of a collision is shown in Fig. 3, where initial gliders µi

and µj collide to produce the gliders labeled as µ1, µ2, µ3 and so on, appearing at

bIn the terminology of cellular automata, it is called phase to each of those sequences.
cAlthough it is highlighted below, a collision is not found in catalogs yet.
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Fig. 3. Schematic representation of a binary collision between two gliders µi and µj . The resulting
products are labeled as µ1, µ2, and µ3.

the bottom of the figure. A collision may generate no gliders, one or several gliders

as its products.

Equation (1) highlights the notation used to specify a collision between two

incident gliders. Labels on the left-hand side correspond to the colliding gliders,

whereas labels on the right-hand side indicate the products. Here, this equation is

called the production relation.

µi ⊕ µj → µ1 + · · · + µn (1)

where µk ∈ M and k ∈ N. Symbol ⊕ indicates the interaction (collision) between

gliders µi and µj , while the plus sign (+) represents the collectiond of resulting

products labeled as µ1, µ2, . . . , µn.

With 14 gliders in M , there are 91 (14 × 13/2) possible results of binary colli-

sions, because for two gliders µ1, µ2 ∈ M under this notation, the result of µ1⊕µ2 is

the same as for µ2 ⊕µ1. Furthermore, some gliders have the same horizontal speed,

meaning that they travel in parallel, hence they can never collide. The subsets of

gliders that move in parallel are {C1, C2, C3}, {B, B̄, B̄8}, and {D1, D2}. Addition-

ally, there are some soliton-like binary collisions, i.e. interactions in which at least

one of the gliders remains without change after collision. An example of this type

of collision process ise A ⊕ Ē → A + Ē.

A typical example of a binary collision can be observed in Fig. 4, where gliders

C1 and B̄ collide, yielding as products twof B gliders and one F glider (B̄ ⊕C1 →

2B + F ) and the corresponding algebraic equation proposed can be written as

ξB̄ + ξC1
= 2ξB + ξF .

dHere, we use the sign of summation, instead of a comma as in the symbology of set theory.
eHereafter the symbols corresponding to gliders on both sides of a production relation are written
in alphabetical order, regardless of its position when a collision is observed in the time evolution
graph.
fTo verify that the structure labeled with 2B actually consists of two B particles, there are
two ways to proceed: One, by performing an amplification of the figure and comparing with the
corresponding tilling of glider B.13 Two, by causing a collision of a known particle (i.e. A) with
this structure and observing that one of the B particles is eliminated with A (A⊕2B → B), while
the remaining B glider continues its path without change.
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Fig. 4. The binary collision between gliders C1 and B̄ during a productive relation denoted by
C1 ⊕ B̄ → 2B + F . The corresponding algebraic equation proposed is ξC1

+ ξB̄ = 2ξB + ξF .

After consideration, a total of 83 pairs of colliding gliders can be listed which

are represented as production relations in Table 2. In this table, the Φ symbol is

used to denote that no particle is obtained after a collision, being its associated

constant equal to zero (ξΦ = 0).

Most pairs of colliding particles can be found to collide in more than one way.

For example, the collision A ⊕ B̄8 → C2 listed in Table 2, it can also be found as

A⊕ B̄8 → 4A + Ē. Thus, it is possible at times for collisions to result in more than

one combination of particles. In Table 2, only one possibility of these combinations

has been written for each pair, the rest can be found elsewhere.13 In order to get

different results from the collision of a pair of gliders, they must collide with a

different contact point or relative phase. This is achieved by generating the gliders

with different initial conditions.g

4. Results

In general, for the production relation in Eq. (1), the following corresponding alge-

braic equation is proposed:

ξµi
+ ξµj

= ξµ1
+ · · · + ξµn

(2)

where each ξµk
is the unknown glider constant associated to glider µk. In both sides

of this equation, the plus sign means algebraic summation of the constants, so for

each production relation in Table 2, it is possible to write a corresponding linear

algebraic equation involving unknowns ξµ. All of these algebraic equations form a

gThe ways that a glider can be generated are called Periods, which are used to control the contact
point at the time that two gliders collide.
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Table 2. Production relations corresponding to collisions between two gliders.

A ⊕ B → Φ A ⊕ B̄ → Φ A ⊕ B̄8 → C2 A ⊕ C1 → F

A ⊕ C2 → C1 A ⊕ C3 → C2 A ⊕ D1 → C2 A ⊕ D2 → D1

A ⊕ E → D1 A ⊕ Ē → A + Ē A ⊕ F → 4B + C2 A ⊕ G → Ē + C1

A ⊕ H → C2 B ⊕ C1 → C2 B ⊕ C2 → D1 B ⊕ C3 → E

B ⊕ D1 → E B ⊕ D2 → A + Ē B ⊕ E → E2 B ⊕ Ē → 2A + 3B + Ē

B ⊕ F → 2A + D1 B ⊕ G → G2 B ⊕ H → Ē B̄ ⊕ C1 → 2B + F

B̄ ⊕ C2 → 3A + Ē B̄ ⊕ C3 → 2A + Ē B̄ ⊕ D1 → E B̄ ⊕ D2 → A + Ē

B̄ ⊕ E → A + 4B + C2 B̄ ⊕ Ē → 4A + 5B + Ē B̄ ⊕ F → A + 4A + Ē B̄ ⊕ G → 4B

B̄ ⊕ H → A + 2C2 + Ē B̄8 ⊕ C1 → A + 2Ē B̄8 ⊕ C2 → 2A + 3B + 2C2 B̄8 ⊕ C3 → 2A + 3B

B̄8 ⊕ D1 → A + B + B̄ B̄8 ⊕ D2 → 2A + 4B B̄8 ⊕ E → 2A + B + G B̄8 ⊕ Ē → 3A + 2Ē

B̄8 ⊕ F → 2A + 2B + C2 + B̄ + F B̄8 ⊕ G → 4A + 4B + Ē B̄8 ⊕ H → 2A + C2 + Ē C1 ⊕ D1 → 4A + 3B

C1 ⊕ D2 → 2A + 2B C1 ⊕ E → A + Ē + F C1 ⊕ Ē → C1 + Ē C1 ⊕ F → C1 + F

C1 ⊕ G → 3A + F C1 ⊕ H → 3A + 3B + 2C2 C2 ⊕ D1 → 2A + 2B C2 ⊕ D2 → A + 2B

C2 ⊕ E → A + 2B C2 ⊕ Ē → 3B C2 ⊕ F → C1 + B̄ + F C2 ⊕ G → 3B + C2

C2 ⊕ H → 3A + 2B + B̄ C3 ⊕ D1 → A + 2B C3 ⊕ D2 → A + 3B C3 ⊕ E → A + G

C3 ⊕ Ē → 2C1 C3 ⊕ F → C1 + C2 C3 ⊕ G → Ē C3 ⊕ H → 2B + B̄ + C3 + F

D1 ⊕ E → 2B D1 ⊕ Ē → 4B D1 ⊕ F → 2A D1 ⊕ G → Ē

D1 ⊕ H → A + D1 + E D2 ⊕ E → G D2 ⊕ Ē → 5B D2 ⊕ F → 2A + B

D2 ⊕ G → A + 3B + C2 + G D2 ⊕ H → C1 + Ē E ⊕ F → 4A + 3B E ⊕ G → F

E ⊕ H → 5A + 2Ē Ē ⊕ F → B Ē ⊕ G → 4A + Ē Ē ⊕ H → A + 3B + C1 + Ē

F ⊕ G → 3A + Ē F ⊕ H → F + D1 G ⊕ H → A + 2Ē + F
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Table 3. Values of the unknowns found for each glider of the set M .

ξΦ = 0 ξA = 2 ξB = −2 ξB̄ = −2 ξB̄8
= −1

ξC1
= 3 ξC2

= 1 ξC3
= −1 ξD1

= −1 ξD2
= −3

ξE = −3 ξĒ = −7 ξF = 5 ξG = −6 ξH = −1

system of linear equations. Since the system has more equations than variables, this

is an over-determined system. The full solution was obtained by a trial-and-error

procedure, assigning an arbitrary valueh to one ξµ, and then obtaining the values

for the rest of the variables. The resulting values obtained for each unknown are

shown in Table 3. For example, for the collision in Fig. 4, by replacing values from

Table 3 in the corresponding algebraic equation ξC1
+ξB̄ = 2ξB+ξF , we get 3+(−2)

on the left-hand side and 2(−2) + 5 on the right-hand side, ensuring equality.

The following physical analogy for the collision of two gliders is proposed. For

one dimension, the energy of a physical particle is a signed quantity. This quantity is

conservedi during the elastic collision of two particles. In this way, we can consider

each value of ξµ as if it were the energy of the “particle” µ. Then the algebraic

equation governing the collision of gliders corresponds to the conservation of energy

for gliders in this CA. Regardless of this analogy, it must be emphasized that the

origin of each ξµ is geometric and it is related to a shift in the ether on the right-hand

side of the traveling glider.

Included in Table 2, as an additional result is the collision B ⊕ F → 2A + D1

not previously catalogued in any atlas for Rule 110.13 Also two structures are not

included in the set M : E2 and G2 (not catalogued as individual gliders), appearing

as collision products in B ⊕ E → E2 and B ⊕ G → G2. Moreover, the values

E2 = −5 and G2 = −8 have been found for these structures, both consistent with

the system of linear algebraic equations proposed. That table shows 83 collisions,

for 80 of them it is possible to write an algebraic equation in the form of Eq. (2). But

for the remaining three (A⊕F → 4B +C2, E ⊕G → F , and Ē ⊕G → 4A+ Ē), no

set of gliders has been found or reported whose constants fulfill the corresponding

algebraic equations. For those cases it is proposed here a constantj α = 14 to include

in each equation in the following form

ξA + ξF = 4ξB + ξC2
+ α ,

ξE + ξG = ξF − α , (3)

ξĒ + ξG = 4ξA + ξĒ − α .

As a step in the process of solving this problem, we have determined that the

respective balance equations are fulfilled if such constant is added to or subtracted

hIt is necessary to apply the constraint of ξA + ξB = 0 in order that the numeric solution be
self-consistent.
iThis general law is called Conservation Law of Energy.
jHere, it is considered α as a Structure Constant due to its origin from the ether structure.
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(a) (b)

Fig. 5. Comparison of the displacement produced in ether by a traveling glider. Intersections of
horizontal and vertical lines serve as references to observe the shift on ether. On the left, ether
is depicted alone. On the right, glider C1 travels in a downward motion. The arrow points to the
intersection which demonstrates the ether’s shift.

from each of these equations. In Eq. (3), the value of α is equal to the length of the

sequence that generates ether. In fact, the whole algebraic system has an infinite

number of solutions shown in Table 3, is just one particular solution.

Whenever a glider goes through ether, the ether pattern has a relative displace-

ment of one side of the glider with respect to the other side. Figure 5 shows how

such a displacement can be detected. In this figure there are three reference lines

superimposed on the ether pattern. Two of the lines are vertical and one is hor-

izontal. In Fig. 5(a), the two intersections of the line match the ether pattern at

the same relative point; whereas in Fig. 5(b) as glider C1 travels down through the

ether, there is a shift in the ether pattern to the right of the glider. It can be seen as

indicated by the arrow, that the ether pattern to the right of the figure is no longer

in the same position as before, relative to the intersection of the corresponding

lines. Such displacement depends on each glider. Moreover, if the two gliders have

the same ξµ, the ether experiences the same shift.

Table 4 shows the displacements (δx, δy) of each glider µ, the ether displacement

graph and the corresponding constant ξµ. The same cell was taken as reference per

Fig. 5(a), and the displacement is counted by the number of cells with the same

signs for distances as used in the Cartesian coordinate system. The column of

constants ξµ taken from the set of solutions already encountered by each glider

1,−1, 2,−2, 3,−3, 5,−6,−7 in Table 3. The gliders with the same value ξ, displace

the ether in the same magnitude and direction and are found in the table on the

same line.

This table shows only one of an infinite number of ether displacements. Because

the ether pattern is periodic, a displacement, as an example, (δx = +4, δy = +1),

takes the reference cell to the same location as with (δx = +2, δy = −3).

Displacements behave in the same way as the components of a two-dimensional

vector. As an example, from Table 4, for glider C1 (with ξC1
= +3) the cell of

reference undergoes a displacement of (δx1 = −1, δy1 = +1), and for D2 (with

ξD2
= −3) a displacement of (δx2 = +1, δy2 = −1). If we cause C1 to collide

with D2, the rule of production for this collision and the corresponding algebraic
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Table 4. Displacement of the ether pattern and values associated with each glider.

equation are C1 ⊕ D2 → 2A + 2B, and ξC1
+ ξD2

= 2ξA + 2ξB . By replacing the

values of every ξ on the last equation, (+3)+(−3) = 2(2)+2(−2), resulting in 0 ≡ 0.

Observe that the summation of the displacements of the initial gliders vanishes to

[(+3) + (−3) = 0]. Because values cancel on both sides of the algebraic equation, it

is expected that ether does not suffer any displacement. This can be seen in Fig. 6.

In this way, displacements (δx, δy) behave in an arithmetical manner consistent

with the ξµ associated with glider µ. This is the way in which each displacement

connects with its corresponding glider constant.

Although previously mentioned that the origin of the constants associated with

each glider is of a geometric character, there is no metric discovered yet to establish

a formal relationship between a displacement (δxµ, δyµ) and the corresponding ξµ

in the form F (δxµ, δyµ) ∼ f(ξµ).

5. Concluding Remarks

In this paper, we suggest that:

• For each glider where µ ∈ M , there is a quantity ξµ which fulfills a balanced

equation.
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Fig. 6. Collision between gliders C1 and D2, the evolution is in accordance with the rule of
production: C1 ⊕D2 → 2A + 2B as seen completely in the box. In the enlarged part of the figure,
with the help of the previously calibrated lines, one can observe that the ether is not displaced.

• Each collision between two gliders corresponds to a balanced equation. This is

a linear algebraic relationship with the unknowns being the ξµ’s. On the left-

hand side of the equation, the incident gliders are represented; on the right, the

resulting gliders.

• The numeric quantity ξµ associated with each glider generated by Rule 110 rep-

resents a shift in the ether pattern.

An analogy was proposed for the interaction between two gliders with the colli-

sion of two physical particles. The algebraic equation in the gliders’ case resembles

the equation for the conservation of energy for physical particles. This is similar

to several situation in physics where, for instance, energy, charge, etc. are scalar

quantities conserved during a collision.

It is possible to use the value found for each glider and its related equations to

construct an algebraic system valid for collisions among gliders. It is noteworthy

that, with this tool and even without the temporal evolution, the manner in which

the ether is displaced can be established, merely by knowing the gliders involved in

the collision.

With respect to the balanced equations contained in Eq. (3), the addition or

subtraction of a constant should not affect the validity of the solution seen in Table

3, because this is a particular solution. We consider the failure to find such sets of

gliders does not detract from the usefulness of these results. We must wait for the

necessary collisions to complete before this scheme can be found.
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