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Abstract The authors describe the implementation of a
supervised learning algorithm within a multi-agent system,
whose general objective is to build production orders.
Although this task has been carried out traditionally by the
production management system, the classic approach lacks
adaptive techniques and intelligent behavior. It is acknowl-
edged that the combinatorial problem underlying the
construction of production orders belongs to the NP hard
complexity class. Therefore, flexible computational solu-
tions are needed. We claim that by using intelligence and
collaboration in a multi-agent system (MAS), a correct
solution is reached more efficiently. Intelligence is emulated
by both learning and decision-making, achieved through a
feed-forward artificial neural network (FANN). The FANN is
embedded in a machine agent, which determines the
appropriate machine to manufacture the product. Collabora-
tion is obtained by employing a sound protocol based on
FIPA-ACL messages. We illustrate the approach by designing
and implementing a MAS, which is already in use in a
company that produces labels.

Keywords Multi-agent system . Productionactivity control .

Supervised learning . Production orders

1 Introduction

Manufacturing companies crave for supporting software that
helps achieve flexibility to compete in the globalized
marketplace. Multi-agent systems (MAS) provide attractive
features to obtain a better performance of manufacturing
activities. Mönch [19] employs the term agent-based manu-
facturing to emphasize the impact of this paradigm because
activities such as process planning [13, 14], holonic control,
and production management are being supported by multi-
agent systems. Production management systems are particu-
larly important since they link planning to manufacturing by
building and dispatching production orders [5]. However, the
classical approach is mostly unfit in dealing with the
exponential number of combinations to generate the correct
production order as input data is not necessarily homoge-
neous. Hence, flexible approaches open immense opportuni-
ties to improve this manufacturing activity as reported in
[25], where a genetic algorithm has been employed to
dispatch orders in a dispersed manufacturing setting.

Even though agent-based manufacturing can enhance
flexibility of production management systems by incorpo-
rating artificial intelligence techniques (i.e., supervised
learning), this potential has yet to be fully exploited.
Supervised learning is achieved primarily through feed-
forward artificial neural networks (FANN), with the back-
propagation algorithm [8]. Consequently, modeling and
implementing learning agents to manage more efficiently
changing market conditions contribute to the current state
of the art in production management systems.

In this paper we elaborate on how to model and
implement a FANN that has been trained with the back-
propagation algorithm. This intelligent agent, known as
machine agent, is part of a multi-agent system, of which we
describe briefly its global design and operation. This article
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is organized as follows: A discussion of the related work is
presented in Sect. 2. The transition from a classical
production planning system to an agent-based approach is
detailed in Sect. 3. The case-study is presented in Sect. 4.
The description of the implementation process of the
learning agent is presented in Sect. 5, and finally, the
conclusions of the project are drawn.

2 Related work

2.1 Multi-agent systems in production environments

Multi-agent systems in production environments have been
used in varied forms. Julka [9] reported an agent-based
supply chain management system. Symeonidis et al. [23]
employ a multi-agent system in order to plan enterprise
resources through data mining techniques. Optimization on
production planning is also achieved with a MAS [10].
Similarly, Kornienko [11] accomplished a significant
reduction of time and movement by using intelligent agents
that assign products to the appropriate machine. Wang [24]
reports the use of intelligent agents to determine a process
plan and investigates the necessity to combine process
planning and scheduling [26]. A MAS aimed at planning
enterprise-wide resources is depicted in [12]. Park [20] also
introduces the notion of a coordinator agent to smoothen
the activities being performed in a manufacturing setting.
Agent systems have been also developed to optimize the
utilization of resources within existing manufacturing
systems and deal with changing demand and products [1].
An agent-based architecture is assigned to support the
scheduling of distributed manufacturing resources in a
virtual enterprise [27]. Finally, recent work focuses on
how to mix Web services and agents to integrate inter-
organizational business processes [6, 22]. Mahesh [15],
shows a generic structure of a MAS to be used at the
production planning level.

2.2 Neural networks in production systems

The application of neural networks in production systems
has been done successfully. Paternina [21] reports learning
algorithms to schedule multiple products on a single server.
The solution is validated via simulation. Fichtner [7]
describes an unsupervised learning technique to determine
the appropriate NC machine, having as input unknown
design features coming from a CAD system.

2.3 Order dispatching approaches

Order dispatching systems have been an interesting topic of
research since they comprise the link between production

planning and manufacturing execution. This type of system
can be seen embedded on MRP systems or as supporting
software for the supply chain. Such is the case of [16, 17].
The author describes object-oriented models for the design
and implementation of the order dispatcher system. Fur-
thermore, its findings are implemented as ready-to-use
software (http://orion.com).

Although research papers are highly valuable, our proposal
differs on three different areas. One is the proposal of an
agent-based production management system, as opposed to
the classical approach. Secondly, we pioneer on how to
incorporate supervised learning in software agents to deal with
complex decisions in a manufacturing environment. The third
difference consists of the communication of asynchronous
decisions rather than using top-down algorithms, as in the case
of other order promising systems.

3 Agent-based production planning

Marík [18] acknowledges the inclusion of agent technology on
the production planning level, stating that the agentification
process associated with installing agents into the production
planning department provides an elegant mechanism for
system integration and supports the migration from centralized
planning towards distributed and flexible architectures. To
asses this transition, Figs. (1) and (2) show the classical
approach and the agent-based approach, respectively.

The classical approach to production planning is a
quantitative measure of requirements determined by the
time-phased explosion of a top-level production plan. This
includes the determination of material and capacity require-
ments, balancing incoming orders and forecasts taking into
account available material and capacity. The primary

Fig. 1 Production planning: the classical approach
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Fig. 3 Structure of the multi-
agent system

Fig. 2 Production planning: the
agent-based approach
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objective is to balance two opposing forces: what is
planned to be produced and the actual capacity to produce.
Despite the set of well-structured algorithms to plan
production, any minor change in the environment (a new
incoming order, a cancellation, or the inability to acquire
raw material at the defined time) provokes re-running a
series of time-consuming processes, from shaping a new

top-level plan to accommodating changes in the material
and capacity requirement planning.

On the other hand, an agent-based production manage-
ment system facilitates communication among decision-
makers (i.e., the software agents). Also, the process of
making a decision is distributed, which also permits
asynchronuous and parallel processes to be executed.

Fig. 5 The case study

Fig. 4 Communication protocol
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Collaboration among autonomous software units is possible
by means of FIPA-ACL performatives.

Let a communication act between two agents be a tuple
consisting of:

Therefore, the communication within agent-based pro-
duction planning possesses the following structure:

Another appealing feature is the promise to have
intelligence as part of the agents’ inherent capabilities.
The mechanism to create a meaningful message content is not
only a query to a database (which can also be used, though)

but also a process that emulates intelligent decision-making.
Moreover, data communication can be achieved by speech
acts, giving the impression that two or more software agents
are performing human-like communication. The multi-agent

<Performative Sender Receiver Message_Content>

Fig. 6 Training matrix for the
FANN

<Request Coordinator_Agent Machine_Agent machine>

<Inform Coordinator_Agent Machine_Agent product_requirements>

<Propose Machine_Agent Coordinator_Agent machine_id>
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systemwe propose contributes to achieve this task. To the best
of the authors’ knowledge, this is the first report on using
supervised learning as a mechanism to improve production
planning. In the following sections we provide details on the
design and implementation of the agent-based production
planning system illustrated in this paper.

4 Implementation of the MAS

4.1 The multi-agent system: structure and communication

Figure (3) presents the actual structure of the multi-agent
system. The Agent Unified Modeling Language [2] has
been employed to describe the architecture and the
communication protocol. On the implementation side,
JADE [3] is employed as the agent platform. The following
agents integrate the architecture: (i) coordinator agent, (ii)
machine agent, (iii) tool agent, (iv) spy agent, and (v)
scheduler agent.

In the proposed design, both the machine agent and the
tool agent possess intelligent capabilities. The tool agent
has a rule-based system to determine the right tooling,
whereas the machine agent has a FANN. Previous work on
JADE agents with a rule-base system can be consulted in
[14]. The activities performed by the multi-agent system are
explained succinctly. The coordinator agent is in charge of
directing the messages among the agents assemble. The spy
agent has the responsibility to read the Enterprise Informa-
tion System at fixed intervals. The scheduler agent decides
the sequence to release the production orders. The
communication protocol illustrates how the set of agents
communicate partial decisions at every phase of the process
to build production orders (Fig. 4).

Communication between the coordinator agent and the
machine agent is not initiated until the tool agent informs
its results. The coordinator agent informs five pieces of
data to the machine agent (see Fig. 7). The following code
illustrates how the coordinator agent informs the machine
agent the value for the raw material family and appends a
message in a GUI.

The machine agent initiates its reasoning process and
then informs the coordinator agent about what machine to
use. The actual content that is uttered by the machine agent
is a valid conclusion obtained by the FANN attached to it.

The machine agent first initiates the neural network by
setting it to execution mode. This happens when the
initiate_back_pro() method is reached. The resultant ma-
chine is attached to a string variable the_machine, which
receives the decoded value obtained by the neural network
when the reasoning_back_pro() method is called. The

resultant machine is set as a content of the INFORM
performative, which is sent to the coordinator agent.

When the machine, tools and other data are established, a
priority is assigned to the production order. The production
order is stored in the Enterprise Information System when a
priority is assigned. Then a message is transmitted to the
manufacturing department to start production. Subsequently,
we describe the design and implementation process of the
supervised learning mechanism.

4.2 Dynamics of the MAS in the case study

The agent-based production planning system is implemented as
supporting software in a factory dedicated to produce labels.
Labels are used on diverse products such as wines or sodas,
candies, jeans, bar-coding, CD’s, etc. They are a highly
demanded product in the marketplace. However, their charac-
teristics make them prone to changes. Variation in size, colors,

//the local name of the machine agent is am

if ((men.Variable.compareTo("FA=")==0)&&(men.Valor.compareTo("")!=0) && am==0 )

{

msg2.setContent(men.Mensaje);

msg2.addReceiver( new AID( "am" , AID.ISLOCALNAME) );

send(msg2);

esp.GUI_de_la_orden.areaMensajes.append("\n<COORDINADOR> to MACHINE_AGENT: 

"+msg.getContent());;

Raw_Material:Family = men.Valor;

}

ACLMessage msg2 = new ACLMessage(ACLMessage.INFORM);

inititate_back_pro();

the_machine = reasoning_back_pro();

msg2.setContent("MR="+ the_machine);

msg2.addReceiver( new AID( "coordinator", AID.ISLOCALNAME) );

send(msg2);

Int J Adv Manuf Technol



or raw material impacts the entire manufacturing system. Few
companies have the capacity and expertise to produce them,
and those that manufacture labels face tremendous production
planning problems, because systems based on the MRP
approach can not handle efficiently such complexity.

The labels are produced according to clients’ requirements.
Once the client’s order is entered by the sales department, the
production planning department must elaborate a production
order, on which the information to produce the label is
comprised. The entire communication process is presented in
Fig. (5).

There are many combinations of input data to produce a
label. Rawmaterial can be chosen from the following options:
glued-paper, non-glued paper, several types of cloth, plastic,
cardboard, to name but only a few. Also, every raw material is

purchased differently, either on continuous cylinders or in
batches (also called master). Another complexity arises when
a client sets the colors to be used. Thus, the combinations of
tints is fixed according to the client requirements. The
production planning system must establish what tools (SU1,
SU2, and SU3) are to be executed to comply with the client’s
required design of the label. On such information, the manager
must determine the number of tools (up to three).

One of the key elements needed to construct a correct
production order is the determination of the machine. The
production planning system must provide the right machine
(out of three options) which will produce the label. The
machine depends on the following variables: raw material
family, number of tints, resolution (dots per inch), type of

Fig. 7 Training module for the FANN

Table 1 Codification of the Raw Material Family set

Input stream Raw Material Family

0 0 0 0 0 1 Paper
0 0 0 0 1 0 Fabric
0 0 0 1 0 0 Kimdura
0 0 1 0 0 0 Cardboard
0 1 0 0 0 0 BOPP
1 0 0 0 0 0 Other

Table 2 Codification of the Tints set

Input stream Number of tints

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 2
0 0 0 0 1 0 0 3
0 0 0 1 0 0 0 4
0 0 1 0 0 0 0 5
0 1 0 0 0 0 0 6
1 0 0 0 0 0 0 7

Int J Adv Manuf Technol



finishing, and number of tools. In spite of the production
manager expertise, production orders normally contain
imprecise machine data. The production manager either
assigns a machine that is not suitable to process the raw
material, or s/he launches a production order for a machine
that is not available within the time framework. This situation
might occur due to fatigue, or the inability of a human being to
manage a large number of combinations. Therefore, the
process of establishing the right machine is critical. The
following section provides details on the solution presented.

5 Learning to make decisions

As it has been stated before, obtaining the appropriate
machine depends on the combination of five different data
sets as follows:

Raw_Material_Family X Tints X Resolution X Finishing_Type X Number_Tools -> Machine

Each input data set contains the following elements:
Raw_Material_Family = {Fabric, Paper, Kimdura, Cardboard, BOPP, Other}

Number_ Tools = {1, 2, 3}

Tints = {1, 2, 3, 4, 5, 6}

Resolution = {not specified, 280, 360, 400, 500, 600, 700, 800}

Finishing_Type = {not specified, laminated, sulfated}

The output data set is formed by:

Machine = {830, 2200, Nilpeter}

We chose the feed-forward artificial neural network
architecture because such nets are known to be good
classifiers. In order to train the net, a training matrix is
employed (Fig. 6). Such a training matrix is actually a
subset of the entire range of possibilities to set a machine.

The FANN was provided to the machine agent by means
of Java code, adapting the work of [4] on Java coding of
back-propagation. To facilitate the learning stage, we
developed a training module, see Fig. (7). The values
associated with the training matrix are stored in text file,
which contents are read by the neural_network class
attached to the machine agent (Fig. 3). The resultant
weights of the net are kept in a binary file, which is used
every time the neural network is set into execution mode.

The actual configuration of the FANN is related to the
training matrix. Specifically, one processing unit (p.u.) is
created for each value contained in the training set. For
example, as Input 1 of the training matrix has six different
values, six processing units are built. However, the actual
value is stored on a variable as a string of characters, which
is not a suitable input for the FANN. Thus, such a string is
converted into a stream of 0s and 1s. Table 1 illustrates the
codification for the Raw Material Family:

The prior codification is necessary because FANNs only
handle values within the closed interval [0,1]. Therefore,
the actual input and output values that the net receives and
obtains are 0s and 1s. Therefore, the FANN has six
processing units in the input layer, which are in charge of
dealing exclusively with the Raw Material Family. The
totality of discrete values contained in the input and output
sets were codified in a similar way. Tables 2, 3, 4, 5 and 6
show the resultant codification.

Consequently, the number of processing units in the
input layer of the FANN equals the number of codified
input values. For this case, 25 processing units in the input
layer are set. Once the processing units for the input layer

Table 3 Codification of the Resolution set

Input stream Resolution

0 0 0 0 0 0 0 1 Not specified
0 0 0 0 0 0 1 0 280
0 0 0 0 0 1 0 0 360
0 0 0 0 1 0 0 0 400
0 0 0 1 0 0 0 0 500
0 0 1 0 0 0 0 0 600
0 1 0 0 0 0 0 0 700
1 0 0 0 0 0 0 0 800

Table 4 Codification for the Finishing Type set

Input stream Finishing type

0 0 Not specified
0 1 Laminated
1 0 Sulfated

Table 5 Codification for the number of tools set

Input stream Number of tools

0 0 1
0 1 2
1 0 3

Table 6 Codification of the Machine set

Input stream Machine

0 0 1 830
0 1 0 2200
1 0 0 Nilpeter
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are generated, then the intermediate layer is set. The Java
code assigns the same number of processing units in the
input layer to the intermediate layer. Only one intermediate
layer is created since a FANN with a single intermediate

layer is powerful enough to deal with non-linear problems.
The output layer is then constructed.

The number of processing units in the output layer also
depends on the number of values that are provided as valid

Fig. 8 Communication and
inference to obtain a machine

Fig. 9 GUI of the MAS
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outcomes in the training set. In our training matrix, the output
layer is given three different values, and three processing units
are constructed.

According to the previous codification, the resultant
FANN consists of 3 layers. The input and intermediate
layers are comprised of 25 processing units each, whereas
the output layer possesses three processing units. This fact
is represented in Fig. (8). The processing units on the input
layer receive streams of 0s and 1s, which result after
codifying the incoming symbol. The reverse process is
carried out for the output layer, where the processing units
provide 0s and 1s, all of which are further converted into
the symbol that represents a machine.

Figure (9) presents the GUI attached to the machine
agent. The order number, the material code, and the atipica
code (i.e., a control code) are the data to be entered into the
system. Once the user inputs the data, the EIS is updated.
At this moment, the spy agent is reading a new incoming
order, and it then notifies the coordinator agent. After the
user clicks the button CREATE ORDER, the coordinator
agent changes status from idle to active. As soon as the
coordinator agent is active, it initiates the communication
process with the tool agent and the machine agent.

The machine agent receives the five pieces of data
necessary to obtain a valid machine. This can be seen in the
GUI. The text area shows the exchange of messages that
actually takes place. When the machine is set, the
coordinator agent acknowledges the reception of the last
bit of data to form a production order. Shortly afterwards,
the scheduler agent is ready to give the order a place in the
dispatching queue.

6 Conclusions

In this paper the authors have described the implementation of
a supervised learning technique in a multi-agent system aimed
at improving the construction of production orders. This
activity represents the link between manufacturing planning
and execution, and it is an NP-hard combinatorial problem
due to the ample range of possibilities to actually construct a
valid production order. The use of a FANN has given positive
results. The resultant net was trained with a subset of the entire
range of combinations, and the resultant weights have been
further used to make inferences. Input data to the network is
transmitted via a coordinator agent, in charge of directing
messages among the entire ensemble of agents. The resultant
MAS fully automates the process to acquire client’s data and
build the production order. We envision future work in
several directions. One line of research is the incorporation
of unsupervised learning techniques. With this approach, the
training phase of the net could be avoided, and the network
can adapt itself to changes in the manufacturing setting, i.e.,

when a new machine is added to the manufacturing system.
Another line of research is the incorporation of intelligent
agents to forecasting. This will help the transition to agent-
based manufacturing from classical software modules with-
out compromising the actual organization of manufacturing
companies.
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