Gatifloxacin, Moxifloxacin, and Balofloxacin Resistance due to Mutations in the \textit{gyrA} and \textit{parC} Genes of \textit{Staphylococcus epidermidis} Strains Isolated from Patients with Endophthalmitis, Corneal Ulcers and Conjunctivitis

Gabriel Betanzos-Cabrera\textsuperscript{a} Marco A. Juárez-Verdayes\textsuperscript{b} Gabriel González-González\textsuperscript{b} Mario E. Cancino-Díaz\textsuperscript{c} Juan C. Cancino-Díaz\textsuperscript{b}

\textsuperscript{a}Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Departamentos de \textsuperscript{b}Microbiología e \textsuperscript{c}Inmunología, Instituto Politécnico Nacional, Ciudad de México, México

Key Words
Moxifloxacin resistance • Gatifloxacin resistance • Balofloxacin resistance • \textit{Staphylococcus epidermidis} • \textit{gyrA} • \textit{parC}

Abstract
Aims: \textit{Staphylococcus epidermidis} is considered a commensal bacterium; however, it is frequently isolated from ocular infections showing a multidrug resistance. Ciprofloxacin-resistant strains have been isolated from ocular infections; however, resistance to quinolone, such as gatifloxacin and moxifloxacin, is not often studied, consequently the resistance mechanism is unknown. Our aim was to address the quinolone resistance and to explore the resistance mechanism in \textit{S. epidermidis} strains isolated from ocular infections. Methods: \textit{S. epidermidis} strains were isolated from patients with conjunctivitis (n = 23), endophthalmitis (n = 14) and corneal ulcers (n = 7). Minimum inhibition concentrations were determined by broth and agar dilution methods for moxifloxacin, gatifloxacin, balofloxacin, rufloxacin and pazufloxacin. Mutations were identified by sequencing the \textit{gyrA} and \textit{parC} genes, and their expression was determined by reverse transcriptase polymerase chain reaction. Results: We found that 13.6% (6/44) of the strains were quinolone resistant. In endophthalmitis, 21.4% were gatifloxacin, moxifloxacin and balofloxacin resistant. In corneal ulcers, 14.2, 14.2 and 28.5% were gatifloxacin, moxifloxacin and balofloxacin resistant, respectively, and in conjunctivitis only 4.3% were gatifloxacin resistant. The 6 strains with quinolone resistance showed mutations at Ser84Phe for the \textit{gyrA} gene, and Ser80Phe for the \textit{parC} gene. Gatifloxacin did not change the expression levels of \textit{gyrA} and \textit{parC} genes. Conclusion: \textit{S. epidermidis} strains isolated from three ocular pathologies were gatifloxacin and moxifloxacin resistant due to mutations on the \textit{gyrA} and \textit{parC} genes.

Introduction
The prevalence of multidrug-resistant strains of \textit{Staphylococcus aureus} and coagulase-negative staphylococci (CNS) has increased worldwide; consequently it is necessary to find new effective agents. Strains of \textit{Staphylococcus} have shown increased resistance to β-lactam com-
pounds. In the early 1970s, 70–85% of S. aureus isolates were penicillin and methicillin resistant [1] and, particularly in this strain, often accompanied by resistance to other antimicrobial agents including quinolones [2]. Antibacterial fluoroquinolones, e.g. ciprofloxacin, have been effective for the treatment of staphylococcal infections, especially those caused by methicillin-resistant strains [3–5]. Unfortunately, the widespread use of these agents has led to a notorious increase in the resistance, specifically to S. aureus and Staphylococcus epidermidis [6–9]. However, quinolone resistance of Streptococcus pneumoniae and Haemophilus influenzae has rarely been reported [10–13].

Fluoroquinolones act by inhibiting the homologous type II topoisomerases, DNA gyrase and DNA topoisomerase IV, which control DNA topology and are vital for chromosome function and replication. Each of these enzymes is a tetramer composed of two subunits: GyrA and GyrB forming the A₂B₂ complex in DNA gyrase, and ParC and ParE forming the C₂E₂ complex in DNA topoisomerase IV. Amino acid substitutions on any subunit of either gyrase or topoisomerase IV have the potential to increase fluoroquinolone resistance in S. pneumoniae [14]. Alterations in DNA gyrase have been involved in quinolone resistance in S. aureus and S. epidermidis [15, 16].

Multidrug-resistant S. epidermidis has been isolated with a high prevalence in endophthalmitis, corneal ulcers and conjunctivitis [17]. Although ciprofloxacin is used effectively for the treatment of bacterial keratitis, an increasing number of S. epidermidis strains with ciprofloxacin resistance has been reported [18–22]. Moxifloxacin and gatifloxacin are fourth-generation quinolones; strains of S. epidermidis isolated from ocular infections (endophthalmitis, corneal ulcers, conjunctivitis) with resistance to these antibiotics have seldom been studied. Thus, this work is focused on determining the frequency of moxifloxacin, gatifloxacin, and balofloxacin resistance in S. epidermidis strains isolated from ocular infections and on the establishment of the resistance mechanism.

**Methods**

**Patients**

This work is a single-center study in which clinically diagnosed patients with conjunctivitis (n = 23), corneal ulcers (n = 7), and endophthalmitis (n = 14) from the Instituto de Oftalmología ‘Conde de Valenciana’, Mexico City, were examined. Corneal ulcer and conjunctivitis samples were obtained by scraping and swabbing, respectively. The vitreous samples of patients with endophthalmitis were obtained mainly by vitrectomy. The Research Committees of the Instituto Politécnico Nacional from Mexico City approved this study.

**Isolation and Identification**

The clinical samples were inoculated directly on chocolate, blood and mannitol salt agar plates. The chocolate agar plate was cultured in a 3% CO₂ atmosphere and all media were incubated at 37 °C for 12–48 h. The bacteria were identified by means of the Vitek Jr computerized system (bioMérieux, L’Etoile, France), using the GPS-101 and V-1305 identification cards for Gram-positive bacteria.

**Determination of Quinolone Resistance**

Agar and broth dilution methods were used to determine the minimum inhibition concentrations (MICs) for gatifloxacin, moxifloxacin, balofloxacin, rufoxacin and pazufloxacin. The procedure was performed according to the Clinical and Laboratory Standards Institute (CLSI/NCCLS) by using agar and broth Mueller-Hinton (Becton Dickinson, Sparks, Md., USA).

**Amplification of gyrA and parC Genes by Polymerase Chain Reaction**

Bacterial DNA from strains with or without resistance to quinolones were obtained by using the DNeasy blood and tissue kit (Qiagen, Valencia, Calif., USA). Primers for gyrA and parC of S. epidermidis were designed for amplification of the quinolone resistance-determining region in both genes (table 1). The polymerase chain reactions (PCRs) were performed according to Martinez-Rodriguez et al. [23]. PCR products were purified and sequenced by the Big Dye terminator fluorescence kit (Applied Biosystems, Foster City, Calif., USA).

**Expression of gyrA and parC Genes**

Mutant and wild-type strains were grown in tripticase soy agar medium until reaching 0.5 McFarland absorbance without antibiotic. Growing conditions were similar for mutant strains except that 25 μg/ml of gatifloxacin was used. Bacterial cells were harvested and washed twice with PBS and incubated with lysis solution (40% sucrose, 10 mg/l lysozyme) at 37 °C for 20 min. Total RNA was obtained by the TRizol (Invitrogen, Carlsbad, Calif., USA) method and treated with RNase-free DNAsel I (Invitrogen). The reverse transcriptase (RT) reaction was carried out according to Rodriguez-Martinez et al. [23].

**Table 1. Sequence of oligonucleotides to amplify the quinolone resistance-determining region of the gyrA and parC genes**

<table>
<thead>
<tr>
<th>Oligonucleotide name</th>
<th>Sequence 5’ to 3’</th>
<th>PCR product size bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>gyrAF</td>
<td>TGGCTGAATTACCTCAATCA</td>
<td>280</td>
</tr>
<tr>
<td>gyrAR</td>
<td>GCCATTCTTACCATGCTT</td>
<td></td>
</tr>
<tr>
<td>parCF</td>
<td>ACTATTCGCAATGTAATCTCAATG</td>
<td>350</td>
</tr>
<tr>
<td>parCR</td>
<td>TGGTTCCAAAGTTGTGTCATCATAG</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. MICs for quinolones of *S. epidermidis* strains from ocular infections

<table>
<thead>
<tr>
<th>Disease/antibiotics</th>
<th>Rangea/µg/ml</th>
<th>MIC50/µg/ml</th>
<th>MIC90/µg/ml</th>
<th>Percent resistanceb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endophthalmitis (n = 14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>0.08–1</td>
<td>1</td>
<td>30</td>
<td>21.4</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.04–1</td>
<td>0.5</td>
<td>25</td>
<td>21.4</td>
</tr>
<tr>
<td>Balofloxacin</td>
<td>0.5–2</td>
<td>2</td>
<td>25</td>
<td>21.4</td>
</tr>
<tr>
<td>Rufloxacin</td>
<td>1–20</td>
<td>20</td>
<td>40</td>
<td>64.3</td>
</tr>
<tr>
<td>Pazufloxacin</td>
<td>1 to &gt;6</td>
<td>2</td>
<td>&gt;80</td>
<td>50</td>
</tr>
<tr>
<td>Corneal ulcers (n = 7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>0.08–0.5</td>
<td>0.5</td>
<td>1</td>
<td>14.2</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.04–1</td>
<td>1</td>
<td>2</td>
<td>14.2</td>
</tr>
<tr>
<td>Balofloxacin</td>
<td>&lt;0.08–0.5</td>
<td>0.5</td>
<td>4</td>
<td>28.5</td>
</tr>
<tr>
<td>Rufloxacin</td>
<td>2–20</td>
<td>4</td>
<td>&gt;20</td>
<td>85.7</td>
</tr>
<tr>
<td>Pazufloxacin</td>
<td>1 to &gt;6</td>
<td>&gt;6</td>
<td>&gt;6</td>
<td>57.4</td>
</tr>
<tr>
<td>Conjunctivitis (n = 23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>0.08–1</td>
<td>0.08</td>
<td>1</td>
<td>4.3</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.04–1</td>
<td>0.04</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Balofloxacin</td>
<td>&lt;0.08–4</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Rufloxacin</td>
<td>1 to &gt;20</td>
<td>2</td>
<td>&gt;20</td>
<td>34.7</td>
</tr>
<tr>
<td>Pazufloxacin</td>
<td>1 to &gt;6</td>
<td>2</td>
<td>&gt;6</td>
<td>39.1</td>
</tr>
</tbody>
</table>

* a Values for sensitive strains only. In general, ranges for resistant strains were as follows: gatifloxacin 1–40 µg/ml, moxifloxacin 0.04–30 µg/ml, balofloxacin 1–25 µg/ml, rufloxacin 2–40 µg/ml and pazufloxacin 6 to >80 µg/ml.

* b The definition of a quinolone-resistant strain was according to CLSI/NCCLS for which an MIC ≤0.5 µg/ml is considered quinolone sensitive, MIC = 1 µg/ml is quinolone-intermediate and MIC ≥2 µg/ml quinolone resistant.

**Results**

**Determination of MICs for Quinolones in *S. epidermidis* Strains**

As shown in table 2, strains isolated from patients with conjunctivitis were the most sensitive to the different quinolones, showing the lowest values of MIC50 and MIC90, while strains of endophthalmitis were the most resistant. The antibiotics rufloxacin and pazufloxacin had minor potency against the strains of isolates studied, with MIC50 and MIC90 values higher than for other quinolones, indicating that these antibiotics were not effective. In contrast, gatifloxacin, moxifloxacin and balofloxacin were the most effective to strains isolated from corneal ulcers and conjunctivitis but not to endophthalmitis. In accordance with the CLSI/NCCLS manual, we found that 13.6% (6/44) of the strains were quinolone resistant according to their MICs.

**Determination of Mutations in gyrA and parC Genes**

All strains with or without quinolone resistance were analyzed to detect mutations in gyrA and parC genes. The nucleotide sequence was translated into amino acids and compared with the amino acid sequence of *S. epidermidis* RP62A and ATCC12228 strains deposited in the GenBank. Of all strains sequenced, only 6 have mutations in these genes. In all the strains, the changes in gyrA were on serine 84 for phenylalanine. In addition to these mutations, 2 strains (98-3 and 93) isolated from endophthalmitis also showed a mutation of glutamic acid 88 changing to lysine (table 3).

In the parC gene, mutations in serine 80 for phenylalanine were found in all the strains except for strain 1654, where tyrosine was the altered amino acid (table 3; 4 strains had a double mutation for parC, including the strains 98-3 and 93 wherein aspartic acid 84 was altered to valine). There is a perfect correlation of quinolone resistance with the mutations, since the 6 mutant strains were the same that showed quinolone resistance.

In order to discard any resistance mediated by mutations induced by treatment with quinolones in the patients, we confirmed that no patient had been treated with quinolones prior to isolating.
Expression of \textit{gyrA} and \textit{parC} Genes in \textit{S. epidermidis}

\textit{Strains with Quinolone Resistance}

In order to determine if quinolone affects the expression of \textit{gyrA} and \textit{parC} genes in the mutant strains (98-3 and 93), expression levels of these genes were determined. It was observed that the mutant strains and the wild-type strain showed similar expression levels for both genes in the presence and absence of gatifloxacin (fig. 1).

\textbf{Discussion}

\textit{S. epidermidis} has been the most frequently isolated bacterium from ocular infections [24–26], and 35–65% of CNS isolated from clinical samples, among them \textit{S. epidermidis}, are resistant to methicillin [27]. Quinolones have emerged as an alternative for treating methicillin-resistant strains. Ciprofloxacin, gatifloxacin and moxifloxacin have been employed clinically; nevertheless \textit{S. epidermidis} strains resistant to these antibiotics have been reported in the eye [18, 21, 28, 29]. We found that 13.6% (6/44) of the strains were quinolone resistant. Our results also show differences in quinolone susceptibility profiles of isolates from different types of infection (table 2), which are in accordance with evidence that molecular typing of nosocomial \textit{S. epidermidis} strains has shown considerable diversity within the \textit{S. epidermidis} population [30–32]. The diversity is observed not only in studies involving isolates from diverse geographic or clinical origins [33, 34] but also in collections which originated from the same hospital [35] (as in our case) and even a single intensive care unit [30].

Our observation of mutations at serine 84 of the \textit{gyrA} gene and phenylalanine 80 of the \textit{parC} gene in parallel with quinolone resistance is the same as those reported for nonocular infections [36–38]. Similarly to \textit{S. aureus}, CNS strains from nonocular infections have amino acid changes at Ser80 and Asp84 in the \textit{grlA} gene, and changes at Ser84 and Glu88 in the \textit{gyrA} gene. In the \textit{gyrA} gene of \textit{S. epidermidis}, only changes at Ser80Phe or Ser80Tyr were found, while \textit{S. hominis} and \textit{S. haemolyticus} have Ser80Val or Ser80Leu amino acid changes. No mutations in the \textit{gyrB} nor \textit{grlB} genes in any strain of \textit{S. epidermidis} were found [38]. In this study, we did not analyze alterations in the \textit{gyrB} and \textit{parE} genes, therefore, we cannot exclude the possibility that alterations of these genes could also contribute to quinolone resistance. It is interesting to highlight that other \textit{Staphylococcus} species also have the same \textit{gyrA} gene mutation at Ser84. This is the case for \textit{S. epidermidis}, \textit{S. haemolyticus}, \textit{S. hominis}, \textit{S. ca-

\begin{table}[h]
\centering
\caption{Mutations in \textit{gyrA} and \textit{parC} genes of quinolone-resistant \textit{S. epidermidis} isolated from ocular infections}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Disease/strain & \textit{gyrA} gene & \textit{parC} gene & Gatifloxacin & Moxifloxacin & Balofoxacin & Rufloxacin & Paufoxacin \\
& & & MIC \(\mu g/ml\) \\
\hline
Endophthalmitis & 98-3 S84F (TCT to TTT) & S80F (TCT to TTT) & 40 & 30 & 25 & 40 & >80 \\
& E88K (GAA to AAA) & D84V (GAT to GTT) & & & & & \\
& 93 S84F (TCT to TTT) & S80F (TCT to TTT) & 30 & 25 & 25 & 40 & >80 \\
& E88K (GAA to AAA) & D84V (GAT to GTT) & & & & & \\
& 214 S84F (TCT to TTT) & S80F(TCT to TTT) & 6 & 2 & 6 & >20 & >6 \\
& & D84V (GAT to GTT) & & & & & \\
\hline
Conjunctivitis & 1654 S84F (TCT to TTT) & S80F (TCT to TTT) & 2 & 1 & 1 & >20 & >6 \\
& & & & & & & \\
& 1948 S84F (TCT to TTT) & S80F (TCT to TTT) & 1 & 2 & 4 & >20 & >6 \\
& & D84V (GAT to GTT) & & & & & \\
& & S80F (TCT to TTT) & 2 & 0.04 & 4 & 2 & >6 \\
\hline
\end{tabular}
\end{table}

The definition of a quinolone-resistant strain was according to CLSI/NCCLS for which an MIC \(\leq 0.5 \mu g/ml\) is considered quinolone sensitive, MIC = 1 \(\mu g/ml\) is quinolone-intermediate and MIC \(\geq 2 \mu g/ml\) quinolone resistant.
pris and S. simulans. All these strains have a high homology (85%) in the quinolone resistance-determining region of the gyrA gene [39] indicating that this is a hotspot for these mutations.

We do not discard the possibility that other mechanisms could be contributing to quinolone resistance, such as the mechanism by quinolone resistance genes coded in plasmids, or the efflux of quinolone. This assumption is supported in strains 214, 1654, 1948 and 105 (all from different origins) with different MICs but with identical mutations (table 3). Other species have already been studied with the same mechanisms as S. pneumoniae, where moxifloxacin resistance occurs by the efflux of moxifloxacin from the bacterial cell in addition to the mutations in DNA gyrase and topoisomerase IV [14]. Similarly, S. aureus and CNS also have an active efflux mechanism that contributes substantially to the resistance phenotype [38]. Another resistance mechanism is that mediated by plasmids that encode quinolone resistance genes such as the qnrS gene for Salmonella enterica [40]. Another possible mechanism for quinolone resistance is the expression level of the gyrA and parC genes. We found that gatifloxacin did not induce overexpression of the gyrA and parC genes in the mutant strains, which indicates that quinolone resistance is not due to their expression levels and therefore the mutations did not change the expression of these genes.

Experiments performed in vitro have demonstrated that a mechanism for acquiring resistance is by selective pressure with antibiotics; i.e., double mutations in gyrA and parC genes are obtained after serial passage of S. pneumoniae treated with moxifloxacin [14] or S. aureus treated with gatifloxacin [41]. We found that 2 of 6 strains have a double mutation in the gyrA gene, and 4 of 6 strains in the parC gene though none of the 6 patients at the clinic were under treatment with quinolones. This result suggests that selective pressure was not the reason for generation of these mutants. A possible explanation for this phenomenon might be that strains become resistant to quinolones in a hospital by horizontal transference of genes among bacteria of the same species or even between different species that share the same habitat. A study demonstrated that approximately half of the S. epidermidis isolates from the normal human conjunctiva have mutations in the gyrA and parC genes and that these strains are gatifloxacin, and moxifloxacin resistant [29], indicating that in the normal ocular surface, strains already exist with quinolone resistance capable of infecting the eye.

In summary, this work provides evidence that the quinolone resistance of S. epidermidis strains isolated from patients with endophthalmitis, corneal ulcers and conjunctivitis is due to mutations in the gyrA and parC genes. Our results suggest that alternatives to the treatment of ocular infections by S. epidermidis with gatifloxacin, moxifloxacin or balofloxacin should be considered, since 13.6% of the strains are resistant to these antibiotics.

Acknowledgments

We thank Brent Harker from The University of Notre Dame and Helen Belenfant-Miller from USDA/ARS for advice on and assistance with this paper. This work was supported by CONACyT (grants 47424 and 46537) and AMMFEN. Marco A. Juárez-Verdayes received doctoral scholarships from CONACyT and PIFI-IPN. Mario E. Cancino-Díaz and Juan C. Cancino-Díaz are fellows of COFAA-IPN, EDI-IPN and SNI-CONACyT, and Gabriel Betanzos-Cabrera is a fellow of SNI-CONACyT and PROMEP.

References


Quinolone-Resistant S. epidermidis and Mutations in gyrA and parC Genes
11 Davies TA, Goldschmidt AR, Pfleger S, Loe- 
lof M, Bush K, Sahm DF, Evangelista A: 
Cross-resistance, relatedness and allele an-
alysis of fluoroquinolone-resistant US clinical 
isolates of Streptococcus pneumoniae (1998– 
2000). J Antimicrob Chemother 2003;52: 
168–175. 
12 Karlowsky JA, Thornsberry C, Jones ME, 
Evangelista AT, Critchley IA, Sahm DF: Fac-
tors associated with relative rates of anti-
microbial resistance among clinical isolates of Streptococcus pneumoniae in the United States: results from the TRUST Surveillance Program 
970.
13 Thornsberry C, Sahm DF, Kelly LJ, Critchley 
IA, Jones ME, Evangelista AT, Karlowsky JA: 
Regional trends in antimicrobial resistance 
among clinical isolates of Streptococcus pneumoniae, Haemophilus influenzae, and 
Moraxella catarrhalis in the United States: results from the TRUST Surveillance Pro-
34(suppl 1):S4–S16.
14 Pestova E, Millichap JJ, Noskin GA, Peterson 
LR: Intracellular targets of moxifloxacin: a 
comparison with other fluoroquinolones. J 
15 Gellert M, Mizuuchi K, O’Dea MH, Itoh T, 
Tomizawa JI: Nalidixic acid resistance: a sec-
don genetic character involved in DNA gy-
rase activity. Proc Natl Acad Sci USA 1977; 
74:4772–4776.
16 Gellert M, Mizuuchi K, O’Dea MH, Nash 
HA: DNA gyrAse: an enzyme that introduc-
ses superhelical turns into DNA. Proc Natl 
17 Juárez-Verdayes MA, Reyes-López MA, 
Cancino-Díaz ME, Muñoz-Salas S, Rodrí-
gez-Martínez S, Zavala-Díaz de la Serna FJ, 
Hernández-Rodríguez CH, Cancino-Díaz 
JC: Isolation, vancomycin resistance and 
biofilm production of Staphylococcus epider-
midis from patients with conjunctivitis, cor-
near ulcers, and endophthalmitis. Rev Latino-
18 Ihanji V, Sharma N, Satpathy G, Titijal Y: 
Fourth-generation fluoroquinolone-resis-
tant bacterial keratitis. J Cataract Refract 
19 Donnenfeld ED, O’Brien TP, Solomon R, 
Perry HD, Speaker MG, Wittappen J: Infe-
tious keratitis after photorefractive keratec-
20 Sechi LA, Pinna A, Pusceddu C, Fadda G, 
Carta F, Zannetti S: Molecular characteriza-
tion and antibiotic susceptibilities of ocular 
isolates of Staphylococcus epidermidis. J Clin 
21 Pinna A, Zannetti S, Sotgiu M, Sechi LA, Fad-
da G, Carta F: Identification and antibiotic 
susceptibility of coagulase negative staph-
ylococci isolated in corneal/external infec-
22 Snyder ME, Katz HR: Ciprofloxacin-resis-
tant bacterial keratitis. Am J Ophthalmal 
23 Rodríguez-Martínez S, Cancino-Díaz ME, 
Jiménez-Zamudio L, García-Latorre E, 
Cancino-Díaz JC: TLRs and NOD mRNA 
expression pattern in healthy mouse eye. Br 
24 Fisch A, Salvanet A, Prazuck T, Forestier F, 
Gerbaud L, Coscas G, Lafaix C: Epidemiol-
ogy of infective endophthalmitis in France. 
The French Collaborative Study Group on 
1376.
25 Upadhyay MP, Karmacharya PC, Koirala S, 
Tuladhar NR, Bryan LE, Smolin G, Whittech 
ER JP: Epidemiologic characteristics, predis-
posing factors, and etiologic diagnosis of corneal ulceration in Nepal. Am J Ophthal-
26 Benz MS, Scott IU, Flynn HW Jr, Unonnis N, 
Miller D: Endophthalmitis isolates and anti-
biotic sensitivities: a 6-year review of cul-
37:38–42.
27 Schwab R, Stapleton JT, Gilligan PH: Emer-
gence of vancomycin resistance in coagu-
1987;316:927.
28 Ohnmsan C, Ritterband D, O’Brien T, Girgis 
D, Kabat A: Comparison of azithromycin 
and moxifloxacin against bacterial isolates 
causing conjunctivitis. Curr Med Res Opin 
29 Yamada M, Yoshiha J, Hatou S, Yoshida T, 
Minagawa Y: Mutations in the quinolone re-
sistance determining region in Staphylococ-
cus epidermidis recovered from conjunctiva 
and their association with susceptibility to 
various fluoroquinolones. Br J Ophthalmol 
30 Bogado I, Limansky A, Sutch E, Marchiaro 
P, Marzi M, Putero J, Viale A: Molecular char-
acterization of methillin-resistant coagu-
lase-negative staphylococci from a neo-
natal intensive care unit. Infect Control Hosp 
31 de Mattos EM, Teixeira LA, Alves VM, 
Resenda e Resende CA, da Silva Coimbra 
MV, da Silva-Carvalho MC, Ferreira-Car-
valho BT, Figueiredo AM: Isolation of meth-
illin-resistant coagulate-negative staphylo-
occi from patients undergoing continuous 
ambulatory peritoneal dialysis (CAPD) and 
comparison of different molecular tech-
niques for discriminating isolates of Staphy-
lococcus epidermidis. Diagn Microbiol Infect 
Dis 2003;45:13–22.
32 Galdhart JO, Morvan A, Desplaces N, El Solh 
N: Phenotypic and genomic variation among 
Staphylococcus epidermidis strains infecting 
joint prostheses. J Clin Microbiol 1999;37: 
1306–1312.
33 Miragaia M, Couto J, Pereira SFF, Kristins-
son KG, Westh H, Jarlov JO, Carrico J, Al-
meida J, Santo-Sanches I, de Lancastre H: 
Molecular characterization of methillin-
resistant Staphylococcus epidermidis clones: 
evidence of geographic dissemination. J Clin 
34 Nunes AP, Teixeira LM, Bastos CC, Silva 
MG, Ferreira RB, Fonseca LS, Santos KR: 
Genomic characterization of oxacillin-resis-
tant Staphylococcus epidermidis and Staphy-
lococcus haemolyticus isolated from Brazil-
ian medical centres. J Hosp Infect 2005;59: 
35 Dominguez MA, Linares L, Pulido A, Perez 
JL, de Lancastre H: Molecular tracking of 
coagulase-negative staphylococcal isolates 
from catheter-related infections. Microb 
36 Sreedharan S, Peterson LR, Fisher LM: Cip-
rofloxacin resistance in coagulase-positive 
and -negative staphylococci: role of muta-
tions at serine 84 in the DNA gyrase A pro-
tein of Staphylococcus aureus and Staphy-
lococcus epidermidis. Antimicrob Agents 
37 Li Z, Deguchi T, Yasuda M, Kawamura T, 
Kanematsu E, Nishino Y, Ishihara S, Kawada 
Y: Alteration in the gyrA subunit of DNA 
gyrase and the ParC subunit of DNA topoi-
serase IV in quinolone-resistant clinical 
isolates of Staphylococcus epidermidis. Anti-
microb Agents Chemother 1998;42:3293– 
3295.
38 Linde HJ, Schmidt M, Fuchs E, Reischl U, 
Niller HH, Lehn N: In vitro activities of six 
quinolones and mechanisms of resistance in 
Staphylococcus aureus and coagulase-nega-
tive staphylococci. Antimicrob Agents Che-
39 Masahiro T, Yonezawa M, Matsubara N, 
Watanabe Y, Narita H, Matsunaga T, Iga-
rashi H, Kawahara M, Onodera S, Oishi Y: 
Antibacterial activity of quinolones against 
coagulase-negative staphylococci and the 
quenolone resistance-determining region of 
the gyrA genes from six species. J Antimi-
40 Avasorglu MD, Helmuth R, Junker E, Hert-
wig S, Schroeter A, Akcelik M, Bozuglu F, 
Guerra B: Plasmid-mediated quinolone re-
sistance conferred by qnrS1 in Salmonella enterica serovar Virchow isolated from 
the quenolone food of an avian origin. J Antimi-
41 Ince D, Hooper DC: Mechanisms and fre-
quency of resistance to gatifloxacin in com-
parison to AM-1121 and ciprofloxacin in 
Staphylococcus aureus. Antimicrob Agents 