
A PETRI NET MODEL FOR AN ACTIVE DATABASE SIMULATOR

Joselito Medina-Marín(a), Xiaoou Li(b), José Ramón Corona-Armenta(c), Marco Antonio Montufar-Benítez(d),
Oscar Montaño-Arango(e), Aurora Pérez-Rojas(f)

(a) (c) (d) (e) (f)Autonomous University of Hidalgo State, Advanced Research in Industrial Engineering Center, Carr. Pachuca-

Tulancingo Km 4.5 Col. Carboneras, Pachuca, Hidalgo, México
(b)Research and Advanced Studies Center of the National Polytechnic Institute, Av. Instituto Politécnico Nacional No.

2508, Col. Zacatenco, México, D.F., México

(a)jmedina@uaeh.edu.mx, (b) lixo@cs.cinvestav.mx, (c)jrcorarm@yahoo.com, (d)montufar@uaeh.edu.mx,
(e)oscarma11@hotmail.com, (f)auropr@yahoo.com,

ABSTRACT
Active database systems were introduced to extend the
database functionality. As well as a repository of data,
active database can detect the occurrence of events in a
database system and react automatically to event
occurrence and execute certain actions either inside or
outside the database. This behavior is specified by
means of ECA (event-condition-action) rules, i.e., when
an event has occurred, if the condition is evaluated to
true, then an action is executed. In this paper a simulator
for active databases, named ECAPNSim, is described.
ECAPNSim uses the definition of ECA rules like a
structure of an extended Petri net model, the
Conditional Colored Petri Net (CCPN). Conditional
Colored Petri Net definition involves the knowledge
and execution model, which describe the features that
an active database system must have. An example has
been developed in order to show the ECAPNSim
applicability in a certain study area.

Keywords: Petri nets, active database, ECA rule,
simulation.

1. INTRODUCTION
Traditional databases (DB) were developed to store a
huge amount of information. In this DB type the
information only is accessed by insert, delete, update
and query algorithms, which were previously
programmed in a Data Manipulation Language (DML)
by the DB administrator. The set of all this data
manipulation programs is the Database Management
System (DBMS). However, the execution of those
programs is performed only by the request of either a
DB user or the DB administrator.

Nevertheless, there are systems that cannot be
implemented by using a traditional DB approach. Such
systems are those where is well known that if certain
events occur in the DB and if the DB state satisfies
certain conditions, then an action or procedure is
performed in the DB. Therefore, it is necessary to use
an approach where a DB could have the ability to react
automatically when an event occur either inside or
outside DB environment, after this, it can verify the DB

state to evaluate conditions, and if condition is
evaluated to true it can execute procedures that modify
the DB state. In order to provide of active behavior to
traditional DB, Active Databases (ADBs) were
introduced. If a human being takes charge to detect the
event occurrences, verify conditions, and execute
procedures instead an ADB system, then the system
may not work well. Thus, it is very important to add
enough information to DB about the active behavior and
convert a traditional DB into an Active one.

Active behavior of a DB can be defined through a
base of active rules, which has the specification of
events that will be detected, conditions that will be
evaluated, and actions or procedures that will be
performed in the DB. The model most widely used is
the event-condition-action rule (ECA rule) model,
whose general form is as follows (Silberschatz, Korth,
and Sudarshan 1999):

on event e1
if condition c1
then action a1
ECA rule model works in the following way: when

an event e1 that modifies the current DB state occurs, if
condition c1 is evaluated to true against DB state, then
either an action a1 is executed inside DB or a message
is sent outside DB.

An event e1, which can trigger to an ECA rule, can
be of two types: primitive event or composite event
(Paton and Diaz 1999). A primitive event is generated
by the execution of an operation over the DB
information (insert, delete, update, or select), a DB
transaction, a clock event (which can be absolute,
relative, or periodic), or the occurrence of a DB external
event. On the other hand, composite events (disjunction,
conjunction, sequence, closure, times, negation, last,
simultaneous, and any) are formed by the occurrence of
a combination of primitive and/or composite events.

Composite events increase the complexity of a
base of active rules because composite events are
represented by complex structures, which need to be
evaluated when a composite event is raised. In the same
way that a composite event increases the complexity of

431

mailto:jmedina@uaeh.edu.mx
mailto:jmedina@uaeh.edu.mx
mailto:jrcorarm@yahoo.com
mailto:montufar@uaeh.edu.mx
mailto:oscarma11@hotmail.com
mailto:auropr@yahoo.com

a base of active rules, relationships between ECA rules
increase the complexity of a base of active rules.

Furthermore, active rules must be validated before
its implementation into a real active database system, in
order to know its behavior and to verify the presence of
situations that may produce an inconsistent state in the
database system.

This verification can be performed through the
simulation of the active rules. In this paper an ECA rule
simulator is presented, which uses a Petri net model,
named Conditional Colored Petri Net (CCPN), to depict
ECA rules as a Petri net structure, and with the token
game animation the event occurrence and rule
triggering are analyzed in order to detect active database
problems such as No termination and confluence (Paton
and Diaz 1999).

The remainder of the paper is organized as follows.
Section 2 discusses the related work about active
database systems; section 3 gives a general description
of the PN model used to depict ECA rules. Section 4
describes a software development named ECAPNSim,
which is used to model, simulate and analyze ECA rule
sets. Section 5 shows the applicability of ECAPNSim
by developing an example of ECA rule set in a bank
enterprise. Finally, Section 6 concludes and gives
directions for future work.

2. RELATED WORK
There are several research studies about active
databases and the development of ECA rules. Relational
systems, such as starburst (Widom 1996), Postgres
(Stonebraker and Kemmintz 1991), Ariel (Hanson
1996), SYBASE (McGoveran and Date 1992),
INFORMIX (Lacy-Thompson 1990), ORACLE (Hursh
1991), among others, provide an active functionality
based on triggers, but they cannot handle composite
events at all.

Triggers only supports the composite event
disjunction, and structure primitive events that are
defined over a table, moreover, in the action part of
triggers cannot be executed another trigger.

On the other hand, Object Oriented DB systems
(such as HiPAC (Dayal, Blaustein, Buchmann,
Chakravarthy, Hsu, Ledin, Mc-Carthy, Rosenthal,
Sarin, Cary, Livny, and Jauhari 1998), EXACT (Paton
and Diaz 1999), NAOS (Collet and Coupaye 1996),
Chimera (Ceri, Fraternali, Paraboschi, and Tanca 1996),
Ode (Gehani and Jagadish 1996), Samos (Gatziu and
Ditrich 1999)) provide more elements of active systems,
like the composite event handling. Nevertheless,
because of the different structures and classes used to
develop Object Oriented DB systems, there is not a
standard model to define ECA rules in these systems.

Few researches have adopted Petri nets as ECA
rule specification language (Gatziu and Ditrich 1999),
(Li, Medina-Marín, and Chapa 2002) (Schlesinger and
Lörincze 1997).

Colored Petri Nets (CPN) are a high-level Petri nets
which integrate the strength of Petri nets with the
strength of programming languages. Petri nets provide

the primitives for the description of the synchronization
of concurrent processes, while programming languages
provide the primitives for the definition of data types
and the manipulation of their data values (Jensen 1994).
So it is more suitable for active database than ordinary
Petri nets since it can manipulate data values. By using
CPN one can not only revealing the interrelation
between ECA rules but also capture the operational
semantics. For these reasons, CPN is very suitable for
modeling and simulation of active rules. (Schlesinger
and Lörincze 1997) adopted CPN as rule specification
language, and they proposed an Action Rule Flow Petri
Net (ARFPN) model, and a workflow management
system was illustrated to verify their ARFPN model.
However, there exists much redundant PN structure for
using ”begin of”, ”end of” events, conditions and
actions repeatedly. So, Their CPN model is very large
even for a small rule set. Therefore, the complexity of
CPN management increases. In SAMOS (Gatziu and
Ditrich 1999) a SAMOS Petri Nets (S-PN) was
proposed for modeling and detection of composite
events. S-PN is also CPN-like where a different
perspective for colors was taken. Colors in SPN are
token types, and one token type is needed for each kind
of primitive event; however, the framework is not Petri-
net-based.

3. CONDITIONAL COLORED PETRI NET

DEFINITIONS
There are several proposals to support reactive
behaviors and mechanisms inside a DBS, which is best
known as an ADBS. Nevertheless, these proposals are
designed for particular systems, and they cannot be
migrated to any other system, moreover, there is not a
formal ADBS proposal.

In this paper, a general model to develop ECA rules
in an ADBS is proposed, based in PN theory, which can
be used as an independent engine in any DBS. An
ADBS must offer both a knowledge model and an
execution model. Knowledge model specifies the
elements of the ECA rule, i.e., the event, condition, and
action part. On the other hand, execution model
describes the way in that the ECA rule set will be
executed.

In knowledge model, each ECA rule element is
converted into a CCPN element. The event, which
activates the ECA rule, is converted in a CCPN
structure that is able to perform the event detection. A
Primitive event is depicted by a CCPN place, but if the
event rule is composite, then the corresponding CCPN
structure is generated. Both types of events finish in a
place, which will be used as an input place for a
transition.

A CCPN transition holds the next element of an
ECA rule, the conditional part. It verifies if there are
tokens in its input place and evaluates the conditional
part of the ECA rule that is holding. Unlike traditional
PN transitions, CCPN transitions have the ability to
evaluate boolean expressions.

432

Finally, the ECA rule element action. When action
part is executed in a DBS, it modifies the DB state. This
can be viewed as an event that modifies the DB state.
Events are represented as CCPN places, thus action part
is represented by a place too. The difference between
places for events and places for actions is that places for
events are input places to transitions, and places for
actions are output places from transitions.

CCPN execution model is based in the transition
firing rule of PN theory. It provides mechanisms to
create tokens with information, or color, about events
that are occurring inside the DB. New tokens are placed
in the corresponding places for those events. This is the
way in that an ECA rule set is processed and both
composite and primitive events are detected. By using
Colored Petri Nets (CPN) is possible to depict ECA
rules, but only those that have primitive events. ECA
rules with composite events cannot be represented
efficiently with CPN.

Conditional Colored Petri Net (CCPN) (Medina-
Marín 2005b) is a Petri net extension, which inherits
attributes, and transition firing rule from classical PN
(Li, Medina-Marín, and Chapa 2002) (Li and Medina-
Marín 2004) (Medina-Marín and Li 2005a).
Furthermore, CCPN takes concepts from the CPN, such
as data type definition, color (values) assignation to
tokens, and data type assignation to places.

In the CPN case, data type assignation is performed
for all the places of CPN, on the other hand, in the
CCPN case, data type assignation for places is not
general, because the CCPN handles a kind of place
(virtual place – denoted as dashed circles) with the
ability to hold different types of tokens. Tokens can
denote different data structures, according to the tables
of databases.

In order to evaluate conditional part of ECA rule
stored inside a CCPN transition, a function is defined to
do this task. Evaluation function analyzes the boolean
expression and matches it with the DB state to
determine its boolean value.

Some composite events needs to verify a time
interval, hence CCPN provides a function that assigns
time intervals to a CCPN transition, which will be the
responsible to verify if events are occurring inside time
interval defined, likewise the evaluation of ECA rule
condition is done. These types of transition are named
composite transition.

Each event occurs in a point of time, thus, CCPN
provides a functions that assigns a time stamp to every
token created. Time stamp value is the time instant in
which the event has occurred. It is useful to verify if an
event occurred inside a time interval or to detect
composite events such as sequence and simultaneous.

Finally, every time that an event occurs, a token
must be created. CCPN has a function to initialize
tokens, in other words, when an event occurs in DB, a
new token is created by CCPN and its attributes are
initialized to the corresponding event values. The new
token is put in the place that represents to detected
event.

CCPN is an extension of PN that uses CPN
concepts (Jensen 1994). In order to save event
information in tokens and to create new tokens with
data about the action part of the ECA rule, CCPN uses
the concept of “color” taken from CPN. The values
stored in tokens are used to evaluate the conditional part
of the rule stored in the transition of CCPN. CCPN uses
the multi-set concept from CPN, because a CCPN place
may have several events at the same time. Unlike CPN,
CCPN evaluates conditions inside transitions;
meanwhile CPN evaluates conditions in its arcs.

Formally, a CCPN is defined as follows:

Definition 1. A conditional colored Petri net

(CCPN) is a 11-tuple
CCPN = {Σ, P, T, A, N, C, Con, Action, D, τ , I}

where
(i) Σ is a finite set of non-empty types, called color

sets.
(ii) P is a finite set of places. P is divided into

subsets, i.e., P = Pprim ∪ Pcomp ∪ Pvirtual ∪ Pcopy, where
Pprim represents primitive events and it is depicted
graphically as a single circle. Pcomp represents composite
events negation, sequence, closure, last, history, and
simultaneous and it is depicted graphically as a double
circle. Pvirtual represents composite events conjunction,
disjunction, and any and it is depicted graphically as a
single dashed circle. And, Pcopy, is a set which is used
when two or more rules are triggered by the same event
and it is depicted graphically as a double circle where
the interior circle is a dashed one.

(iii) T is a finite set of transitions. T = Trule ∪ Tcopy
∪ Tcomp., where Trule represents the set of rule type
transitions and it is depicted graphically as a rectangle.
Tcopy is the set of copy type transitions and it is depicted
graphically as a single bar. Tcomp is the set of composite
type transitions and it is depicted graphically as a
double bar.

(iv) A is a finite set of arcs.
(v) N is a node function. It is defined from A to P ×

T ∪ T × P.
(vi) C is a color function. It is defined from P to Σ.
(vii) Con is a condition function. It evaluates either

the rule condition if t ∈ Trule or it evaluates the time
interval when t ∈ Tcomp.

(viii) Action is an action function. It creates tokens
according to action rules.

(ix) D is a time interval function.
(x) τ is a timestamp function.
(xi) I is an initialization function.

4. ECAPNSIM
Active rules development is an activity that needs to be
performed carefully. Nowadays, there are few systems
(Schlesinger and Lörincze 1997) which perform the
analysis and debug the ECA rule base. Most of
commercial ADBs (Hanson 1996), (Widom 1996)
provide a syntax to ECA rule definition, however static
analysis of ECA rules cannot be performed inside these

433

systems and the ECA rule definition is only in a text
way.
 ECAPNSim (ECA Petri Nets Simulator) was
developed under MAC OS X Server in Java. Taking
advantage of Java portability, ECAPNSim can be
executed in different operating systems. As an engine of
ECA rules, ECAPNSim can be connected with any
relational database systems such as Postgres, MS
Access, Oracle, and Visual Fox Pro.

4.1 ECAPNSim architecture
ECAPNSim architecture consists of two building
blocks: ECAPNSim Kernel and ECAPNSim tools
environment (figure 1). ECAPNSim Kernel provides
active functionality to passive database. it consists of
CCPN Rule Manager, CCPN rule base, Composite
Event Detector, and Rule Execution Component.
ECAPNSim tools environment has a set of tools used
by the ECA rule developers. Tools environment is
composed by ECA rule editor, analyzer of no-
termination problem, converter of ECA rules to CCPN,
CCPN visualizer/editor and explanation components,
termination analyzer and runtime tools.

ECAPNSim offers two modalities. In Simulation
mode, users can simulate the behavior of the ECA rule
base modeled by depositing tokens into the CCPN
manually. And, in Real mode, the CCPN is executed by
state modification of the connecting DBS.

Figure 1: ECAPNSim architecture.

4.2 ECAPNSim Design
ECAPNSim offers a graphical and visual interface

to represent ECA rule bases by CCPN model. Like any
PN editor, ECAPNSim simulates the behavior of ECA
rules by executing the CCPN model. Meanwhile
simulation is running, problems like no termination and
confluence can be observed obviously in the CCPN,
hence ECA rule developer can modify the rule base to
improve it.

The core of ECAPNSim is CCPN models.
ECAPNSim contains a module to generate a CCPN
structure from an ECA rule base definition written in a
text file automatically. Or a CCPN model can be edited
directly from a ECAPNSim user.

ECAPNSim supports CCPN design and edition
from an ECA rule base, which can be moved to another
position in the visualization panel. Moreover, because
of there are large ECA rule bases, ECAPNSim will
generate large CCPN structures, so it has zoom buttons

to either increase or decrease the CCPN size.
Simulation speed can be controlled through a slide.
Finally, the graphical interface has tools and icons to
edit a CCPN, simulate a CCPN behavior, and CCPN
file management. (figure 2).

Figure 2: ECAPNSim environment.

4.3 Incorporation of distribution functions
ECAPNSim was enhanced with the addition of
distribution functions, which are useful to simulate and
to analyze the event occurrence in an active rule base.

Distribution functions which are available in
ECAPNSim are beta, binomial, Cauchy, chi square,
exponential, gamma, geometric, uniform, and weibull,
among others. The use of this set of functions depends
on the active rule base that will be simulated.

Each place in the CCPN has the property for the
definition of a distribution function, according to the
frequency of the event occurrence. The values for the
functions can be determined by a statistical analysis of
the data about the real occurrences of the events that fire
ECA rules.

Random values which are generated by distribution
functions are used as inter arrival time of events in
ECAPNSim. Each time an event occurrence is
simulated, a token with information about that event is
created, and it is putted into the place that represents the
corresponding event. Hence, the token game animation
is started and ECA rule developer can detect
inconsistencies in ECA rule set.

5. CASE OF STUDY
In order to show the modeling of a base of active rules
as a CCPN, four ECA rules are converted into a CCPN,
whose description is as follows:
Rule 01 : When an employee is inserted in the office
DB and the production of employee’s department is
modified, if the production is greater than $900.00, then
the employee’s bonus is updated to $100.00.
Rule 02 : When either salary or bonus of an employee is
modified, if the salary is increased by more than
$200.00 or the bonus is increased by more than $50.00,
then the employee’s rank is increased too.
Rule 03 : When the employee’s rank is updated, if rank
value is greater than 15, then the employee’s
department budget is added with $1000.00

434

Rule 04 : When a department budget is modified, if the
budget is greater than $20,000.00, then the department
production is increased of 3%.

Definition of database tables needed to this rules
are as follows:

DEP(TheDep,Production,Budget).
EMP(ItsDep,TheEmp,Salary,Bonus,Rank).
CCPN obtained from the rules listed above is

showed in figure 3.
From the incidence matrix showed in figure 4, and

from the CCPN picture showed in figure 3, it can be
observed that there exists a cyclic path in the rule firing,
however, the fact that there is a cyclic in the
connections of CCPN elements is not a sufficient
condition to ensure that there is a no termination
problem. In order to imitate the behavior of ECA rule
firing according to a real situation, event occurrences
are modeled through the following functions:

E0 : Insert an employee. Uniform(4,4).
E1 : Update the production value of an department.

Constant value of one day.
E3 : Update employee’s salary. Uniform(315,50)
E4 : Update employee’s bonus. Uniform(95,17)
E6 : Update employee’s rank. Uniform(103,24)
E7 : Update department budget. Uniform(365,74)
The parameters are considered in days.
The evaluation of the conditional part has

probability of occurrence of 50% for true and 50% for a
false result.

Figure 3. CCPN obtained from four ECA rules.

With these distribution functions assigned to each

input place that represents event occurrence and running
the simulation for a time corresponding to 10 years, the
maximum value for the quantity of places visited by the
same token was 10, i.e., the same token passed through
ten places in the cyclic path, and the average value was

1.29 places visited; so this ECA rule base has the
property of termination in its rule triggering.

6. CONCLUSION
Currently there are database management systems that
support ECA rule definition by the use of “triggers”,
however “triggers” have several restrictions that limits
the power that an active database must offer.

On the other side, there are research prototypes that
support ECA rule definition, too; and they are more
powerful because composite events such as conjunction,
disjunction, etc., can de defined.

ECAPNSim is an interface that generates a CCPN
from an ECA rule definition typed in the on-if-then
form. It carries out the simulation of the CCPN
behavior according to the event occurrence in a random
way, which depends on the distribution function
assigned.

Figure 4. Incidence matrix of the CCPN showed in
figure 3.

ECAPNSim has been improved with the addition of

distribution functions in each place that denote an event
occurrence.

A study area for active database is computer nets,
where active behavior can be implemented in order to
monitor traffic of LAN networks; an automatic reaction
can be set by an active database system, instead of a
human being monitoring. When suspicious events occur
in the net, then ECA rules can be triggered and perform
the corresponding action to maintain the stability in the
net.

Another interesting area of application is in
distributed database systems, where the development of
ECA rules needs to consider the event occurrence in
different servers.

There are several interesting areas where active
databases are applied, mainly where systems need an
automatic reaction and the response time must be
immediate.

Nevertheless, ECA rule development implies that
the ECA rule developer must be careful to avoid
inconsistency states in the database system.

435

REFERENCES
Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L., 1996.

Active Rule Management in Chimera. In: Widom,
J., Ceri, S., eds. Active Database Systems:
Triggers and Rules for Advanced Database
Processing. San Francisco CA :Morgan Kaufmann
Publishers Inc., 151-176.

Collet, C., Coupaye, T., 1996. Composite Events in
NAOS. Proceedings of the 7th International
Conference and Workshop on Database and
Expert Systems Applications. (DEXA’96). LNCS
1134, 244 - 253, September 9-13, Zurich,
Switzerland.

Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy,
U., Hsu, M., Ledin, R., Mc-Carthy, D., Rosenthal,
A., Sarin, S., Cary, M.J., Livny, M., Jauhari, R.,
1988. The HiPAC Project: combining active
database and timing constraints. ACM SIGMOD
RECORD, 17 (1), 51- 70.

Gatziu, E., Ditrich, K.R., 1999. SAMOS. In: Paton, N.
W., Ed. Active Rules in Database Systems. New
York:Springer, 233-248.

Gehani, N., Jagadish, H.V., 1996. Active Database
Facilities in Ode. In: Widom, J., Ceri, S., eds.
Active Database Systems: Triggers and Rules for
Advanced Database Processing. San Francisco
CA :Morgan Kaufmann Publishers Inc., 207-232.

Hanson, E.N., 1996. The Design and Implementation of
the Ariel Active Database Rule System. IEEE
Transactions on Knowledge and Data
Engineering. 8(1), 157-172.

Hursh, C.J., Hursch, J.L., 1991. Oracle SQL
Developer’s Guide. New York : McGraw-Hill.

Jensen, K., 1994. An Introduction to the Theoretical
Aspects of Colored Petri Nets. Lecture Notes in
Computer Science: A Decade of Concurrency,
803: 230- 272.

Lacy-Thompson, T., 1990. INFORMIX-SQL, A tutorial
and reference. New Jersey : Prentice Hall.

Li, X., Medina-Marín, J., and Chapa, S.V., 2002. A
Structural Model of ECA Rules in Active
Database. Lecture Notes in Artificial Intelligence,
2313 : 486-493.

Li, X., Medina-Marín, J., 2004. Composite Event
Specification in Active Database Systems: A Petri
Net Approach. Proceedings of the IEEE
International Conference on System, Man, and
Cybernetics, pp. 4885-4890. Oct 10-13, The
Hague, The Netherlands.

McGoveran, D., Date, C.J., 1992. A guide to SYBASE
and SQL Server : a user’s guide to the SYBASE
product, Boston : Addison-Wesley.

Medina-Marín, J., Li, X., 2005a. An Active rule base
Simulator based on Petri Nets. Proceedings of the
the Third International Workshop on Modelling,
Simulation, Verification and Validation of
Enterprise Information Systems MSVVEIS-2005,
pp. 96-101. May 24-28, Miami, USA.

Medina-Marín, J., 2005b. Desarrollo de reglas ECA, un
enfoque de red de Petri, Thesis (PhD).
CINVESTAV-IPN, México.

Paton, N.W., Diaz, O., 1999. Active Database Systems.
ACM Computing Surveys, 31 (1), 64- 103.

Schlesinger, M., Lörincze, G., 1997. Rule modelling
and simulation in ALFRED, Proceedings of the
3rd. International workshop on Rules in Database
Systems (RIDS’97) (or LNCS 1312), pp. 83-99.
June 26-28, Skövde, Sweden.

Silberschatz, A., , Korth, H.F., Sudarshan, S., 1999.
Database System Concepts. Third Ed. New York:
McGraw-Hill.

Stonebraker, M., Kemmintz, G., 1991. The POSTGRES
Next-Generation Database Management System.
Communications of the ACM, 34(10), 78-92.

Widom, J., 1996. The Starburst Active Database Rule
System. IEEE Transactions on Knowledge and
Data Engineering, 8(4), 583-595.

AUTHORS BIOGRAPHY
Joselito Medina-Marín. He received the M.S. and
Ph.D. degrees in electrical engineering from the
Research and Advanced Studies Center of the National
Polytechnic Institute at Mexico, in 2002 and 2005,
respectively. He is presently a Professor of the
Advanced Research in Industrial Engineering Center at
the Autonomous University of Hidalgo State at
Pachuca, Hidalgo, México. His current research
interests include Petri net theory and its applications,
active databases, simulation, and programming
languages.

Xiaoou Li. Received the B.S. and Ph.D. degrees in
applied mathematics and electrical engineering from
Northeastern University, Shenyang, China, in 1991 and
1995, respectively. From 1995 to 1997, she was a
Lecturer of electrical engineering with the Department
of Automatic Control, Northeastern University. From
1998 to 1999, she was an Associate Professor of
computer science with Centro de Instrumentos,
Universidad Nacional Autónoma de México, México
City, México. Since 2000, she has been a Professor of
computer science at Departamento de Computación,
Centro de Investigación y de Estudios Avanzados del
Instituto Politécnico Nacional (CINVESTAV-IPN),
México, City. Her research interests incluye Petri net
theory and application, neural networks, information
systems, data mining and system modelling and
simulation.

José Ramón Corona-Armenta. He received the B.S.
in Civil Engineering from Instituto Tecnológico de
Pachuca in 1993, the M.S. in Engineering from the
Universidad Nacional Autónoma de México in 1996,
and the Ph.D. degree in Industrial Systems from Institut
National Polytechnique de Lorraine in 2005. Since 2005
he has been a Professor of the Advanced Research in
Industrial Engineering Center at the Autonomous

436

University of Hidalgo State at Pachuca, Hidalgo,
México.

Marco Antonio Montufar-Benítez. He received the
B.S. in Geophysical Engineering from Universidad
Nacional Autónoma de México in 1985, and the M.S. in
Operations Research from the Universidad Nacional
Autónoma de México in 1990. Since 2000 he has been a
Professor of the Advanced Research in Industrial
Engineering Center at the Autonomous University of
Hidalgo State at Pachuca, Hidalgo, México.

Oscar Montaño-Arango. He received the M.S. in
Planning from Universidad Nacional Autónoma de
México in 2000, and the Ph.D. degree Planning Systems
from the Universidad Nacional Autónoma de México in
2007. Since 2006 he has been a Professor of the
Advanced Research in Industrial Engineering Center at
the Autonomous University of Hidalgo State at
Pachuca, Hidalgo, México.

Aurora Pérez-Rojas. She received the B.S. in
Industrial Engineering from Polytechnic Superior
Institute José Antonio Echeverría (ISPJAE) in 1971, the
M.S. in Automatic Systems from ISPJAE in 1978, and
the Ph.D. degree in Technique Science from ISPJAE in
1987. Since 2006 she has been a Professor of the
Advanced Research in Industrial Engineering Center at
the Autonomous University of Hidalgo State at
Pachuca, Hidalgo, México.

437

	1. INTRODUCTION
	2. RELATED WORK
	3. CONDITIONAL COLORED PETRI NET DEFINITIONS
	4. ECAPNSIM
	4.3 Incorporation of distribution functions

	5. CASE OF STUDY
	6. CONCLUSION

