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A method for the study of systems with renewable resources is proposed. The individual
and the group parameters are separated and a discretization of time is carried out. We
obtain equilibrium proportions which are functional equations with shift. A cyclic model
and an open model are considered. Conditions for the existence and uniqueness of the solu-
tion are formulated for the cyclic model. For the open model, the system’s evolution is
analyzed.
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1. Introduction

The systems whose state depends on time and whose resources are renewable form an important class of general sys-
tems. In this work, a study of the evolution of systems with one renewable resource is presented. Separation of the individual
parameter and the group parameter, and discretization of time lead us to functional equations with shift. The theory of linear
functional operators with shift is the adequate mathematical instrument for the investigation of such systems.

Cyclic model, where the initial state of the system coincides with the final state, is investigated. The balance equation of
the cyclic model represents a lineal functional equation with shift. We formulate conditions of invertibility for the operator
of the balance equation in Holder spaces with wight, in other words, we find conditions for existence and uniqueness of the
equilibrium state of the system. The cyclic model is useful for the investigation of different economic and ecological
problems.

Open model, where the final state of the system S does not coincide with the initial state, is considered. The state of a
natural system cannot be negative. An interpretation of the negative values of the group parameter is given. The system’s
evolution is analyzed.

A great number of works is dedicated to systems with renewable resources, for example [1–3]. The base of the mathe-
matical apparatus consists of differential equations in which the sought for function is dependent on time.

Our approach presupposes discretization of the processes with respect to time. In essence, we move away from the con-
tinuous tracking of changes in the system, which is to say, from a continuous time variable. A special attention is given to a
detailed study of the dependence of the group parameter on the individual parameter. One example of this dependence
would be the distribution of the quantity of organisms by weight in the population under consideration. For us, not only
the total weight of organisms is important, but also the number of organisms of a given weight present in the system at sam-
ple time-points.
. All rights reserved.
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The focus of this article is on presenting a novel approach to modelling systems with renewable resources and on apply-
ing functional operators with shift to the analysis of resulting models.
2. Conception of modelling and analysis of the system’s evolution

Let S be a system with a resource k and let T be a time interval. The choice of T is related to periodic processes taking place
in the system and to human interference.

The resource k is represented by a set of values of the individual parameter xi; i ¼ 1;2; . . . ;n,
xmin ¼ x1 < x1 < x2 < � � � < xn ¼ xmax:
We introduce the function mðxi; tÞ which expresses a quantitative estimate of the elements with the individual parameter xi

at the time t.
Let us consider a couple of examples: the system with a fish resource r and the system with a sand resource p. For fish, the

eight is the individual parameter of r and x1; x2; . . . ; xnr are the values of this individual parameter . The number of fish with a
fixed weight xi is a parameter of the group mðxiÞ; i ¼ 1;2; . . . ;nr .

For sand, we can assign to particles a characteristic size represented by diameter. Diameter is an individual parameter of
the resource p, its values are z1; z2; . . . ; znp . The volume of the particles of the diameter zi is a parameter of the group
lðziÞ; i ¼ 1;2; . . . ;np.

Taking time into account, the function mðxi; tÞ is the number of fish of the weight xi at the time t and lðzi; tÞ is the volume
of the particles of diameter zi at the time t.

Let t0 be the initial time and S the system under consideration.
We will follow two principles:

I. On modelling the system the description of changes that occur on the interval ðt0; t0 þ TÞ will be substituted by fixing
of the final results at the moment t0 þ T;

II. The principle of separation of an individual parameter x, a group parameter m and the study of dependence of m from x,
m ¼ mðxÞ.

Passing from a discrete description on to a continuous description we obtain the function m ¼ mðx; tÞ; 0 < x < xmax which is
the density of the objects of the parameter x at the time t.

The integral of the function within the limits of the individual parameters is
mðx1; tÞ ¼
Z x1

0
mðx; tÞdx; mðxi; tÞ ¼

Z xi

xi�1

mðx; tÞdx; i ¼ 2;3; . . . ;n:
The initial state of the system S at the time t0 is represented as the discrete distribution of the group parameter by the
individual parameter
mðxi; t0Þ ¼ mðxiÞ ð1Þ
and as the density function
mðx; t0Þ ¼ mðxÞ: ð2Þ
We will now analyze the system’s evolution. In the course of time the elements of the system can change their individual
parameter – fish can change their weight, and sand particles can undergo modifications.

For example, the distribution of the values of the group parameter m by the values of the individual parameter of k at the
final time t ¼ t0 þ T
mðxi; t0 þ TÞ ¼ m
1
2

xi

� �
means that all of the system’s elements have doubled their individual parameter relative to the initial time t ¼ t0 þ T , that is,
the fish grew and their weight doubled, and the particle size doubled.

In general, modifications in the distribution of the group parameters by the individual parameters is represented by a dis-
placement. The state of the system S at the time t ¼ t0 þ T in the discrete state is
mðxi; t0 þ TÞ ¼ mðb½xi�Þ
in terms of density we have:
mðx; t0 þ TÞ ¼ d
dx

bðxÞmðbðxÞÞ ð3Þ
During the period j0 ¼ ½t0; t0 þ T� an exception can be taken as the result of human economic activity (fishery, extraction
of sand), which is represented by a summand g, so that we have a new distribution between the parameters
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mðxi; t0 þ TÞ ¼ m½bðxiÞ� � gðxiÞ
in the discrete description and in the continuous case
mðx; t0 þ TÞ ¼ d
dx

bðxÞmðbðxÞÞ � gðxÞ:
We take natural mortality into account with the coefficient d
mðxi; t0 þ TÞ ¼ dðxiÞm½bðxiÞ� � gðxiÞ
in the discreet form and in the continuous form:
mðx; t0 þ TÞ ¼ dðxÞ d
dx

bðxÞmðbðxÞÞ � gðxÞ:
If natural or artificial entrance of elements to and exit of elements from the system (plant of fish, migration) have taken
place, we will account for it by adding a term p.

The process of reproduction will be represented by the term rðxÞmðxÞ. Thereby, the final state of the system at the moment
½t0 þ T� is described as follows
mðxi; t0 þ TÞ ¼ dðxiÞmðbðxiÞÞ þ rðxÞmðxÞ � gðxiÞ þ pðxiÞ ð4Þ
in the discreet form and in the continuous form:
mðx; t0 þ TÞ ¼ dðxÞ d
dx

bðxÞmðbðxÞÞ þ rðxÞmðxÞ � gðxÞ þ pðxÞ: ð5Þ
3. Cyclic model, equilibrium proportion

Let our goal be to find an equilibrium state of the system S. That is to find such an initial distribution of the group param-
eter by the individual parameter mðxi; t0Þ that after all transformations during the time interval ðt0; t0 þ TÞÞ it would coincide
with the final distribution
mðxi; t0Þ ¼ mðxi; t0 þ TÞ; i ¼ 1;2; . . . ; n; ð6Þ
mðx; t0Þ ¼ mðx; t0 þ TÞ; 0 < x < xmax: ð7Þ
From here, substituting Eqs. (1), (2), (4), (5) into (6), (14), it follows
mðxiÞ ¼ dðxiÞmðbðxiÞÞ þ rðxÞmðxÞ � gðxiÞ þ pðxiÞ ð8Þ
in the discrete form and in the continuous form
mðxÞ ¼ dðxÞ d
dx

bðxÞmðbðxÞÞ þ rðxÞmðxÞ � gðxÞ þ pðxÞ: ð9Þ
Eqs. (8), (9) are called equilibrium proportions or balance equations. A model is called cyclic if the state of the system S at the
initial time t0 coincides with the state of the system S at the final time t0 þ T .

Rewrite the equation with discreet distributions
aðxiÞmðxiÞ � dðxiÞm½bðxiÞ� ¼ f ðxiÞ; ð10Þ
i ¼ 1;2; . . . ;n; xmin ¼ x1 < x1 < x2 < � � � < xn ¼ xmax;
where
aðxiÞ ¼ 1� rðxiÞ; f ðxiÞ ¼ pðxiÞ � gðxiÞ
and with continuous distributions
aðxÞmðxÞ � bðxÞm½bðxÞ� ¼ f ðxÞ; x 2 ½0; xmax�; ð11Þ
where
aðxÞ ¼ 1� rðxÞ; bðxÞ ¼ dðxÞb0ðxÞ; f ðxÞ ¼ pðxÞ � gðxÞ:
Application of the principles I and II while modelling the systems with renewable resources leads us to functional oper-
ators with shift.

Let us make some observations on the cyclic model of the system S.
We will now clarify the appearance of the additional factor b0ðxÞ in (3).
Consider a group of elements whose individual parameters x would be between 1 and n : 1 6 x 6 n at the initial time t0,

and examine its transformation in the period T. In the course of time, the individual parameters of the elements are changed
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and by the final moment t0 þ T the individual parameters of the group well be between að1Þ and aðnÞ : að1Þ 6 x 6 aðnÞ. The
number of the elements of the group does not change in the period T. Therefor the integral equality is fulfilled:
Z n

1
mðx; t0Þdx ¼

Z aðnÞ

að1Þ
mðx; t0 þ TÞdx; 0 6 1 6 n 6 xmax: ð12Þ
Let the function b be the inverse of a,
bðxÞ ¼ a�1ðxÞ
After the substitution
z ¼ aðxÞ; x ¼ a�1ðzÞ; dx ¼ d
dz

a�1ðzÞdz;
in the first integral of (12) we obtain
Z aðnÞ

að1Þ
m½bðzÞ; t0�

d
dz

bðzÞdz ¼
Z aðnÞ

að1Þ
mðx; t0 þ TÞdx; 0 6 1 6 n 6 xmax:
The equality is fulfilled for each 1; n, 0 6 1 6 n ¼ xmax; from here follows
m½bðxÞ; t0�
d
dx

bðxÞ ¼ mðx; t0 þ TÞ; 0 6 1 6 n 6 xmax;
and, consequently, from (2) follows (3):
mðx; t0 þ TÞ ¼ d
dx

bðxÞmðbðxÞÞ; 0 6 x 6 xmax:
Let us consider the following example. Let G be a set of organisms of one type, where the individual parameter is the
weight of those organisms, and the value of the group parameter is the quantity of the organisms with the weight x,
xmax ¼ 1; aðxÞ ¼ x2; 1 ¼ 1
3
; n ¼ 1

2
:

The function aðxÞ ¼ x2; x 2 ½0;1�means that the organisms which had at the time t0 the weight x have during the period T
lost their mass and at the time t0 þ T will have the weight x2. The quantity of the organisms that weighted between 1

3 6 x 6 1
2

at the time t0 is equal to the quantity of the organisms that weighted between 1
9 6 x 6 1

4 at the time t0 þ T. Therefore
Z 1
2

1
3

mðx; t0Þdx ¼
Z 1

4

1
9

mðx; t0 þ TÞdx:
After the substitution
z ¼ x2; x ¼
ffiffiffi
z
p
; dx ¼ 1

2
ffiffiffi
z
p

dz
in the first integral, we have
Z 1
4

1
9

mð
ffiffiffi
z
p
; t0Þ

1
2

ffiffiffi
z
p

dz ¼
Z 1

4

1
9

mðx; t0 þ TÞdx:
Therefore, we obtain
mð
ffiffiffi
x
p

; t0Þ
1

2
ffiffiffi
z
p ¼ mðx; t0 þ TÞ
and
mðx; t0 þ TÞ ¼ 1
2
ffiffiffi
z
p mð

ffiffiffi
x
p
Þ:
4. Necessary and sufficient condition of invertibility in the space of holder functions with weight

We present Eq. (11) in the operator form
ðAmÞðxÞ ¼ f ðxÞ; ðAmÞðxÞ � aðxÞðImÞðxÞ � bðxÞðWbmÞðxÞ; ð13Þ
where I is the identity operator and Wb is the shift operator:
ðImÞðxÞ ¼ mðxÞ; Wbm
� �

ðxÞ ¼ m½bðxÞ�:
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It is very important to know the necessary and sufficient conditions of invertibility of the operator A. They form the base for
applications of different approximate methods and alow us to know when the unique solution of the equilibrium equations
(13) exists. When the solution is found, the answer to the following question is known, In what initial state must the system
S be that, on passing through all the transformations and having tolerated the extraction and human intervention during the
period T, it would return to its previous state and would maintain its state cyclically?

In the works [4,5], the conditions of invertibility were found for the operator A in the weighted Holder space.
A function uðxÞ that satisfies the condition on the contour J,
juðx1Þ �uðx2Þj 6 Cjx1 � x2jl; x1 2 J; x2 2 J; l 2 ð0;1Þ;
is called Holder function with exponent l and constant C on the contour J.
Let J be a segment ½0; xmax� and h be a potential function which has zeros at the endpoints x ¼ 0; x ¼ xmax:
hðxÞ ¼ ðxÞl0 ðxmax � xÞl1 ; 0 < l0 < 1; 0 < l1 < 1:
The functions that become Holder functions and turn into zero at the points x ¼ 0; x ¼ xmax, after being multiplied by hðxÞ,
form a Banach space of the Holder functions with weight h:
H0
lðJ;hÞ:
The norm in the space H0
lðJ;hÞ is defined by
kf ðxÞkH0
lðJ;hÞ
¼ khðxÞf ðxÞkHlðJÞ;
where
khðxÞf ðxÞkHlðJÞ ¼ khðxÞf ðxÞkC þ khðxÞf ðxÞkl;
and
khðxÞf ðxÞkC ¼max
x2J
jhðxÞf ðxÞj;
khðxÞf ðxÞkl ¼ sup
x1 ;x22J;x1–x2

jhðx1Þf ðx1Þ � hðx2Þf ðx2Þj
jx1 � x2jl

:

Let bðxÞ be a bijective orientation-preserving displacement on the contour J: if x1 < x2 then bðx1Þ < bðx2Þ for any
x1 2 J; x2 2 J; and let bðxÞ have only two fixed points:
bð0Þ ¼ 0; bðxmaxÞ ¼ xmax; bðxÞ–x; when x–0; x–xmax:
In addition, let bðxÞ be a differentiable function and d
dx bðxÞ–0; x 2 J.

Let functions aðxÞ; bðxÞ from the operator A belong to HlðJÞ and let J be [0,1].
Invertibility conditions of a functional operator with shift in Holder spaces with weight were formulated in [4]. Here we

present these conditions.

Theorem 1. Operator A acting in the Banach space H0
lðJ;hÞ is invertible if and only if the following condition is fulfilled:
rb½aðxÞ; bðxÞ�–0; x 2 J;
where the function rb is defined by:
rb½aðxÞ; bðxÞ� ¼
aðxÞ; when jaðiÞj > b0ðiÞ½ ��liþljbðiÞj; i ¼ 0;1;

bðxÞ; when jaðiÞj < b0ðiÞ½ ��liþljbðiÞj; i ¼ 0;1;

0 in other cases:

8><
>:
The proof of these conditions of existence and uniqueness of the solution to the balance equation can be found in [5]

We remark that in Lebesgue spaces with weight and in generalized Holder spaces, criteria of invertibility of the operator A
were found in [6,7].
5. Open model

In this section, we do no require that the final state of the system S coincide with the initial state
mðx; t0Þ–mðx; t0 þ TÞ; ð14Þ
but the proposition (5)
mðx; t0 þ TÞ ¼ dðxÞ d
dx

bðxÞmðbðxÞÞ þ rðxÞmðxÞ � gðxÞ þ pðxÞ
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holds. This allows to use (5) to obtain the consequent states of the system S from the previous states.
At the time t0 the system is in the state mðxÞ,
mðxÞ � mðx; t0Þ:
At the time t1 ¼ t0 þ T , the system will be in the state m1ðxÞ:
m1ðxÞ ¼ mðx; t1Þ � dðxÞ d
dx

bðxÞmðbðxÞÞ þ rðxÞmðxÞ � gðxÞ þ pðxÞ;
in terms of the shift operator ðWbmÞðxÞ ¼ mðbðxÞÞ,
m1ðxÞ � bðxÞðWbmÞðxÞ þ rðxÞðImÞðxÞ þ f ðxÞ;
in terms of the operator weighted shift ðfW bmÞðxÞ ¼ b0ðxÞðWbmÞðxÞ,
m1ðxÞ � dðxÞðfW bmÞðxÞ þ rðxÞðImÞðxÞ þ f ðxÞ;
in terms of the operator A ¼ and B ¼ I � A ¼,
m1ðxÞ � ðI � AÞmð ÞðxÞ þ f ðxÞ;
m1ðxÞ � Bmð ÞðxÞ þ f ðxÞ:
At the time t2 ¼ t0 þ 2T , the system will be in the state m2ðxÞ:
m2ðxÞ ¼ mðx; t2Þ � Bðm1 þ f Þð ÞðxÞ þ f ðxÞm2 � B Bmþ fð Þ þ f ¼ B2mþ Bf þ f :
At the time tk ¼ t0 þ kT the system will be in the state
mk � Bðmk�1 þ f Þ þ f � B2mk�2 þ Bf þ f � Bkmþ ðBk�1 þ Bk�2 þ � � � þ Bþ IÞf :
Finally, the limit state is represented by a Neumann series. It is found that over time the state of the system tends toward
a limit state
m1 ¼ lim
k!1

uþ ðBk�1 þ Bk�2 þ � � � þ Bþ IÞf Þ:
The function m1 presents the limit distribution of the group parameter by the individual parameter. The limit state, when
kBkH0

lðJ;hÞ
< 1, does not depend on the initial reserve of the resource at the time t ¼ t0; mðx; t0Þ.

The state of system S with a natural resource k cannot be negative, but negative values of the group parameter have an
interpretation for the real situation.

Consider the intervals of the individual parameter where the density function mkðxÞ has negative values. The appearance
of such intervals with negative values of mkðxÞmeans that the existence conditions of the system S and the human interven-
tions are such that the resource k cannot be sustain and decays. Elements of the system with such individual parameters are
the ones that suffer most. The resource will not be able to recover in the period T. With every period, the system will pass to a
state of lesser content of the resource and will therefore be running out. It is necessary to pay particular attention to the
maintenance and restoration of elements with such an individual parameter that mkðxÞ would have negative values. To avoid
the appearance of negative values it is necessary to carry out analysis of each period separately
½t0; t0 þ T�; ½t0 þ T; t0 þ 2T�; . . . ; ½t0 þ ðk� 1ÞT; t0 þ kT�;
considering how the density function is transformed
m1ðxÞ; m2ðxÞ; . . . ; mk�1ðxÞ; mkðxÞ:
The integral
xð1; n; kÞ ¼
Z n

1
ðmk�1ðxÞ � mkðxÞÞdx
gives us the loss of what did not have time to be recovered of the fraction 1 < x < n of the individual parameter in the period
½t0 þ ðk� 1ÞT; t0 þ kT�.

It is possible to estimate at what time will the resource run out and to obtain the dynamics of the process. The analysis of
the density functions allows us to take preventive measures (reduce extraction, plant elements into the system), so that the
stable state m1 would have non-negative values.

The development of the theory of functional operators with shift is reflected in the works [8,9]. For a bibliography relating
to such operators, we can point to [10,11].

The proposed approach can be applied to the modelling of more complex systems. One example would be systems with
several interconnected resources, the modelling of which leads to matrix balance equations.

Precisely for the study of more complex systems would the mentioned results on functional operators with shift be
useful.
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