
OPTIMAL CONTROL APPLICATIONS AND METHODS
Optim. Control Appl. Meth. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/oca.2048

Suboptimal robust linear visual servoing for a delayed
underactuated system

A. Benitez-Morales, Omar Santos*,†, Hugo Romero and Luis Enrique Ramos-Velasco

Centro de Investigación en Tecnologías de Información y Sistemas, Universidad Autónoma del Estado de Hidalgo,
Pachuca, Hidalgo, CP 42184, Mexico

SUMMARY

In this contribution, a suboptimal robust control law for a specific class of underactuated delayed system is
synthesized. The control strategy based on very well-known results for delay-dependent stability considers
the time delay involved in the dynamical system, which affects to control signal. This contribution illustrates
how the theoretical results can be used to improve the real-time performance of the closed-loop system con-
sidered. The delay is introduced into the control system by the vision module, due to the time required to
perform the image treatment. In order to show the good performance of the control law proposed, real-time
experiments are developed by applying a visual servoing technique on the cart-inverted pendulum system.
Obtained results also illustrate how the conservativeness of theoretical results affects the performance of
the closed-loop system and the negative effects of delays in the control loop. Furthermore, a robust stability
analysis is done to establish the robustness of control law with respect to the amount of delay presented in
the system. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many results for stability and stabilization of time-delay systems have been presented in the last
years [1]. A common method used is the Lyapunov–Krasovskii approach [2], where the expertise
is crucial in order to propose ‘convenient’ functional and appropriate majorizations that must be
used in order to obtain non-conservative results. A great number of theoretical results are presented
in this field; see [3, 4] for robust dependent stability conditions, [5] for stability criterion in fuzzy
time-delay systems, or [6] for neural networks with distributed time delay. However, there are no
experimental validations reported in most of previously published works. We think that illustrating
how to use these theoretical results in order to improve a real control process is very important;
additionally, we illustrate by experimental results how to affect in control loop the conservativeness
of stability results employed. So, in this contribution, we illustrate the use of theoretical results over
an underactuated visual servoing system. An underactuated robot has more degrees of freedom than
independent control actuators. Then any nonlinear control law proposed to drive an underactuated
system should consider that some degrees of freedom or dynamics cannot be directly controlled.
For this reason, control of delayed underactuated systems is not a trivial problem.

Visual servoing approaches use a camera as a sensor inside of the closed loop [7]. In the present
paper, a visual approach is used to stabilize the cart-inverted pendulum system. Usually, the vision
systems work as follows: the image acquired by the camera must be processed by a vision algorithm
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implemented on a computer or a special device. The main goal of the vision algorithm is to iden-
tify significant objects or features inside the image and so deduce the relationship between spatial
position of those objects (features) and the camera body. Some related works previously developed
are described later. In [8], a control strategy based on visual servoing applied to a class of dynamic
underactuated systems is presented, whereas in [9], authors use an optimal control regulator scheme
based on a visual servoing approach without considering the intrinsic time delay appearing in a
closed loop.

Time delays in a control loop may induce instability or bounded oscillations in the system. Then
they must be considered in the stability analysis or design of the controller strategy. However, until
now, a few researchers using control schemes based on visual servoing have considered the time
delays induced by image processing. Some of them are Xie et al. [10], in that in their work, the time
delay is assumed known, and it is compensated using a modified Smith predictor. Furthermore, a
predictive PID is implemented, and the predictor removes the time delay of control loop. In [11], the
authors proposed a visual servoing implementation where the stability is independent of the amount
of time delay. It means that they have used an analytical method based on the Nyquist stability cri-
terion to find the upper limit of time delay. Moreover, some practical implementations considering
time delays are presented in [12]. According to recent literature, only a few real-time experiments
have been presented considering the time delay induced in the closed loop by a vision system. Then
considering this fact is very relevant in dealing and illustrating how to apply a real-time optimal
control strategy on a delayed dynamic system having a time-domain representation. Stability anal-
ysis in time domain allows to consider nonlinear disturbances [4] and increases the robustness of
closed-loop system, as is illustrated in this contribution.

By simple simulations routines and real-time experiments, we realized that the time delay present
in the control loop causes instability in the considered dynamic system. Therefore, in this contribu-
tion, a real-time optimal control law is synthesized and applied to cart-inverted pendulum system
with delayed behavior (Figure 1). The control law is designed by solving the linear quadratic regula-
tor (LQR) problem using two classical results for stability of time-delay linear systems [3, 4]. So, it
considers and minimizes the effects of delay, satisfying sufficient conditions to guarantee the robust
stability of closed loop and also compensates the negatives effects produced by nonlinear distur-
bances. Furthermore, it allows to change the matrix of the controller in order to improve the robust-
ness of the closed-loop system. Nevertheless, this approach delivers conservative results compared
with approaches based on linear matrix inequalities (LMIs) approach; see, for example, [13–15].

This paper is organized as follows: preliminaries results supporting this contribution are presented
in Section 2. Section 3 gives a description of real-time platform used, whereas the vision system
and image treatment algorithm applied in this contribution are shown in Section 4. Furthermore,

Figure 1. Real-time experimental platform using visual servoing.
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Section 5 shows the control strategy proposed to improve the performance of closed-loop delayed
system. Finally, real-time experiment results and conclusions are presented in Sections 6 and 7,
respectively.

2. PRELIMINARIES

The standard linear state-space model for the considered dynamic system is given by

Px.t/D Ax.t/CBu.t/, x.t/ 2R4,u.t/ 2R, (1)

where x1 D xc and x2 D Pxc define the cart position and cart velocity, respectively, whereas x3 D �
is the pendulum angular position, and x4 D P� is the pendulum angular rate. Furthermore,
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with u D kfFc, where kf is the motor constant and u is the control signal in volts applied to DC
motor. Values of involved constants in the system are shown in Table I.

Now, the following statements are used to develop our results. Theorem 1 and Proposition 1 give
a delay-dependent robust stability criterion. Also, the proposition considers time-varying delay and
nonlinear disturbances with respect to current state x.t/ and delayed state x.t � r.t//.

Theorem 1 ([3])
Let the system be of the form

Px D A0x.t/CA1x.t � h/, (2)

with initial conditions

x.�/D '.�/, � 2 Œ�h, 0�.

Assume that an uncertain time-invariant delay lies in
�
0, Nh
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, that is, h 2

�
0, Nh

�
. If there exist P > 0,

Q> 0, V > 0, and W such that
2
6664

.1, 1/ �W TA1 AT
0A

T
1V .1, 4/

�AT
1W �Q AT

1A
T
1V 0

VA1A0 VA1A1 �V 0

.1, 4/T 0 0 �V

3
7775< 0, (3)

then system (2) is asymptotically stable. Where

.1, 1/, .A0CA1/TP CP.A0CA1/CW TA1CA
T
1W CQ and .1, 4/, Nh.W TCP /.

Table I. Constants of inverted pendulum [16, 17].

Variable Name Value Unit

Mp Pendulum mass 0.23 kg

g Gravity constant 9.81 m/s2

Mc Mass of the cart 0.52 kg
lp Long pendulum length 0.3302 m
kf Constant motor 1 V s/kg
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Proposition 1 ([4])
The system described by

Px.t/D A0x.t/CA1x.t � r.t//C f .x.t/, t /C g.x.t � r.t//, t /, (4)

with time-varying delay r.t/ satisfying

06 r.t/6 rM Pr.t/6 rd ,

having initial conditions

x.t0C �/D '.�/I � 2 Œ�rM , 0�,

with uncertainties described as follows

kf .x.t/, t /k6 ˛kx.t/k and kg.x.t � r.t//, t /k6 ˇkx.t � r.t//k,

where ˛ > 0 and ˇ > 0 are given constants, are asymptotically stable, if there exists a real matrix
X , symmetric positive definite matrices P , R, Y , and scalars "1 > 0, "2 > 0 such that the following
LMI holds: 2
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where

.1, 1/, .ACB/TP CP.ACB/CRCXTB CBTX C "1˛
2I , .2, 2/, �.1� rd /RC "2ˇ2I

and

.1, 6/, rM .XTCP /.

These are useful results in order to synthesize the linear feedback control law, as will be shown
later. However, other results based on LMI approach could be used in order to improve the
robustness of the closed loop of delayed system.

3. REAL-TIME PLATFORM ARCHITECTURE

Experimental platform is mainly composed by three modules, as follows: the image treatment
module, which uses a vision camera together with a digital signal processor (DSP); the underac-
tuated system, which is a Quanser cart-inverted pendulum model IP01 [17]; and the power interface
(Figure 2). The cart-inverted pendulum is composed of a cart that moves linearly through a shaft
by using a DC motor (˙6 VDC). The cart has coupled on top a pendulum with free movement;
this dynamical system is an underactuated system having two degrees of freedom and only one
actuator [18].

Algorithms for image acquisition and treatment together with the control strategy are imple-
mented on a DSP platform in order to control the considered underactuated system. This visual
servoing platform based on DSP has been chosen, because it is a dedicated image processing device
with a robust code instructions set satisfying any application of digital signal processing. There-
fore, the image treatment process and control signal estimation are performed faster than a standard
personal computer. In addition, platforms based on DSP are easily adaptable to any change of the
variables involved in the system, and it has low distortion in the input signal. DSPs also have a
high-accuracy control over the behavior of hardware, and usually, they do not need additional hard-
ware to acquire and process an analog signal. Furthermore, they are reprogrammable (does not
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Figure 2. Schematic representation of an underactuated system.

require changing the hardware system), and they have low power consumption because they use a
solid-state technology.

In particular, the experimental platform is based on the Texas Instruments TMS320C6000 DSP
Imaging Developer’s Kit (IDK) [19], which consist of a card containing a DSP together with all
necessary interfaces to develop real-time applications. The TMS320C6000 IDK is a kit offering the
possibility to acquire images in NTSC or PAL format by using a camera wired through a daugh-
ter card to a DSP expansion port. Moreover, it includes software and hardware to acquire and show
images captured and processed using libraries and functions developed by the manufacturer. This kit
has the following main features: a TMS320C6711 DSP, 150 MHz, capable of drive up to 1200 MIPS,
16 Mbytes SDRAM, 128 kbytes flash ROM, 16 bits of audio codec (TLC320AD535), PC parallel
port interface, one port for capturing video in NTSC format, one output port for RGB images with
a resolution 640� 480 or 800� 600 with 16 bits per pixel, and one analog output audio.

However, the DSP kit used has a limitation, because it has no analog or pulse-width modulation
output. Then the only one possibility is to use the audio output as control signal. This audio output
signal has an amplitude from 0.5 to 1.5 V. Therefore, it is necessary to implement an electronic
interface to adjust the voltage level to˙5 V. Additionally, a DC motor requires an electronic power
amplifier to drive it. This power amplifier receives the control signal (˙5 V) and then gives an
appropriate signal to be applied to the actuator.

A single cycle of operation for the real-time platform can be summarized as follows: it start
with image capturing process, and then it is transmitted to a DSP in order to be processed with a
Sobel filter (edge detection). Once the image is segmented, the variables system estimation is per-
formed, and finally, those variables estimated are used to compute the control law signal applied to
DC motor.

4. VISION SYSTEM

The vision system used in this contribution is composed of a DSP card described in Section 3.
This device together with an image acquisition module is used to capture and process every image
frame provided by the camera. The image treatment algorithm is a Sobel filter, which emphasizes
the edges in the image captured. Those edges are used to estimate the variables system xc, Pxc, � ,
and P� , which denote the cart’s linear position, cart’s linear velocity, pendulum angular position, and
pendulum angular rate, respectively. Therefore, a whole state of system is estimated using only the
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visual information. Furthermore, in order to increase the accuracy of variable estimation approach,
a camera calibration process is performed to recover the geometric and projective characteristics of
vision sensor. The image acquisition and treatment processes, the camera calibration method, and
the estimation of variables system are described later.

4.1. Real-time image processing

Images captured by the camera are in NTSC format [19]. Image treatment is done in real time; it
means that the video frame n is stored in the internal RAM memory of DSP to be segmented by a
Sobel filter [20]. Applying this filter, we are able to emphasize the edges of a cart-pendulum image
in order to identify the interest points. Once the frame n was processed and variables system have
been estimated, it is deleted from the internal RAM memory and the next frame nC1 is then stored
in the memory to repeat the process. Originally, images of 480 � 720 pixels are captured in RGB
format (3 bytes per pixel), but they must be converted to gray level images (1 byte per pixel) to
properly apply the Sobel filter. On the basis of these considerations, the amount of memory required
to store each video frame is around 1.4 Mb, which is an acceptable memory amount to be stored in
the DSP RAM memory.

As mentioned earlier, the Sobel filter is an edge detector algorithm. Technically, it is a discrete
differentiation operator that computes an approximation of the image gradient. In this work, hori-
zontal and vertical 3� 3 Sobel masks are used (Figure 3(a)); they are applied to images separately,
such that the final result is given by the sum of images convoluted with both Sobel operators. The
resulting image from applying the Sobel filter to cart-inverted pendulum is shown in Figure 3(b).

4.2. Camera calibration

Camera calibration is referred to as the process of obtaining the geometric and projective relations
between the 3D real world coordinates and the 2D image coordinates. These relations are repre-
sented by the intrinsic parameters matrix K, the extrinsic parameters contained in the rotation matrix
R, and the translation vector t. The calibration method used in this work is known as homogeneous
transformation, which assumes a pinhole camera model. In order to estimate the camera matrix K,
the calibration approach considers n real points defined as pi D .xi , yi , ´i , 1/T and their corre-
sponding image points qi D .�i , �i , 1/T with i D 1, 2, : : : ,n, both in homogeneous coordinates.
Therefore, the real and image points are related as follows:

QD TP,

where Q D Œq1, q2, : : : , qn� 2 R3�n and P D Œp1,p2, : : : ,pn� 2 R4�n, with T 2 R3�3 acting as a
transformation matrix defined as

T D ŒT1 T2 T3�T,

where Ti 2R1�4 (i D 1, 2, 3). The T matrix is obtained from the Q and P matrices by applying the
algorithm described in [21]. This algorithm applies a singular value decomposition on a system of
linear equations obtained from Q˝ TP D 0 to estimate the T matrix, where ˝ denotes the cross
product. So, the T matrix can be rewritten in block matrices as follows:

T D Œ� j ƒ�D �
�
I j ��1ƒ

�
D �ŒI j �‰�,

Figure 3. (a) Sobel mask operators. (b) Sobel filter application to a real image.
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with � 2R3�3 and ƒ 2R3�1. Applying the RQ decomposition [21] to � block matrix, we have

� DKR,

where K 2 R3�3 is an upper triangular matrix having the intrinsic parameters, R represents the
rotation matrix, and t D �R‰ is the translation vector; the last two are related to a 3D coordi-
nate system used for calibration process [21,22]. Camera calibration was performed using a Matlab
toolbox developed by Caltech Institute [23], with the following results for the camera matrix:

KD

2
4 377.58 0 359.50

0 377.58 239.50
0 0 1

3
5 , (6)

where the focal length �D 377.58 pixels and the principal point q0 D .359.5, 239.5/T pixels.

4.3. Variables estimation

After applying the Sobel filter, three different image rows �1, �2, and �3 are arbitrarily chosen;
obviously, they define three vertical image coordinates. This arbitrary rows selection is based on
prior knowledge about interval of rows where cart-inverted pendulum system is projected into an
image plane (it has an almost constant image size). Through these rows, we have to find their respec-
tive horizontal image coordinates (columns) �1, �2, and �3 of pixels belonging to edges detected
by the Sobel filter. Therefore, with these horizontal and vertical coordinates, we are able to set the
characteristic image points q1 D .�1, �1/, q2 D .�2, �2/, and q3 D .�3, �3/. The points q1 and
q2 are used to estimate the pendulum angle � whereas q3 is used to determine the cart position xc.
From Figure 4(a) by simple trigonometric relations, the angle � is defined as

� D tan�1
�
�1 � �2

�1 � �2

�
.

Figure 4. (a) Coordinates detection method scheme. (b) Basic model of image formation. (c) Plane
scheme xs � ´s.
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The cart position is measured with respect to Is D ¹¹xsº ¹ysº ¹´sºº, a fixed coordinate system
located in the camera focus (Figure 4(b)). Suppose that the xs � ys plane is parallel to an image
plane and ´s-axis coincides with the principal vector of camera (optical axis). The camera optical
axis is the straight line passing through the camera focus, and it is perpendicular to an image plane.
Therefore, an image plane is intersected by ´s-axis in the principal image point q0. Under these
considerations, it is clear that the cart-inverted pendulum system moves on the xs-axis. Thus, con-
veniently, the origin of an image plane is now considered in q0; it means that the origin of xs-axis
is the intersection point between xs and ´s axes. In order to perform a 3D visual servoing technique
based on real-world coordinates, we have to compute the focal distance in metric units �� and the
distance d from the image plane to a cart-inverted pendulum system. Focal distance �� is computed
using the procedure presented in [24]. Besides, in practice, an acceptable estimation of distance d is
the distance from the frontal lens of a camera to the object projected. Geometric relations described
earlier are shown in Figure 4(b). Analyzing the xs � ´s plane (Figure 4(c)) by similar triangles,
we obtain

�0 � �

�
D
xc

´c
,

where we assume without loss generality that ´c D dC��. Therefore, the cart position in real-world
coordinates (metric units) is given by

xc D
.�0 � �/ ´c

�
.

Estimated values for these variables are �� D 0.0079 m and dD 0.8 m; hence, ´c D 0.8079 m.

5. CONTROL STRATEGY

In this section, we use results presented in the preliminaries to synthesize a control strategy to
improve the performance of cart-inverted pendulum. The mathematical model of the cart-inverted
pendulum is used to simulate and synthesize the optimal control law and also to analyze the robust
stability of a closed-loop system by considering time delays. The synthesis of optimal control is
performed using Matlab software with the command ‘ric-schr’ where Qc and Rc are chosen as

Qc D

2
64
100 0 0 0

� 4.5 0 0

� � 19 0

� � � 2

3
75 , Rc D 10. (7)

Solving the Riccati equation [25] with Qc and Rc, we obtain the matrix P1 given by

P1 D

2
64
104.7225 52.584 �124.2328 �22.8079
� 42.4225 �107.2918 �19.7070
� � 448.2064 76.1690
� � � 13.2616

3
75 ,

where the associated optimal feedback gain vector is defined by K�1 D R�1c BTP1. So, it is given
as follows:

K�1 D
�
3.1623 3.3116 �23.6981 �3.9286

�
. (8)

Introducing the optimal control uD�K�1x.t/ into system (1), we get

Px.t/D Ax.t/C
�
�BK�1

�
x.t/. (9)

Nevertheless, as mentioned earlier, the visual servoing approach applied in this contribution
induces an intrinsic time delay in the closed-loop system. The real amount of delay is unknown, but
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an upper bound can be set. As the image acquisition rate is 30 frames per second, then in practice,
the time delay can be established at hD 0.033 s. Considering this delay, system (9) becomes

Px.t/D Ax.t/C
�
�BK�1

�
x.t � h/. (10)

It is clear that system (10) has a characteristic equation defined by a delayed quasipolynomial
having an infinite number of roots. The roots of large magnitude for this kind of quasipolynomial
are inside a region bounded by a exponential envelope [26]. Then in order to deduce the stability
of a system, only the roots closest to an imaginary axis must be computed. These roots of small
magnitude are computed with no computational errors by using the methodology proposed in [27],
which is based on the argument principle and the Mikhailov diagram. Values for the first four roots
closest to the imaginary axis are shown in following table:

Roots Precision

r1 D�1.4817˙ 1.251j 4.0� 10�5

r2 D�19.1498˙ 14.6945j 5.0� 10�5

r3 D�81.592˙ 226.59j 4.0� 10�3

r4 D�99.106˙ 420.85j 3.2� 10�3

So, the stability margin called ˛1-stability is defined by r1, the root closest to the imaginary axis
(Figure 5). Theorem 1 is applied with A0 D A and A1 D �BK�1 in order to analyze the stability
of the system considering a time-invariant delay. To solve the LMI described by (3), the LMIedit
interface from Matlab is used, with hD 0.033 s. Results obtained are as follows:

P D

2
64
2691.3 615.9 �3161 �325
� 735.5 �1387 �451
� � 7554.8 1037.4
� � � 370.8

3
75 , QD

2
64
2411 1194 �10 230 �1430
� 2218 � 9330 �2450
� � 68 996 11 095

� � � 2748

3
75

V D

2
64
13 420 0 � 60 0

� 11 960 0 �3950
� � 13 770 0

� � � 1300

3
75 , W D

2
64
�2763 �530 2886.8 175.4
� �488 443.9 157.2
� � �4931 46.7
� � � �22

3
75

where P , Q, and V are positive definite matrices; then in accordance with Theorem 1, system (10)
is asymptotically stable.

However, the dynamic model (10) is a linear approximation of the real system. So, it makes sense
to consider a dynamic model including nonlinear disturbances and time-varying delay in order to
have a more representative model of our experimental platform. The nonlinear disturbances include
nonmodeled dynamics and nonstructured disturbances, such as dead zone, saturation, hysteresis,

−3 −2 −1 0 1

−2

0

2

σ

jω

α
1

α
2

Figure 5. Stability margins ˛1-stability and ˛2-stability.
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backlash, and Coulomb friction [28], whereas the time-varying delay is due to the image acquisition
and treatment processes, which do not have a constant sampling period. Disturbances and uncer-
tainties described earlier are included in system (4). Then applying Proposition 1 with Qc defined
in (7) and Rc, ˛, ˇ, rd, and rM given as follows,

Rc D 1, ˛ D 0.2, ˇ D 0.06, rd D 0.593 and rM D 1.047

we get

P2 D

2
64
79.788 29.5806 �63.6087 �11.4920
� 17.1275 �39.2601 � 7.0301
� � 115.7936 19.2303
� � � 3.4158

3
75 ,

where matrix P2 satisfies the Riccati equation with associated optimal feedback gain vector
defined by

K�2 D
�
10 7.9788 �36.4234 �6.3609

�
. (11)

Then the first four roots closest to the imaginary axis produced with this controller and computed
as was mentioned earlier are as follows:

Roots Presicion

r5 D�2.6847˙ 1.7847j 3.0� 10�5

r6 D�4.5178 3.0� 10�5

r7 D�13.3140˙ 25.5311j 3.0� 10�5

r8 D�73.047˙ 227.531j 3.1� 10�3

so, the ˛2-stability defined by r5 with A0 D A and A1 D �BK�2 is greater that the ˛1-stability
(Figure 5). It means that the system is more robust using K�2 than K�1 .

Using the LMI toolbox of Matlab, LMI (5) is solved, so matrices X , P , R, and Y and scalars "1
and "2 are defined by

X D

2
64

0 0 0 0

�843 �85 1412 134

0 0 0 0

�277 �259 4274 405

3
75 , P D

2
64
1435 618 �1643 �240
� 604 �1292 �242
� � 4585 563

� � � 111

3
75 1� 103,

RD

2
64
1065 721.6 �2120 �557
� 998.7 �1675 �665
� � 7006 1340

� � � 572

3
75 1� 103, Y D

2
64
2853 �10 9 �3
� 2589 7 �855
� � 2909 �2
� � � 282

3
75 1� 103,

"1 D 3.25� 106 and "2 D 5.07� 106.

Matrices Y , P , and R are positive definite; X is a real matrix; and scalars "1 and "2 are positive
definite; then system (10) is robustly asymptotically stable.

Remark 1
The ˛, ˇ, and rd constants have been chosen heuristically to satisfy Proposition 1, and rM is an
upper bound of a delay.

Remark 2
The controller with gain vector K�1 satisfies Theorem 1 but not Proposition 1. It stabilizes the
platform in simulations (see the next section); nevertheless, the dynamic system is not stabilized
in real-time experiments. On the other hand, the controller with gain vector K�2 satisfies both
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Theorem 1 and Proposition 1. With this controller, the cart-inverted pendulum is properly stabi-
lized in its unstable equilibrium point in real-time experiments and simulation. From Figure 5, it is
clear that the ˛2-stability is more robust than ˛1-stability; this is a consequence of the ˛2-stability
margin, which is defined by an optimal controller with gain vector K�2 . This fact illustrates how
the real-time performance of the delayed systems could be affected by the conservativeness of the
stability conditions.

In summary, in this contribution, we are proposing the following algorithm:

1. Consider the free delay system (1) and synthesize an optimal control K� for some matrices
Qc and Rc.

2. Introduce the optimal control defined by K� into the delayed system (10) with h ¤ 0 and
obtain the characteristic quasipolynomial of closed loop. So, compute the set of roots closest
to the imaginary axis to determine the ˛-stability.

3. Finally, for systems (2) and (4) with A1 D �BK�, check if the LMIs (3) and (5) are respec-
tively satisfied. If the sufficient conditions for robust stability are reached, we conclude the
analysis. If not, go back to Step 1 and select another Qc and Rc to find a new ˛-stability more
robust than the previous one.

6. SIMULATION AND REAL-TIME EXPERIMENTAL RESULTS

This section shows the simulation and real-time experimental results obtained when the suboptimal
robust control law is applied to a delayed underactuated system considering nonlinear disturbances.
Time delay considered in both cases is 33 ms. Simulation results are shown in Figures 6 and 7.
State variables behavior is presented in Figure 6 when two independent control laws K�1 and K�2
are applied from Equations (8) and (11), respectively. Initial conditions have been chosen relatively
far from unstable equilibrium point. One can realize that the delayed system response is very satis-
factory because in both cases the system is properly stabilized. Both control signals are plotted in
Figure 7. Simulations have been performed on Matlab-Simulink, which uses the numerical solver
ode45 based on the Dormand–Prince method.

On the other hand, the real-time experiment considers that the initial condition of the underactu-
ated delayed system is near to the unstable equilibrium point. The control law based on K�2 vector
is chosen to perform the experiment, because this control law shows an appropriate performance
in a simulation where the dynamic system is properly stabilized with an initial condition of 0.5 rad
of angular position. It is easy to realize from Figure 8 that the state variables have a nice behavior,
and the car-inverted pendulum is stabilized in the unstable equilibrium point. Furthermore, Figure 9

Figure 6. State variables behavior (simulation).
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shows the control law applied to a DC motor. This control law saturates the actuator by only a
few moments.

6.1. Effect to delays in the performance of the platform

In order to illustrate how the delay affects the performance of the dynamic system, the matrices Qc

and Rc are now proposed as follows:

Qc D

2
64
10 1 3 4

� 7 5 2

� � 20 6

� � � 42

3
75 , Rc D 2,

then the matrix P1, which satisfies the Riccati equation [25] for these matrices, is given by

P1 D

2
64
16.0914 11.1057 �35.1314 �4.4379
� 15.3924 �50.7699 �6.3992
� � 261.4712 27.4582
� � � 4.5065

3
75 ,

with optimal gain vector for system (1) defined by

K�3 D
�
2.236 3.821 �31.088 �6.961

�
. (12)

Nevertheless, system (10) in closed loop with the controller (12) does not satisfy Theorem 1 nor
Proposition 1; it implies that the controller based on gain vector K�3 assures the stability of the dis-
turbed delayed system (10), but it does not assure its robust stability. In order to illustrate this fact,
the gain vector (12) is introduced in (10), and the resulting characteristic equation in closed loop is
stable with roots located in

Roots Accuracy

r9 D�1.4351˙ 0.8672j 5� 10�5

r10 D�6.4637˙ 38.77j 3� 10�5

r11 D�59.818˙ 229.63j 1.8� 10�3

r12 D�77.69˙ 422.52j 1.35� 10�3

where r9 defines the ˛3-stability margin.
Figure 10 shows graphically the ˛-stability margins for the control laws based on K�2 and K�3 ,

respectively; the control law based on K�2 is more robust than the control law based on K�3 . In a
simulation, the stability margins for both cases are sufficiently large to stabilize the delayed system.
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Figure 10. Graphic representation of ˛2-stability and ˛3-stability.
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Then, in order to verify if it is feasible to neglect the time delay in the control law design, the control
law defined by K�3 is implemented in real time to be compared with another real-time experiment
using the control law defined by K�2 . Figure 11 contrasts the state variables behavior when these
control laws are applied to a dynamic system. Evidently, the control law usingK�3 does not perform
the real-time stabilization of the delayed system, because the inverted pendulum has oscillations and
finally falls about 11 s of the experiment.

Moreover, the control law signals are shown in Figure 12. So, the control law based on K�3 is
more abrupt than the other law based on K�2 , because the actuator remains saturated by longer
periods. Therefore, it is necessary to consider the time delay to guarantee the real-time stability of
the system.
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7. CONCLUSIONS

In this contribution, a suboptimal robust control law considering the time delay has been synthesized
and applied to an underactuated system under visual servoing control scheme. We have illustrated
how to use theoretical results in order to improve the performance of time-delayed system. In fact,
using an experimental platform, we verify how the conservativeness of certain results of stabil-
ity analysis affect the performance of delayed plant in closed loop. Nonlinear disturbance is also
considered to affect the closed-loop system. Firstly, an LQR approach has been applied to obtain
a linear control law. Then applying the Lyapunov–Krasovskii technique, a nonlinear suboptimal
robust control law is synthesized, such that the closed-loop system is stable and robust. According to
simulation and experimental results, this suboptimal robust control law shows a better performance
than the control laws not considering the nonlinear disturbances and delay.

Additionally, the camera has been calibrated in order to improve the variable estimation. Future
works should test less conservative stability conditions and nonlinear control law implementation
considering delays and disturbances.
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