JOURNAL OF PUBLIC HEALTH DENTISTRY

Volume 66, Number 2 Spring 2006

Official Journal of the American Association of Public Health Dentistry

AMERICAN ASSOCIATION OF PUBLIC HEALTH DENTISTRY

National Office P.O. Box 7536 Springfield, IL 62791-7536 USA Nonprofit Org U S Postage Paid Springfield IL Permit 250

JOURNAL OF PUBLIC HEALTH DENTISTRY

OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION OF PUBLIC HEALTH DENTISTRY

INTERIM EDITOR Helen C. Gift, PhD

E-mail: JPHDEditor@aaphd.org
c/o
Journal of Public Health Dentistry
American Association of
Public Health Dentistry
P.O. Box 7536
Springfield, IL 62791-7536
Tel: 217-391-0218; Fax: 217-793-0041

ASSOCIATE EDITOR FOR COMMUNITY ACTION REPORTS

Myron Allukian, Jr., DDS, MPH 46 Louder's Lane Boston, MA 02130 Tel: 617-654-8920; FAX: 627-542-0777 E-mail: MyAlluk@aol.com

EDITORIAL BOARD

2006

Gustavo Cruz, DMD, MPH Ana Karina Mascarenhas, BDS, MPH, DrPH Vladimir W. Spolsky, DMD, MPH

2007

Susan O. Griffin, PhD Kaumudi J. Joshipura, BDS, MS, ScD George W. Taylor DMD, DrPH

2008

Emanuel Finn, DDS, MS Melanie Gironda, PhD Mark D. Macek, DDS, MPH, DrPH 2009

Patrick Blahut, DDS, MPH Maria T. Cantos, DDS, MS, MPH Jessica Lee, DDS, MPH, PhD

ARCHIVES EDITOR

Steven P. Geiermann, DDS HRSA Chicago Regional Division 233 N. Michigan Avenue, Suite 200 Chicago, IL 60601 Tel: 312-353-4402; Fax: 312-353-1212 E-mail: sgeiermann@hrsa.gov SPRING 2006

VOLUME 66, NUMBER 2

CONTENTS

SCIENTIFIC ARTICLES & BRIEF COMMUNICATIONS

Dental Caries Progression and Impact

- 83 Longitudinal Study of Non-cavitated Carious Lesion Progression in the Primary Dentition Warren, Levy, Broffitt, Kanellis
- 88 Dental Caries Experience and Factors among Preschoolers in Southeastern Mexico A Brief Communication Segovia-Villanueva, Estrella-Rodríguez, Medina-Solís, Maupomé

Flourosis Assessment and Measurement

92 Use of the Fluorosis Risk Index in a Cohort Study: The Iowa Fluoride Study Levy, Hong, Warren, Broffitt

Oral Health Inequalities and Socioeconomic Conditions

- 97 Determining Dental Utilization Rates for Children: An Analysis of Data from the Iowa Medicaid and SCHIP Programs Damiano, Momany, Crall
- 104 Adult Oral Health Inequalities Described Using Area-based and Household-based Socioeconomic Status Measures Jamieson, Thomson
- 110 Tooth Loss in a Young Population from South Brazil Susin, Haas, Opermann, Albandar
- 116 Is Regular Visiting Associated with Lower Costs? Analyzing Service Utilization Patterns in the First Nations Population in Canada Leake, Birch, Main, Ho
- 123 The Role of Location in Indigenous and Non-Indigenous Child Oral Health Jamieson, Armfield, Roberts-Thomson

Oral Health Promotion Opportunities

- Oral Health Status of Mississippi Delta 3- to 5-Year-Olds in Child Care: An Exploratory Study of Dental Health Status and Risk Factors for Dental Disease and Treatment Needs

 Southward, Robertson, Wells-Parker, Eklund, Silberman, Crall, Edelstein, Baggett, Parrish, Hanna
- 138 Role of African-American Fathers in Child-Rearing and Oral Health Practices in an Inner City Environment A Brief Communication Broder, Reisine, Johnson
- Prevalence and Causes of Oral Injuries in a Population of Canadian Adults
 Aged 18 to 50 Years A Brief Communication
 Locker

Patient and Provider Characteristics and Dental Visits

147 Dental Anxiety Among Young Israeli Male Adults as Related to Treatment Received during Childhood Levin, Eli, Ashkenazi

REVIEW ARTICLE

152 Prevalence of Xerostomia in Population-based Samples: A Systematic Review
Orellana, Lagravère, Boychuk, Major, Flores-Mir

2005 AAPHD OFFICERS AND EXECUTIVE COUNCIL

President **Robert Weyant, DMD, DrPH**Univ. of Pittsburg School of Dental Medicine

Pittsburgh, PA
Phone: 412-648-3052; Fax: 412-383-8662
rjw1@pitt.edu

President-Elect Kathryn Atchison, DDS, MPH

UCLA School of Dentistry Los Angeles, CA Phone: 310-825-6544; Fax: 310-764-7734 katchison@resadmin.ucla.edu

Vice President Caswell Evans Jr., DDS, MPH

Associate Dean

Univ. of Illinois Chicago College of Dentistry Chicago, IL

Phone: 312-413-7365; Fax: 312-413-9050 casevans@uic.edu

Secretary-Treasurer Mark Macek, DDS, DrPH

Univ. of Maryland, Baltimore Dental School Baltimore, MD Phone: 410-706-4218; Fax: 410-706-3028 MMacek@umaryland.edu

Immediate Past President Jane Weintraub, DDS, MPH

Univ. of California-San Francisco San Francisco, CA Phone: 415-476-3033; Fax: 415-502-8447 jane.weintraub@ucsf.edu

Executive Council

Eugenio Beltran, DMD, MS, DrPH

edb4@cdc.gov

Diane Brunson, RDH, MPH diane.brunson@state.co.us

Mary E. Foley, RDH, MPH mfoley@cdhp.org

Barbara Gooch, DMD, MPH bgooch@cdc.gov

Linda Kaste, DDS, PhD, MS kaste@uic.edu

Ana Karina Mascarenhas, BDS, MPH karinam@bu.edu

Editor, Communiqué Becky DeSpain Eden, RDH, MEd Baylor College of Dentistry

Dallas, TX Phone: 214-828-8402; Fax: 214-828-8449 bdespaineden@bcd.tamhsc.edu

Historian
E. Joseph Alderman, DDS, MPH
Atlanta, GA
Phone: 404-876-3530

Phone: 404-876-3530 ejalderman@comcast.net

Executive Director
Pamela J. Tolson, CAE
AAPHD National Office
P.O. Box 7536
Springfield, IL 62791-7536
Phone: 217-391-0218; Fax: 217-793-0041
natoff@aaphd.org
Website: www.aaphd.org

STATEMENT OF OWNERSHIP

The *Journal of Public Health Dentistry* (ISSN #0022 4006), published quarterly, is an official publication of the American Association of Public Health Dentistry (AAPHD), P.O. Box 7536, Springfield, IL 62791-7536. Subscription rates effective October 2005 are: United States, \$190.00 (airmail will be an additional \$40); foreign, \$230.00 via airmail. A limited supply of back issues is available at one-fourth the annual subscription rate. Contact the AAPHD National Office for availability. All payments must be made in US currency.

Since its founding in 1937, the AAPHD has provided leadership in improving the oral health of the public through the discipline of public health dentistry. Its major goals are to promote effective efforts in disease prevention, health promotion, and service delivery; educate the public, health professionals, and policy makers regarding the importance of oral health to total well-being; expand the knowledge base of dental public health; and foster competency in practice.

AIMS AND SCOPE

The *JPHD* is devoted to the advancement of public health dentistry through the exploration of related research, practice, and policy developments. Three main types of articles are published: *original research articles* that provide a significant contribution to knowledge in the breadth of dental public health, including oral epidemiology, dental health services, the behavioral sciences, and the public health practice areas of assessment, policy development, and assurance; *methods articles* that report the development and testing of new approaches to research design, data collection and analysis, or the delivery of public health services *IJPHD* 1997; 57:195-6]; and *review articles* that synthesize previous research in the discipline and provide guidance to others conducting research as well as to policy makers, managers, and other dental public health practitioners. Original research and methods papers can be published as *Brief Communications* of 1,500 words or fewer *IJPHD* 1995; 55:6]. *JPHD* Instructions for Contributors are available at www.aaphd.org, under "Publications."

We also encourage submissions for *Community Action Reports* [JPHD 2001; 61:67], which seek in-depth analyses of initiatives and programs of interest to the dental public health community. Other items of interest to the dental public health community are published: *Guest Editorials* and *Commentaries*; official proceedings of the annual meeting of the American Board of Dental Public Health; selected proceedings from the annual awards ceremony of the Oral Health Section of the American Public Health Association; and the *Archives*, which documents significant professional events in dental public health for the association's historical record, e.g., appointments, promotions, awards, retirements, and obituaries.

Proceedings of conferences, workshops, or symposia, or a series of papers with closely related content can be published as special issues or supplements. The full cost of these issues is paid by the authors or sponsoring agency.

INQUIRIES

Inquiries pertaining to original research or review articles, special issues, and editorials or commentaries should be directed to the Editor. Inquiries concerning *Community Action Reports* should be directed to Dr. Myron Allukian, Jr. Submissions for *Archives* should be sent to Dr. Steven P. Geiermann.

ADVERTISING

Current rates and specifications can be obtained by contacting the AAPHD National Office, Pamela Tolson, P.O. Box 7536, Springfield, IL 62791-7536.

CHANGE OF ADDRESS

 $Please \ notify \ the \ AAPHD \ National \ Office \ of \ any \ change \ of \ address. \ The \ National \ Office \ is \ not \ responsible for \ undelivered \ issues.$

DISCLAIMER

The *JPHD* disclaims responsibility for opinions expressed by authors or advertisers. While every effort is made by the publishers and editorial staff to see that no inaccurate or misleading data, opinions, or statements are printed in the *JPHD*, data and opinions appearing in articles and advertisements are the sole responsibility of the contributor or advertiser concerned.

Copyright @2006 by the American Association of Public Health Dentistry. All material subject to this copyright may be photographed for the noncommercial purposes of scientific or educational advancement.

Printed on acid-free paper per ANSI.std.

Dental Caries Experience and Factors among Preschoolers in Southeastern Mexico: A Brief Communication

América Segovia-Villanueva, MSc; Ramón Estrella-Rodríguez, MSc; Carlo Eduardo Medina-Solís, MSc; Gerardo Maupomé, PhD

Abstract

Objective: To examine the association between dental caries prevalence and selected variables in preschool children. **Methods:** A cross-sectional study was carried out with 1,303 preschoolers (ages 3-6 years old), and the mothers completed questionnaires. The children were examined by one of three standardized dental examiners. Logistic regression was performed to identify associations between dental caries and other factors. **Results:** Mean dmft was 1.54+2.47, with 44.1% of children having dmft>0. Caries prevalence was associated with older children (OR=1.39); medium (OR=1.66) and low (OR=2.41) socioeconomic levels; mediocre (OR=1.71) and inadequate (OR=2.25) hygiene; negative attitude toward oral health (OR=1.51); and the presence of enamel defects (OR= 1.74). **Conclusion:** Both overall caries prevalence and dmft index were relatively low. The results of this study substantiate previous reports in the international literature for clinical, behavior, socio-demographic, and socio-economic variables that contribute to dental caries in Mexican children.

Key Words: Dental caries, epidemiology, primary teeth, dmft index, Mexico

Introduction

Dental caries is a public health problem and the most common cause of tooth loss in preschool and schoolchildren. It is a process involving an imbalance in the interactions between the tooth surface/subsurface and the adjacent microbial biofilm leading to deterioration of dental tissues (1). Attempts have been made to identify those individuals affected by increased dental caries experience through a wide variety of demographic, socioeconomic, dietary, physical, chemical, and microbiological factors. In the past 20 to 30 years, comparisons of existing epidemiological data noted a decline in the prevalence of dental caries, mainly

among children and adolescents in industrialized countries (2). In Mexico, a moderate-income country, the dental caries problem has been documented mainly through descriptive studies. The objective of the present study was to examine the strength of the association between dental caries prevalence and selected variables in preschool children.

Materials and Methods

This study's design and execution met the ethical review indications and guidelines for the protection of research subjects established by the Universidad Autonoma de Campeche and the Instituto Mexicano del Seguro Social.

Design and study population. A cross-sectional study was conducted on all children enrolled during the 1997-1998 school year (total enrolled = 1,580) in the ten Campeche City public preschools, which were included in a preventive dentistry program managed by a federally funded, third-party medical insurance system (Instituto Mexicano del Seguro Social, or IMSS). (IMSS is the largest medical insurance system in the country, available to non-government employees.) The preventive dentistry program includes the periodic administration (twice a year) of topical fluoride (2% sodium fluoride gel administered for 4 minutes, after cleaning with manual tooth brush) and a verbal, one-on-one review of tooth brushing routine. Children younger than 3 or older than 6 years of age and children whose parents did not sign the informed consent were excluded. The final sample was 1,303

Variables collected. The dependent variable was dmft; the Significant Caries index (SiC) was also calculated. The independent variables were sex, age, oral hygiene, presence of enamel defects, socioeconomic status (SES), and the importance that the mother or caregiver ascribed to the oral health of her child (attitude). SES

Send correspondence and reprint requests to: Carlo Eduardo Medina-Solís, Privada de Altillo s/n entre Av. Central y Pedro Moreno, Colonia San José. CP. 24040, Campeche, México. Tel and Fax: (52981) 81 102 15. E-mail address: cemedinas@yahoo.com. América Segovia-Villanueva is affiliated with the Coordinación de Estomatología del Instituto Mexicano del Seguro Social delegación Campeche. Campeche, México, and the Facultad de Odontología de la Universidad Autónoma de Campeche, Campeche, México. Ramón Estrella-Rodríguez is affiliated with the Facultad de Odontología del Instituto de Ciencias de la Salud del a Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México and the. Centro de Investigación en Sistemas de Salud del Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México. Gerardo Maupomé is affiliated with the Oral Health Research Institute, Indiana University/ Purdue University at Indianapolis School of Dentistry. Indianapolis, Indiana, USA. Source of Support: The analysis of this work was supported in part by a grant from the National Council of Science and Technology (CONACyT-166266). Previous Presentations: Various analyses related to this manuscript were presented as posters in: 1) X Congress of Public Health Research, March 2003. Cuernavaca, Morelos, Mexico. 2) XV National and II International Congress of Postgraduate Studies and Research in Dentistry – June, 2003. Acapulco, Guerrero, Mexico. 3) 82nd General Session & Exhibition of the IADR/AADR/CADR – March, 2004. Honolulu, Hawai, USA. 4) XIII National Forum of Health Research – September, 2004. Morelia, Michoacán, Mexico. Manuscript received 1/20/05; accepted for publication 1/16/06.

was assigned to each child as per the information derived from the questionnaire according to the father's occupation and mother's highest level of formal education. These variables were combined using polychoric principal component analysis (3). The socioeconomic level was divided in high, medium, and low terciles.

The mother's attitude was summarized as positive (score 1) if answered "yes" to both of the following questions: Do you consider important that your child keeps his/her primary teeth in good condition? and Have you ever examined his/her teeth to ascertain if they are healthy? or negative attitude (score 0) if answered "no" to either of the two questions (4, 5). Oral hygiene was determined by measuring dental plaque, using the modified index of Sillness and Löe (absent when less than 20% of the tooth surfaces had plaque, and present when more than 20% had plaque), and by asking the mothers to self-report toothbrushing frequency. These two variables were used to construct the clinical-behavioral scoring system for oral hygiene in children, previously used in other studies (6, 7).

Standardized questionnaires were distributed in the schools for the mothers to complete, and were collected in the same way. Four examiners were trained and standardized (Kappa values, 0.89 to 0.93) to measure clinical variables. Exams were conducted in a dental chair using a dental mirror, explorer, and natural light. The d component included caries in dentin as well as recurrent caries. The m component included only teeth missing due to caries. No radiographs were used and no white spot lesions were recorded.

Statistical analysis. For continuous variables, measures of central tendency and dispersion were calculated. For categorical variables, the frequencies and percentages for each category were obtained. A multivariate binary logistic regression model was created and the results are presented as odds ratios (OR) with 95% confidence intervals (95% CI). Variables from the bivariate analysis that had a p-value <0.25 were included.

Various tests and steps recommended were undertaken while building the regression model (carried out the variance inflation factor test, the specification error test, the Box-Tidwell test for continuous variables, and assessed interactions) (8). Confidence intervals were calculated with standard error adjusted for clustering on school. The statistical package STATA 8.2® was used for all the statistical procedures.

Results

The questionnaire response rate was 82.5%. Of the 1,303 children included in the study, 51.7% were male, with an average age of 4.3 ± 0.8 years. The mothers averaged 11.1 ± 3.9 years of schooling. The majority of mothers (65.8%) ascribed positive importance to the preservation of teeth for their children. Based on the questionnaire administered to the mothers, 71.5% of the children brushed their teeth daily (at least once per day). With regard to the clinical oral examination, 9.6% of

the children had enamel defects and 58.0% had dental plaque. Table 1 shows the descriptive results of caries across key variables. The caries prevalence (dmft>0) was 44.1% (caries-free children = 55.9%), with mean dmft and dft 1.54 ± 2.47 and 1.53 ± 2.43 , respectively. The overall SiC index was 4.31.

Table 2 shows the crude odds ratios (OR) and adjusted OR (AOR) for caries experience, including confidence intervals (95% CI). The frequency of caries in males (44.4%) and females (43.8%) was not different (p>0.05). The odds of having caries was higher among children 5-6 years of age, of medium and low SES, whose mothers had a negative attitude about the importance of oral health of their children, and with mediocre or inadequate oral hygiene (p<0.05). A trend suggesting a difference between children with enamel defects and children without them (p = 0.08) was observed. In the multivariate logistic regression model (Table 2), the vari-

TABLE 1
Distribution of decay, missing and filling teeth index and significant caries index

	dmft; mean±sd	dt; mean±sd	% caries free	SiC index
Age				
3 (n=187)	0.70 ± 1.65	0.67 ± 1.61	73.8	2.11
4 (n=528)	1.50±2.38	1.37±2.19	55.3	4.16
5 (n=514)	1.90±2.69	1.68±2.53	48.6	4.94
6 (n=74)	1.53±2.74	1.30 ± 2.43	64.8	4.48
	p value<0.001*		p value<0.001†	
Sex	•		•	
Boys	1.57±2.44	1.42±2.27	55.6	4.35
Girls	1.51±2.51	1.35±2.33	56.2	4.23
	p value>0.05‡		p value>0.05¶	
Socio-economic level	•		•	
High	0.88±1.85	2.08±2.66	70.2	2.65
Medium	1.44±2.39	1.33±2.24	56.5	4.01
Low	2.22±2.80	0.66±1.53	42.5	5.46
	p value<0.001*		p value<0.001†	
Oral hygiene	•		•	
Adequate	0.96±1.86	0.82 ± 1.70	44.0	2.88
Mediocre	1.62±2.42	1.44±2.26	52.6	4.36
Inadequate	2.35±3.19	2.22±2.94	67.9	6.00
•	p value<0.001*		p value<0.001†	
Total	1.54±2.47	1.39±2.30	55.9	4.31

^{*}Kruskalll-Wallis test

[†]non-parametric test for trend

[‡]Mann-Whitney test

[¶]Chi² test.

TABLE 2
Results of bivariate and multivariate logistic regression analysis between independent variables and caries experience (dmft=0 vs. dmft>0) as dependent variable (n=1,303)

Variable	OR crude	AOR (95% CI) *	p value
Age			
3 and 4 year olds	1*	1†	
5 and 6 year olds	1.47 (1.18 – 1.82)	1.39 (1.16 – 1.66)	0.000
Socio-economic status			
High	1*	1†	
Medium	1.82(1.48 - 2.22)	1.66(1.37 - 2.01)	0.000
Low	3.18(2.15 - 4.72)	2.41 (1.68 - 3.46)	0.000
Oral hygiene			
Adequate	1*	1†	
Mediocre	1.90 (1.39 – 2.61)	1.71 (1.24 - 2.34)	0.001
Inadequate	2.69 (1.64 – 4.42)	2.25 (1.34 - 3.76)	0.002
Enamel defects			
Absent	1*	1†	
Present	1.58 (0.95 - 2.62)	1.74 (1.05 - 2.89)	0.032
Attitude toward oral health			
Positive	1*	1†	
Negative	1.74 (1.27 – 2.39)	1.51 (1.20 – 1.90)	0.000

^{*} Adjusted odds ratio by variables in the table.

ables that had been significant at the bivariate analysis level remained significant. Briefly, 5-6 year old children had higher odds of having caries (OR=1.39) than 3-4 year old children. A higher likelihood of having caries in the medium and low SES groups (OR=1.66, OR=2.41, respectively) than among children in the high SES group was observed. Children with mediocre and inadequate oral hygiene had higher odds of having caries (OR=1.71, OR=2.25, respectively) when compared to children with adequate oral hygiene. The mother's negative attitude toward the oral health of her child increased 51% the possibility of having dmft>0. Finally, children with enamel defects had higher odds of having caries (OR=1.74) than children without enamel defects.

Discussion

The caries experience in this study (dmft=1.63) at the ages of 5 and 6 years old was lower than figures reported for other populations in Latin America, but also similar to previous reports (6, 9, 10), keeping in mind that

the d component made up the largest percentage (90%) of the index. The children from this study population met the WHO/FID goal (50% or less caries prevalence) for the year 2000. The prevalence figures in this study are lower compared to other reports from Mexico (10, 11), perhaps because this population benefited from the preventive dentistry program, and because the State of Campeche has been included in the country-wide fluoridated domestic salt program since the early 1990s.

The authors found a positive relationship between dental caries and SES, as has been observed in oral epidemiologic investigations in both industrialized and less-developed countries (including existing reports for Mexican populations). Also, the importance that the mother ascribed to the oral health of her children was associated with the child having caries, as well as age, and oral hygiene. (6, 9, 10, 11).

This study had certain limitations that emphasize a cautious interpretation of results. A cross-sectional study measures cause and effect at the same point in time, introducing the problem of temporal ambiguity and the inability to establish causal relationships. The fact that these children benefit from a program of preventive dentistry makes them different from other children, and therefore the results cannot be extrapolated to the general population. Additionally, the use of questionnaires could be introducing some degree of recall bias.

The results of this study substantiate previous reports in the international literature supporting clinical, behavior, socio-demographic, and socio-economic variables as contributing factors for dental caries in children.

Source of Support

The analysis of this work was supported in part by a grant from the National Council of Science and Technology (CONACyT-166266).

Previous Presentations

Various analyses related to this manuscript were presented as posters in: 1) X Congress of Public Health Research, March 2003. Cuernavaca, Morelos, Mexico. 2) XV National and II International Congress of Postgraduate Studies and Research in Dentistry – June, 2003. Acapulco, Guerrero, Mexico. 3) 82nd General Session & Exhibition of the IADR/AADR/CADR – March, 2004. Honolulu, Hawai, USA. 4) XIII National Forum of Health Research – September, 2004. Morelia, Michoacán, Mexico.

References

- Tinanoff N, Kanellis MJ, Vargas CM. Current understanding of the epidemiology, mechanisms, and prevention of dental caries in preschool children. Pediatr Dent 2002;24:543-51.
- Marthaler TM. Changes in dental caries 1953-2003. Caries Res 2004;38:173-81.
- Kolenikov S, Angeles G. The Use of Discrete Data in Principal Component Analysis With Applications to Socio-Economic Indices. CPC/MEASURE Working paper No. WP-04-85. 2004.
- Beltrán-Valladares PR, Cocom-Tum H, Casanova-Rosado JF, Vallejos-Sánchez AA, Medina-Solís CE, Maupomé G. [Prevalence of dental fluorosis and additional sources of exposure to fluo-

[†] Reference category.

^{95%} Confidence Interval were calculated with standard error adjusted for clustering on school. Pearson goodness of fit test x^2 (59) = 47.12; p=0.8676.

Specification error test (linktest): predictor p=0.000, predictor² p=0.218.

- ride as risk factors to dental fluorosis in schoolchildren of Campeche, Mexico]. Rev Invest Clin 2005;57:532-9.
- 5. Medina-Solís CE, Maupomé G, Avila-Burgos L, Hijar-Medina M, Segovia-Villanueva A. Pérez-Núñez R. Factors influencing the use of dental health services by preschool children in Mexico. Pediatr Dent 2006;28, in press.
- Casanova-Rosado AJ, Medina-Solís CE, Casanova-Rosado JF, Vallejos-Sánchez AA, Maupomé G, Ávila-Burgos L. Dental caries and associated factor in Mexican schoolchildren aged 6-13 years. Acta Odontol Scand 2005;63:245-51.
- Medina-Solís CE, Maupomé G, Segovia-Villanueva A, Casanova-Rosado AJ, Vallejos-Sánchez AA, Casanova-Rosado JF. Introducing a clinical-behavioral scoring system for oral hygiene in children. Rev Salud Publica 2006;8: in press.
- Bagley SC, White H, Golomb BA. Logistic regression in the medical literature: Standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol 2001; 54: 979-85.
- 9. Leite IC, Ribeiro RA. Dental caries in the primary dentition in public nursery

- school children in Juiz de Fora, Minas Gerais, Brazil. Cad Saude Publica 2000;16:717-22.
- Irigoyen ME. [Dental caries in schoolchildren of Mexico DF]. Salud Publica Mex 1997;39:133-6.
- Herrera MS, Medina-Solís CE, Rosado-Vila G, Minaya-Sánchez M, Vallejos-Sánchez AA, Casanova-Rosado JF. [Prevalence and severity of caries and treatment needs in Pre-school children in a suburban community of Campeche]. Bol Med Hosp Infant Mex 2003; 60: 189-96.

Earn an AEGD certificate from Lutheran Medical Center, New York City, and a MPH from University of Michigan, Ann Arbor

Over 24 months, residents will learn new advanced skills in clinical dentistry using innovative web-based courses and will practice dentistry in a community health center. Residents will also enroll in the MPH program at the School of Public Health, University of Michigan.

Tuition and a stipend are available for qualified dentists who have graduated from an ADA accredited US or Canadian Dental School.

To apply or for more information, please contact:

Dr. Amid Ismail, BDS, MPH, MBA, DrPH
Department of Cariology, Restorative Sciences, and Endodontics
University of Michigan
Tel: 734.647.9190
ismailai@umich.edu

Develop advanced skills in:

Clinical dentistry

Community oral health care

Dental public health

Practice management

Leadership

Academic education

Health services research