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ABSTRACT 
Active database systems were introduced to extend the 
database functionality. As well as a repository of data, 
active database can detect the occurrence of events in a 
database system and react automatically to event 
occurrence and execute certain actions either inside or 
outside the database. This behavior is specified by 
means of ECA (event-condition-action) rules, i.e., when 
an event has occurred, if the condition is evaluated to 
true, then an action is executed. In this paper a simulator 
for active databases, named ECAPNSim, is described. 
ECAPNSim uses the definition of ECA rules like a 
structure of an extended Petri net model, the 
Conditional Colored Petri Net (CCPN). Conditional 
Colored Petri Net definition involves the knowledge 
and execution model, which describe the features that 
an active database system must have. An example has 
been developed in order to show the ECAPNSim 
applicability in a certain study area. 

 
Keywords: Petri nets, active database, ECA rule, 
simulation. 

 
1. INTRODUCTION 
Traditional databases (DB) were developed to store a 
huge amount of information. In this DB type the 
information only is accessed by insert, delete, update 
and query algorithms, which were previously 
programmed in a Data Manipulation Language (DML) 
by the DB administrator. The set of all this data 
manipulation programs is the Database Management 
System (DBMS). However, the execution of those 
programs is performed only by the request of either a 
DB user or the DB administrator. 

Nevertheless, there are systems that cannot be 
implemented by using a traditional DB approach. Such 
systems are those where is well known that if certain 
events occur in the DB and if the DB state satisfies 
certain conditions, then an action or procedure is 
performed in the DB. Therefore, it is necessary to use 
an approach where a DB could have the ability to react 
automatically when an event occur either inside or 
outside DB environment, after this, it can verify the DB 

state to evaluate conditions, and if condition is 
evaluated to true it can execute procedures that modify 
the DB state. In order to provide of active behavior to 
traditional DB, Active Databases (ADBs) were 
introduced. If a human being takes charge to detect the 
event occurrences, verify conditions, and execute 
procedures instead an ADB system, then the system 
may not work well. Thus, it is very important to add 
enough information to DB about the active behavior and 
convert a traditional DB into an Active one. 

Active behavior of a DB can be defined through a 
base of active rules, which has the specification of 
events that will be detected, conditions that will be 
evaluated, and actions or procedures that will be 
performed in the DB. The model most widely used is 
the event-condition-action rule (ECA rule) model, 
whose general form is as follows (Silberschatz, Korth, 
and Sudarshan 1999): 

on event e1 
if condition c1 
then action a1 
ECA rule model works in the following way: when 

an event e1 that modifies the current DB state occurs, if 
condition c1 is evaluated to true against DB state, then 
either an action a1 is executed inside DB or a message 
is sent outside DB. 

An event e1, which can trigger to an ECA rule, can 
be of two types: primitive event or composite event 
(Paton and Diaz 1999). A primitive event is generated 
by the execution of an operation over the DB 
information (insert, delete, update, or select), a DB 
transaction, a clock event (which can be absolute, 
relative, or periodic), or the occurrence of a DB external 
event. On the other hand, composite events (disjunction, 
conjunction, sequence, closure, times, negation, last, 
simultaneous, and any) are formed by the occurrence of 
a combination of primitive and/or composite events. 

Composite events increase the complexity of a 
base of active rules because composite events are 
represented by complex structures, which need to be 
evaluated when a composite event is raised. In the same 
way that a composite event increases the complexity of 
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a base of active rules, relationships between ECA rules 
increase the complexity of a base of active rules. 

Furthermore, active rules must be validated before 
its implementation into a real active database system, in 
order to know its behavior and to verify the presence of 
situations that may produce an inconsistent state in the 
database system. 

This verification can be performed through the 
simulation of the active rules. In this paper an ECA rule 
simulator is presented, which uses a Petri net model, 
named Conditional Colored Petri Net (CCPN), to depict 
ECA rules as a Petri net structure, and with the token 
game animation the event occurrence and rule 
triggering are analyzed in order to detect active database 
problems such as No termination and confluence (Paton 
and Diaz 1999). 

The remainder of the paper is organized as follows. 
Section 2 discusses the related work about active 
database systems; section 3 gives a general description 
of the PN model used to depict ECA rules. Section 4 
describes a software development named ECAPNSim, 
which is used to model, simulate and analyze ECA rule 
sets. Section 5 shows the applicability of ECAPNSim 
by developing an example of ECA rule set in a bank 
enterprise. Finally, Section 6 concludes and gives 
directions for future work. 
 
2. RELATED WORK 
There are several research studies about active 
databases and the development of ECA rules. Relational 
systems, such as starburst (Widom 1996), Postgres 
(Stonebraker and Kemmintz 1991), Ariel (Hanson 
1996), SYBASE (McGoveran and Date 1992), 
INFORMIX (Lacy-Thompson 1990), ORACLE (Hursh 
1991), among others, provide an active functionality 
based on triggers, but they cannot handle composite 
events at all. 

Triggers only supports the composite event 
disjunction, and structure primitive events that are 
defined over a table, moreover, in the action part of 
triggers cannot be executed another trigger.  

On the other hand, Object Oriented DB systems 
(such as HiPAC (Dayal, Blaustein, Buchmann, 
Chakravarthy, Hsu, Ledin, Mc-Carthy, Rosenthal, 
Sarin, Cary, Livny, and Jauhari 1998), EXACT (Paton 
and Diaz 1999), NAOS (Collet and Coupaye 1996), 
Chimera (Ceri, Fraternali, Paraboschi, and Tanca 1996), 
Ode (Gehani and Jagadish 1996), Samos (Gatziu and 
Ditrich 1999)) provide more elements of active systems, 
like the composite event handling. Nevertheless, 
because of the different structures and classes used to 
develop Object Oriented DB systems, there is not a 
standard model to define ECA rules in these systems. 

Few researches have adopted Petri nets as ECA 
rule specification language (Gatziu and Ditrich 1999), 
(Li, Medina-Marín, and Chapa 2002) (Schlesinger and 
Lörincze 1997).  

Colored Petri Nets (CPN) are a high-level Petri nets 
which integrate the strength of Petri nets with the 
strength of programming languages. Petri nets provide 

the primitives for the description of the synchronization 
of concurrent processes, while programming languages 
provide the primitives for the definition of data types 
and the manipulation of their data values (Jensen 1994). 
So it is more suitable for active database than ordinary 
Petri nets since it can manipulate data values. By using 
CPN one can not only revealing the interrelation 
between ECA rules but also capture the operational 
semantics. For these reasons, CPN is very suitable for 
modeling and simulation of active rules. (Schlesinger 
and Lörincze 1997) adopted CPN as rule specification 
language, and they proposed an Action Rule Flow Petri 
Net (ARFPN) model, and a workflow management 
system was illustrated to verify their ARFPN model. 
However, there exists much redundant PN structure for 
using ”begin of”, ”end of” events, conditions and 
actions repeatedly. So, Their CPN model is very large 
even for a small rule set. Therefore, the complexity of 
CPN management increases. In SAMOS (Gatziu and 
Ditrich 1999) a SAMOS Petri Nets (S-PN) was 
proposed for modeling and detection of composite 
events. S-PN is also CPN-like where a different 
perspective for colors was taken. Colors in SPN are 
token types, and one token type is needed for each kind 
of primitive event; however, the framework is not Petri-
net-based. 
 
3. CONDITIONAL COLORED PETRI NET 

DEFINITIONS 
There are several proposals to support reactive 
behaviors and mechanisms inside a DBS, which is best 
known as an ADBS. Nevertheless, these proposals are 
designed for particular systems, and they cannot be 
migrated to any other system, moreover, there is not a 
formal ADBS proposal. 

In this paper, a general model to develop ECA rules 
in an ADBS is proposed, based in PN theory, which can 
be used as an independent engine in any DBS. An 
ADBS must offer both a knowledge model and an 
execution model. Knowledge model specifies the 
elements of the ECA rule, i.e., the event, condition, and 
action part. On the other hand, execution model 
describes the way in that the ECA rule set will be 
executed. 

In knowledge model, each ECA rule element is 
converted into a CCPN element. The event, which 
activates the ECA rule, is converted in a CCPN 
structure that is able to perform the event detection. A 
Primitive event is depicted by a CCPN place, but if the 
event rule is composite, then the corresponding CCPN 
structure is generated. Both types of events finish in a 
place, which will be used as an input place for a 
transition. 

A CCPN transition holds the next element of an 
ECA rule, the conditional part. It verifies if there are 
tokens in its input place and evaluates the conditional 
part of the ECA rule that is holding. Unlike traditional 
PN transitions, CCPN transitions have the ability to 
evaluate boolean expressions. 

432



Finally, the ECA rule element action. When action 
part is executed in a DBS, it modifies the DB state. This 
can be viewed as an event that modifies the DB state. 
Events are represented as CCPN places, thus action part 
is represented by a place too. The difference between 
places for events and places for actions is that places for 
events are input places to transitions, and places for 
actions are output places from transitions. 

CCPN execution model is based in the transition 
firing rule of PN theory. It provides mechanisms to 
create tokens with information, or color, about events 
that are occurring inside the DB. New tokens are placed 
in the corresponding places for those events. This is the 
way in that an ECA rule set is processed and both 
composite and primitive events are detected. By using 
Colored Petri Nets (CPN) is possible to depict ECA 
rules, but only those that have primitive events. ECA 
rules with composite events cannot be represented 
efficiently with CPN. 

Conditional Colored Petri Net (CCPN) (Medina-
Marín 2005b) is a Petri net extension, which inherits 
attributes, and transition firing rule from classical PN 
(Li, Medina-Marín, and Chapa 2002) (Li and Medina-
Marín 2004) (Medina-Marín and Li 2005a). 
Furthermore, CCPN takes concepts from the CPN, such 
as data type definition, color (values) assignation to 
tokens, and data type assignation to places. 

In the CPN case, data type assignation is performed 
for all the places of CPN, on the other hand, in the 
CCPN case, data type assignation for places is not 
general, because the CCPN handles a kind of place 
(virtual place – denoted as dashed circles) with the 
ability to hold different types of tokens. Tokens can 
denote different data structures, according to the tables 
of databases. 

In order to evaluate conditional part of ECA rule 
stored inside a CCPN transition, a function is defined to 
do this task. Evaluation function analyzes the boolean 
expression and matches it with the DB state to 
determine its boolean value. 

Some composite events needs to verify a time 
interval, hence CCPN provides a function that assigns 
time intervals to a CCPN transition, which will be the 
responsible to verify if events are occurring inside time 
interval defined, likewise the evaluation of ECA rule 
condition is done. These types of transition are named 
composite transition. 

Each event occurs in a point of time, thus, CCPN 
provides a functions that assigns a time stamp to every 
token created. Time stamp value is the time instant in 
which the event has occurred. It is useful to verify if an 
event occurred inside a time interval or to detect 
composite events such as sequence and simultaneous. 

Finally, every time that an event occurs, a token 
must be created. CCPN has a function to initialize 
tokens, in other words, when an event occurs in DB, a 
new token is created by CCPN and its attributes are 
initialized to the corresponding event values. The new 
token is put in the place that represents to detected 
event. 

CCPN is an extension of PN that uses CPN 
concepts (Jensen 1994). In order to save event 
information in tokens and to create new tokens with 
data about the action part of the ECA rule, CCPN uses 
the concept of “color” taken from CPN. The values 
stored in tokens are used to evaluate the conditional part 
of the rule stored in the transition of CCPN. CCPN uses 
the multi-set concept from CPN, because a CCPN place 
may have several events at the same time. Unlike CPN, 
CCPN evaluates conditions inside transitions; 
meanwhile CPN evaluates conditions in its arcs. 

Formally, a CCPN is defined as follows: 
 
Definition 1. A conditional colored Petri net 

(CCPN) is a 11-tuple 
CCPN = {Σ, P, T, A, N, C, Con, Action, D, τ , I} 
 
where 
(i) Σ  is a finite set of non-empty types, called color 

sets. 
(ii) P is a finite set of places. P is divided into 

subsets, i.e., P = Pprim  ∪ Pcomp ∪ Pvirtual ∪ Pcopy, where 
Pprim represents primitive events and it is depicted 
graphically as a single circle. Pcomp represents composite 
events negation, sequence, closure, last, history, and 
simultaneous and it is depicted graphically as a double 
circle. Pvirtual represents composite events conjunction, 
disjunction, and any and it is depicted graphically as a 
single dashed circle. And, Pcopy, is a set which is used 
when two or more rules are triggered by the same event 
and it is depicted graphically as a double circle where 
the interior circle is a dashed one. 

(iii) T is a finite set of transitions. T = Trule ∪ Tcopy 
∪ Tcomp., where Trule represents the set of rule type 
transitions and it is depicted graphically as a rectangle. 
Tcopy is the set of copy type transitions and it is depicted 
graphically as a single bar. Tcomp is the set of composite 
type transitions and it is depicted graphically as a 
double bar. 

(iv) A is a finite set of arcs. 
(v) N is a node function. It is defined from A to P × 

T ∪ T × P. 
(vi) C is a color function. It is defined from P to Σ. 
(vii) Con is a condition function. It evaluates either 

the rule condition if t ∈ Trule or it evaluates the time 
interval when t  ∈ Tcomp. 

(viii) Action is an action function. It creates tokens 
according to action rules. 

(ix) D is a time interval function. 
(x) τ is a timestamp function. 
(xi) I is an initialization function. 

 
4. ECAPNSIM 
Active rules development is an activity that needs to be 
performed carefully. Nowadays, there are few systems 
(Schlesinger and Lörincze 1997) which perform the 
analysis and debug the ECA rule base. Most of 
commercial ADBs (Hanson 1996), (Widom 1996) 
provide a syntax to ECA rule definition, however static 
analysis of ECA rules cannot be performed inside these 
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systems and the ECA rule definition is only in a text 
way. 
 ECAPNSim (ECA Petri Nets Simulator) was 
developed under MAC OS X Server in Java. Taking 
advantage of Java portability, ECAPNSim can be 
executed in different operating systems. As an engine of 
ECA rules, ECAPNSim can be connected with any 
relational database systems such as Postgres, MS 
Access, Oracle, and Visual Fox Pro. 
 
4.1 ECAPNSim architecture 
ECAPNSim architecture consists of two building 
blocks: ECAPNSim Kernel and ECAPNSim tools 
environment (figure 1). ECAPNSim Kernel provides 
active functionality to passive database. it consists of 
CCPN Rule Manager, CCPN rule base, Composite 
Event Detector, and Rule Execution Component. 
ECAPNSim tools environment has a set of tools used 
by the ECA rule developers. Tools environment is 
composed by ECA rule editor, analyzer of no-
termination problem, converter of ECA rules to CCPN, 
CCPN visualizer/editor and explanation components, 
termination analyzer and runtime tools. 

ECAPNSim offers two modalities. In Simulation 
mode, users can simulate the behavior of the ECA rule 
base modeled by depositing tokens into the CCPN 
manually. And, in Real mode, the CCPN is executed by 
state modification of the connecting DBS. 

 

Figure 1: ECAPNSim architecture. 
 
4.2 ECAPNSim Design 
ECAPNSim offers a graphical and visual interface 

to represent ECA rule bases by CCPN model. Like any 
PN editor, ECAPNSim simulates the behavior of ECA 
rules by executing the CCPN model. Meanwhile 
simulation is running, problems like no termination and 
confluence can be observed obviously in the CCPN, 
hence ECA rule developer can modify the rule base to 
improve it. 

The core of ECAPNSim is CCPN models. 
ECAPNSim contains a module to generate a CCPN 
structure from an ECA rule base definition written in a 
text file automatically. Or a CCPN model can be edited 
directly from a ECAPNSim user. 

ECAPNSim supports CCPN design and edition 
from an ECA rule base, which can be moved to another 
position in the visualization panel. Moreover, because 
of there are large ECA rule bases, ECAPNSim will 
generate large CCPN structures, so it has zoom buttons 

to either increase or decrease the CCPN size. 
Simulation speed can be controlled through a slide. 
Finally, the graphical interface has tools and icons to 
edit a CCPN, simulate a CCPN behavior, and CCPN 
file management. (figure 2). 
 

 
Figure 2: ECAPNSim environment. 

 
4.3 Incorporation of distribution functions 
ECAPNSim was enhanced with the addition of 
distribution functions, which are useful to simulate and 
to analyze the event occurrence in an active rule base.  

Distribution functions which are available in 
ECAPNSim are beta, binomial, Cauchy, chi square, 
exponential, gamma, geometric, uniform, and weibull, 
among others. The use of this set of functions depends 
on the active rule base that will be simulated. 

Each place in the CCPN has the property for the 
definition of a distribution function, according to the 
frequency of the event occurrence. The values for the 
functions can be determined by a statistical analysis of 
the data about the real occurrences of the events that fire 
ECA rules. 

Random values which are generated by distribution 
functions are used as inter arrival time of events in 
ECAPNSim. Each time an event occurrence is 
simulated, a token with information about that event is 
created, and it is putted into the place that represents the 
corresponding event. Hence, the token game animation 
is started and ECA rule developer can detect 
inconsistencies in ECA rule set. 

 
5. CASE OF STUDY 
In order to show the modeling of a base of active rules 
as a CCPN, four ECA rules are converted into a CCPN, 
whose description is as follows: 
Rule 01 : When an employee is inserted in the office 
DB and the production of employee’s department is 
modified, if the production is greater than $900.00, then 
the employee’s bonus is updated to $100.00. 
Rule 02 : When either salary or bonus of an employee is 
modified, if the salary is increased by more than 
$200.00 or the bonus is increased by more than $50.00, 
then the employee’s rank is increased too. 
Rule 03 : When the employee’s rank is updated, if rank 
value is greater than 15, then the employee’s 
department budget is added with $1000.00 
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Rule 04 : When a department budget is modified, if the 
budget is greater than $20,000.00, then the department 
production is increased of 3%. 

Definition of database tables needed to this rules 
are as follows: 

DEP(TheDep,Production,Budget). 
EMP(ItsDep,TheEmp,Salary,Bonus,Rank). 
CCPN obtained from the rules listed above is 

showed in figure 3. 
From the incidence matrix showed in figure 4, and 

from the CCPN picture showed in figure 3, it can be 
observed that there exists a cyclic path in the rule firing, 
however, the fact that there is a cyclic in the 
connections of CCPN elements is not a sufficient 
condition to ensure that there is a no termination 
problem. In order to imitate the behavior of ECA rule 
firing according to a real situation, event occurrences 
are modeled through the following functions: 

E0 : Insert an employee. Uniform(4,4). 
E1 : Update the production value of an department. 

Constant value of one day. 
E3 : Update employee’s salary. Uniform(315,50) 
E4 : Update employee’s bonus. Uniform(95,17) 
E6 : Update employee’s rank. Uniform(103,24) 
E7 : Update department budget. Uniform(365,74) 
The parameters are considered in days. 
The evaluation of the conditional part has 

probability of occurrence of 50% for true and 50% for a 
false result. 

 

 
Figure 3. CCPN obtained from four ECA rules. 

 
With these distribution functions assigned to each 

input place that represents event occurrence and running 
the simulation for a time corresponding to 10 years, the 
maximum value for the quantity of places visited by the 
same token was 10, i.e., the same token passed through 
ten places in the cyclic path, and the average value was 

1.29 places visited; so this ECA rule base has the 
property of termination in its rule triggering. 

 
6. CONCLUSION 
Currently there are database management systems that 
support ECA rule definition by the use of “triggers”, 
however “triggers” have several restrictions that limits 
the power that an active database must offer. 

On the other side, there are research prototypes that 
support ECA rule definition, too; and they are more 
powerful because composite events such as conjunction, 
disjunction, etc., can de defined.  

ECAPNSim is an interface that generates a CCPN 
from an ECA rule definition typed in the on-if-then 
form. It carries out the simulation of the CCPN 
behavior according to the event occurrence in a random 
way, which depends on the distribution function 
assigned. 

 

 
Figure 4. Incidence matrix of the CCPN showed in 
figure 3. 

 
ECAPNSim has been improved with the addition of 

distribution functions in each place that denote an event 
occurrence. 

A study area for active database is computer nets, 
where active behavior can be implemented in order to 
monitor traffic of LAN networks; an automatic reaction 
can be set by an active database system, instead of a 
human being monitoring. When suspicious events occur 
in the net, then ECA rules can be triggered and perform 
the corresponding action to maintain the stability in the 
net. 

Another interesting area of application is in 
distributed database systems, where the development of 
ECA rules needs to consider the event occurrence in 
different servers. 

There are several interesting areas where active 
databases are applied, mainly where systems need an 
automatic reaction and the response time must be 
immediate. 

Nevertheless, ECA rule development implies that 
the ECA rule developer must be careful to avoid 
inconsistency states in the database system. 
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