Producción Científica Profesorado

Genetic Learning of Fuzzy Parameters in Predictive and Decision Support Modelling



Castro Espinoza, Félix Agustín

2012

Nebot, A., Mugica, F., Castro, F., Acosta, J. (2012). Genetic Learning of Fuzzy Parameters in Predictive and Decision Support Modelling. International Journal of Computational Intelligence Systems, 5:2, Pp. 387-402.


Abstract


In this research a genetic fuzzy system (GFS) is proposed that performs discretization parameter learning in the context of the Fuzzy Inductive Reasoning (FIR) methodology and the Linguistic Rule FIR (LR-FIR) algorithm. The main goal of the GFS is to take advantage of the potentialities of GAs to learn the fuzzification parameters of the FIR and LR-FIR approaches in order to obtain reliable and useful predictive (FIR) models and decision support (LR-FIR) models. The GFS is evaluated in an e-learning context.



Producto de Investigación




Artículos relacionados