
EUROSIM Uciversity of Ljl(bJjana
~eraJ:iQn of Euro~T) Faculty c{ Ei(,':tricai E!,,~ijt1f.sri!~'<!,

Simulation Soci~J:i$ ·

9-13 September, 2007, Ljubljana, Sl.9VENIA '~'J.f.g~,(, Iri'-'
~ ~-:-~.:",_.,'1;).EUROS-I M 2-007

« ,~< .",. ("" :6~
" {<2. ":. -./ ')(::.ir

'001 •
9:13 September, 2007, Ljubljana, SLOVENIAProceedings of the .EUROSI-M2007

6th EUROSIM Congress
Edited byon ·Modelling and Simulation ~!; Proceedings of the ...
Borut Zupancic 6th EUROSIM Congress<. Rihard Karba - . on Modelling and Simulation Saso §lazic.~"<l

A PETRI NET BASED SIMULATOR FOR ACTIVE

DATABASE SYSTEMS

Joselito Medina-MarinI, Marco A. Montufar-BenitezI, Aurora Perez Rojas!, Oscar

Montano-Arango!, Jose Ramon Corona-ArmentaI, Jaime Garnica-Gonzalez!

IAutonomous University of Hidalgo State,

Advanced Research in Industrial Engineering Center,

Carr. Pachuca-Tulancingo Km. 4.5, Col. Carboneras,

Pachuca, Hidalgo, Mexico

jmedina@uaeh.edu.mx (Joselito Medina-Marin)

Abstract

Active database systems were introduced to extend the database functionality. As well as a
repository of data, active database can detect the occurrence of events in a database system
and react automatically to that event occurrence and execute certain actions either inside or
outside the database. This behavior is specified by means of ECA (event-condition-action)
rules, i.e., when an event has occurred, if the condition is evaluated to true, then an action is
executed. The development of a set of ECA rules involve the knowledge of the database
structure and the relationships that can exist among the ECA rules, which may produce an
inconsistent state in the database. Therefore, it is so important to verify a rule set before its
implementation in the active database, and one method to determine if a rule set will produce
consistent states of the database is through the simulation of ECA rule firing. In this paper a
simulator for active databases, named ECAPNSim, is described. ECAPNSim uses the
definition of ECA rules like a structure of an extended Petri net model, the Conditional
Colored Petri Net (CCPN). Conditional Colored Petri Net definition involves the knowledge
and execution model, which describe the features that an active database system must have.
Furthermore, in order to simulate the occurrence of database events, ECAPNSim has been
enhanced with the addition of distribution functions for each place that denote events of the
ECA rule set.

Keywords: Petri net, Active Database, ECA rules, Simulation.

Presenting Author's biography

Joselito Medina-Marin. He received the M.S. and Ph.D. degrees in
electrical engineering from the Research and Advanced Studies Center of
the National Polytechnic Institute at Mexico, in 2002 and 2005,
respectively.
He is presently a Professor of the Advanced Research in Industrial
Engineering Center at the Autonomous University of Hidalgo State at
Pachuca, Hidalgo, Mexico. His current research interests include Petri
net theory and its applications, active databases, simulation, and
programming languages.

1 Introduction

Traditional databases (DB) were developed to store a
huge amount of information. In this DB type the
information only is accessed by insert, delete, update
and query algorithms, which were previously
programmed in a Data Manipulation Language (DML)
by the DB administrator. The set of all this data
manipulation programs is the Database Management
System (DBMS). However, the execution of those
programs is perfOImed only by the request of either a
DB user or the DB administrator.

Nevertheless, there are systems that cannot be
implemented by using a traditional DB approach.
Such systems are those where is well known that if
certain events occur in the DB and if the DB state
satisfies certain conditions, then an action or
procedure is performed in the DB. Therefore, it is
necessary to use an approach where a DB could have
the ability to react automatically when an event occurs
either inside or outside DB environment, after this, it
can verify the DB state to evaluate conditions, and if
condition is evaluated to true it can execute
procedures that modify the DB state. In order to
provide of active behavior to traditional DB, Active
Databases (ADBs) were introduced. If a human being
takes charge to detect the event occurrences, verify
conditions, and execute procedures instead an ADB
system, then the system may not work well. Thus, it is
very important to add enough information to DB about
the active behavior and convert a traditional DB into
an Active one.

Active behavior of a DB can be defined through a
base of active rules, which has the specification of
events that will be detected, conditions that will be
evaluated, and actions or procedures that will be
perfOImed in the DB. The model most widely used is
the event-condition-action rule (ECA rule) model,
whose general fOlm is as follows [1]:

on event el

ifcondition c 1

then action al

ECA rule model works in the following way: when an
event e 1 that modifies the current DB state occurs, if
condition c 1 is evaluated to true against DB state, then
either an action al is executed inside DB or a message
is sent outside DB.

An event el, which can trigger to an ECA rule, can be
of two types: primitive event or composite event [2].
A primitive event is generated by the execution of an
operation over the DB information (insert, delete,
update, or select), a DB transaction, a clock event
(which can be absolute, relative, or periodic), or the
occurrence of a DB external event. On the other hand,
composite events (disjunction, conjunction, sequence,
closure, times, negation, last, simultaneous, and any)

are formed by the occurrence of a combination of
primitive and/or composite events.

Composite events increase the complexity of a base of
active rules because composite events are represented
by complex structures, which need to be evaluated
when a composite event is raised. In the same way
that a composite event increases the complexity of a
base of active rules, relationships between ECA rules
increase the complexity of a base of active rules.

Furthermore, active rules must be validated before its
implementation into a real active database system, in
order to known its behavior and to verify the presence
of situations that may produce an inconsistent state in
the database system.

This verification can be performed trough the
simulation of the active rules. In this paper an ECA
rule simulator is presented, which uses a Petri net
model, named Conditional Colored Petri Net (CCPN),
to depict ECA rules as a Petri net structure, and with
the token game animation the event occurrence and
rule triggering are analyzed in order to detect active
database problems such as No termination and
confluence [2].

2 Related work

There are several research studies about active
databases and the development of ECA rules.
Relational systems, such as starburst [3] , Postgres [4],
Ariel [5], SYBASE [6], INFORMIX [7], ORACLE
[8], among others, provide an active functionality
based on triggers, but they cannot handle composite
events at all.

Triggers only supports the composite event
disjunction, and structure primitive events that are
defined over a table, moreover, in the action part of
triggers cannot be executed another trigger.

On the other hand, Object Oriented DB systems (such
as HiPAC [9], EXACT [2], NAOS [10], Chimera [11],
Ode [12], Samos [13]) provide more elements of
active systems, like the composite event handling.
Nevertheless, because of the different structures and
classes used to develop Object Oriented DB systems,
there is not a standard model to define ECA rules in .
these systems.

Few researches have adopted Petri nets as ECA rule
specification language [13], [14] [17]. In [17], the
authors proposed an Action Rule Flow Petri Net
(ARFPN) model, and a workflow management system
was illustrated to verify their ARFPN model.
However, their model has much redundant structure
because of using many BEGIN OFs, END OFs to
describe events, conditions and actions. SAMOS is a
successful ADB system, Petri nets is partially used for
composite event detection and termination analysis.
But, the framework is not Petri-net-based.

Colored Petri Nets (CPN) is a high-level Petri nets
which integrates the strength of Petri nets with the
strength of programming languages. Petri nets provide
the primitives for the description of the
synchronization of concurrent processes, while
programming languages provide the primitives for the
definition of data types and the manipulation of their
data values [18]. So it is more suitable for active
database than ordinary Petri nets since it can
manipulate data values. By using CPN one can not
only revealing the interrelation between ECA rules but
also capture the operational semantics. For these
reasons, CPN is very suitable for modeling and
simulation of active rules . References [17] adopted
CPN as rule specification language. However, there
exists much redundant PN structure for using "begin
of', "end of' events, conditions and actions
repeatedly. So, Their CPN model is very large even
for a small rule set. Therefore, the complexity of CPN
management increases. In SAMOS a SAMOS Petri
Nets (S-PN) was proposed for modeling and detection
of composite events. S-PN is also CPN-like where a
different perspective for colors was taken. Colors in S­
PN are token types, and one token type is needed for
each kind of primitive event.

3 Conditional Colored Petri Net
definitions

There are several proposals to support reactive
behaviors and mechanisms inside a DBS, which is
best known as an ADBS. Neveliheless, these
proposals are designed for particular systems, and they
cannot be migrated to any other system, moreover,
there is not a formal ADBS proposal.

In this paper, a general model to develop ECA rules in
an ADBS is proposed, based in PN theory, which can
be used as an independent engine in any DBS. An
ADBS must offer both a knowledge model and an
execution model. Knowledge model specifies the
elements of the ECA rule, i.e., the event, condition,
and action part. On the other hand, execution model
describes the way in that the ECA rule set will be
executed.

In knowledge model, each ECA rule element is
converted into a CCPN element. The event, which
activates the ECA rule, is converted in a CCPN
structure that is able to perform the event detection. A
Primitive event is depicted by a CCPN place, but if
the event rule is composite, then the corresponding
CCPN structure is generated. Both types of events
finish in a place, which will be used as an input place
for a transition.

A CCPN transition holds the next element of an ECA
rule, the conditional part. It verifies if there are tokens
in its input place and evaluates the conditional part of
the ECA rule that is holding. Unlike traditional PN
transitions, CCPN transitions have the · ability to
evaluate boolean expressions.

Finally, the ECA rule element action. When action
pali is executed in a DBS, it modifies the DB state.
This can be viewed as an event that modifies the DB
state. Events are represented as CCPN places, thus
action part is represented by a place too . The
difference between places for events and places for
actions is that places for events are input places to
transitions, and places for actions are output places
from transitions.

CCPN execution model is based in the transition firing
rule of PN theory. It provides mechanisms to create
tokens with information, or color, about events that
are occurring inside the DB. New tokens are placed in
the corresponding places for those events. This is the
way in that an ECA rule set is processed and both
composite and primitive events are detected.

By using Colored Petri Nets (CPN) is possible to
depict ECA rules, but only those that have primitive
events. ECA rules with composite events cannot be
represented efficiently with CPN.

Definition Conditional Colored Petri Net (CCPN)
[19] is a Petri net extension, which inherits attributes,
and transition firing rule from classical PN [14] [IS]
[16]. Furthermore, CCPN takes concepts from the
CPN, such as data type definition, color (values)
assignation to tokens, and data type assignation to
places.

In the CPN case, data type assignation is performed
for all the places of CPN, on the other hand, in the
CCPN case, data type assignation for places is not
general, because the CCPN handles a kind of place
(virtual place) with the ability to hold different types
of tokens.

In order to evaluate conditional part of ECA rule
stored inside a CCPN transition, a function is defmed
to do this task. Evaluation f1llction analyzes the
boolean expression and match it with the DB state to
determine its boolean value.

Some composite events needs to verify a time interval,
hence CCPN provides a function that assigns time
intervals to a CCPN transition, which will be the
responsible to verify if events are occurring inside
time interval defined, likewise the evaluation of ECA
rule condition is done. These types of transition are
named composite transition.

Each event occurs in a point of time, thus, CCPN
provides a functions that assigns a time stamp to every
token created. Time stamp value is tlJe time instant in
which the event has occurred. It is useful to verify if
an event occurred inside a time interval or to detect
composite events such as sequence and simultaneous.

Finally, every time that an event occurs, a token must
be created. CCPN has a function to initialize tokens,
in other words, when an event occurs in DB, a new
token is created by CCPN and its attributes are
initialized to the corresponding event values. The new

token is put in the place that represents to detected
event.

CCPN is an extension of PN that uses CPN concepts
[18]. In order to save event information in tokens and
to create new tokens with data about the action part of
the ECA rule, CCPN uses the concept of "color" taken
from CPN. The values stored in tokens are used to
evaluate the conditional part of the rule stored in the
transition of CCPN. CCPN uses the multi-set concept
from CPN, because a CCPN place may have several
events at the same time. Unlike CPN, CCPN evaluates
conditions inside transitions; meanwhile CPN
evaluates conditions in its arcs.

4 	 ECAPNSim

ECAPNSim is a graphical interface developed as a
part of this research, in order to convert automatically
ECA rule sets into CCPN structures. Furthelmore,
ECAPNSim can provide of active functionality to
relational databases by establishing communication
via ODBC-JDBC drivers . ECAPNSim detects events
in the DB, it performs the evaluation of condition,
stored in transitions t E T rule, and it executes actions
inside the DB, according to the ECA rule set
represented as a CCPN.

ECAPNSim has two modalities: in the first one,
ECAPNSim works as a PN simulator, where the
simulation of the ECA rule set behavior is performed;
and in the second one, ECAPNSilt). works as the
engine of an active database, in other words,
ECAPNSim is placed as an upper layer over a DB
system, ECAPNSim "listen" the events that modify
the DB state and if there is any event that is in the
CCPN as a place, then ECAPNSim takes information
about the event and create the token about the event,
after that, ECAPNSim places the new token in its
corresponding place and starts the token game
animation (ECA rule firing) .

4.1 	 Incorporation of distribution functions

ECAPNSim was enhanced with the addition of
distribution functions, which are useful to simulate
and to analyze the event OCCUlTence in an active rule
base.

Distribution functions which are able in ECAPNSim
are beta, binomial, Cauchy, chi square, exponential,
gamma, geometric, uniform, and weibull, among
others. The use of this set of functions depends on the
active rule base that will be simulated.

Each place in the CCPN has the property for the
definition of a distribution function, according to the
frequency of the event occurrence. The values for the
functions can be determined by a statistical analysis of
the data about the real OCCUlTences of the events that
fire ECA rules .

5 Conclusion

Currently there are database management systems that
support ECA rule definition by the use of "triggers",
however "triggers" has several restrictions that limits
the power that an active database must offer.

On tbe other side, there are research prototypes that
support ECA rule definition, too; and they are more
powerful because composite events such as
conjunction, disjunction, etc ., can de defined.
Nevertheless, like database management systems,
ECA rule definition is performed in the syntax of
every active database.

ECAPNSim is an interface that generates a CCPN
from an ECA rule definition typed in the on-if-then
form. It carries out the simulation of the CCPN
behavior according to the event occurrence in a
random way, which depends on the distribution
function assigned.

ECAPNSim has been improved with the addition of
distribution functions in each place that denote an
event occurrence.

6 References

[1] 	 A. Silberschatz, H. F. Korth, S. Sudarshan,
Database System Concepts, Third Edition,
McGraw-Hill, 1999.

[2] 	 N. W. Paton, O. Diaz, Active Database Systems,
ACM Computing Surveys, Vol. 31, No.1, pp. 64­
103,1999.

[3] 	 J. Widom, The Starburst Active Database Rule
System, IEEE Transactions on Knowledge and
Data Engineering, Vol. 8, No.4, August 1996.

[4] 	 M. Stonebraker, G. Kerrunintz, The POSTGRES
Next-Generation Database Management System,
Communications of the ACM, Vol. 34, No. 10,
October 1991 .

[5] 	 E.N. Hanson, The Design and Implementaci6n of
the Ariel Active Database Rule System, IEEE
Transactions on Knowledge and Data
Engineering, Vol. 8, No.1 , 1996.

[6] 	 D. McGoveran, CJ . Date, A guide to SYBASE
and SQL Server: a user's guide to the SYBASE
product, Sybase, Inc, 1992.

[7] T. Lacy-Thompson, 	INFORMIX-SQL, A tutorial
and reference, ISBN-0-13-465121-9, Ed. Prentice
Hall, 1990.

[8] 	 CJ. Hursh, J.L. Hursch, Oracle SQL Developer's
Guide, ISBN-0-8306-2529-1, Ed. McGraw-Hill,
1991.

[9] 	 U. Dayal, B. Blaustein, A. Buchmann, U.
Chakravarthy, M. Hsu, R. Ledin, D . Mc-Carthy,
A. Rosenthal, S. Sarin, MJ. Cary, M. Livny and

--.--- ­

R. Jauhari, The HiPAC Project: combining active
database and timing constraints, SIGMOD

[10]e. 	 Collet, T. Coupaye, Composite Events in
NAOS. In 7th International Conference and
Workshop on Database and Expert Systems
Applications. (DEXA'96) . LNCS 1134, pages
244- 253, Zurich, Switzerland. 1996.

[11]S. Ceri, P . Fraternali, S. Paraboschi, L. Tanca,
Active Rule MAnagement in Chimera, Active
Database Systems: Triggers and Rules for
Advanced Database Processing, Ed. Jennifer
Widom and Stefano Ceri, pages 151-176. 1996.

[12]N. 	 Gehani, H.V. Jagadish, Active Database
Facilities in Ode, Active Database Systems:
Triggers and Rules for Advanced Database
Processing, Ed. Jennifer Widom and Stefano Ceri.
1996, pages 207-232 .

[13]E. Gatziu, K.R.Ditrich, SAMOS, Active Rules in
Database Systems, Norman W. Paton, Editor.
1999, pp. 233-248 .

[14]X. Li, J. Medina-Marin, and S.V. Chapa, A
Structural Model of ECA Rules in Active
Database, Mexican International Conference on
Artificial Intelligence (MICAI'02), Merida,
Yucatan, Mexico, April 22-26, 2002

[15]X. Li, J. Medina Marin, Composite Event
Specification in Active Database Systems: A Petri
Net Approach, IEEE International Conference on
System, Man, and Cybernetics, The Hague, The
Netherlands, Oct, 2004.

[16]J. Medina Marin, X. Li, An Active rule base
Simulator based on Petri Nets, The Third
International Workshop on Modelling,
Simulation, Verification and Validation of
Enterprise Information Systems MSVVEIS-2005,
Miami, USA., May 24,2005.

[17]M. Schlesinger, 	G. Lorincze, Rule modeling and
simulation in ALFRED, the 3rd.1nternational
workshop on Rules in Database (RIDS'97) (or
LNCS 1312), Sk6vde, Sweden, June, pp. 83-99,
1997

[18]K. Jensen, An Introduction to the Theoretical
Aspects of Colored Petri Nets. Lecture Notes in
Computer Science: A Decade of Concurrency,
vol. 803, edited by J. W. de Bakker, W.-P. de
Roever, G. Rozenberg , Springer-Verlag, pp. 230­
272. 1994.

[19]J. Medina Marin, Desarrollo de reglas ECA, 	un
enfoque de red de Petri, Ph. D. Dissertation,
CINVESTAV-IPN, Mexico, 2005.

