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Abstract

The authors describe the implementation of a multi-agent system, whose goal is to enhance production planning i.e. to improve the
construction of production orders. This task has been carried out traditionally by the module known as production activity control
(PAC). However, classic PAC systems lack adaptive techniques and intelligent behaviour. As a result they are mostly unfit to handle
the NP Hard combinatorial problem underlying the construction of right production orders. To overcome this situation, we illustrate
how an intelligent and collaborative multi-agent system (MAS) obtains a correct production order by coordinating two different tech-
niques to emulate intelligence. One technique is performed by a feed-forward neural network (FANN), which is embedded in a machine

agent, the objective being to determine the appropriate machine in order to fulfil clients’ requirements. Also, an expert system is provided
to a tool agent, which in turn is in charge of inferring the right tooling. The entire MAS consists of a coordinator, a spy, and a scheduler.
The coordinator agent has the responsibility to control the flow of messages among the agents, whereas the spy agent is constantly reading
the Enterprise Information System. The scheduler agent programs the production orders. We achieve a realistic MAS that fully auto-
mates the construction and dispatch of valid production orders in a factory dedicated to produce labels.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Manufacturing companies, regardless their size, com-
pete fiercely in the current globalised marketplace. There-
fore, supporting software for manufacturing activities
must help firms achieving flexibility and adaptation to
changes. Production management, particularly, is sup-
ported by a system known as production activity control
(PAC), which links planning and manufacturing together
(Browne, Harhen, & Shivnan, 1992). This union is materi-
alized by the generation of production orders addressing
values for available machines and right tooling, among
other variables. However, as input data is not necessarily
homogeneous, classical PAC modules are mostly unfit to

deal with the exponential number of combinations to gen-
erate the correct production order. Hence, flexible
approaches open immense opportunities to improve this
manufacturing activity, as reported in Wang, Yung, and
Ip (2005), where a genetic algorithm has been employed
to schedule orders in a dispersed manufacturing setting.

It has been claimed that multi-agent systems (MAS)
have emerged as the major swift to enhance performance
in manufacturing: Authors such as Mônch and Stehli
(2006) report that key activities of industrial enterprises
are being performed by multi-agent systems. Such is the
case of process planning (López-Morales & López-Ortega,
2005; López-Ortega & López-Morales, 2006), holonic con-
trol, and production management (Marı́k & Lazanský, in
press), which have already incorporated agent technology.
The addition of capabilities to emulate intelligence in
agents is no longer an aspiration but a reality, although
some topics regarding cognitive abilities are left to be
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explored. Such is the case for algorithms that mirror the
supervised learning process, which is achieved primarily
through feed-forward artificial neural networks (FANN),
with the backpropagation algorithm. Even though this
technique provides flexible ways of making inferences, it
has not been widely exploited in multi-agent systems to
make production planning more flexible.

Modelling and implementing a MAS that employs co-
ordinately learning and decision making capabilities,
becomes a great challenge to provide flexible mechanisms
to cope with changing market conditions. In this setting,
our main contribution is the design and implementation
of a multi-agent system that coordinates an expert system
and a FANN, whose global is to construct production
orders, hence improving the key activity of production
planning.

The article is organized as it is explained next. A brief
analysis of the related work is presented in Section 2. Sec-
tion 3 contains the knowledge engineering process that was
carried out. Next, we present the design and implementa-
tion of the intelligent and collaborative system. Finally,
conclusions and future research perspectives are outlined.

2. Related work

We behold the continuous incorporation of agent tech-
nology into manufacturing systems. Marı́k (op cit) coined
the revealing term agentification of manufacturing systems

to summarize this issue. Specifically, agent technology
has been implemented to improve communication of data
among supporting applications. An example is given by
Feng (2005), who created a MAS to improve collaboration
between design and manufacturing departments. Planning
activities are improved by using AI techniques and agent-
based systems. Kornienko, Kornienko, and Priese (2004)
presents a MAS aimed at optimizing resource assignments
by analyzing process plans. Wang and Shen (2003) tackles
the process planning problem, and extends the results to
the scheduling problem (Wang, Shen, & Hao, 2006), in
an effort to optimize decisions before manufacturing execu-
tion takes place. In (Feng, Stouffer, & Jurrens, 2005) a rule-
based system is provided to agents to plan manufacturing
processes. Frey, Nimis, Worn, and Lockemann (2003)
implements a MAS to calculate the lot size, the operations
to be performed, and the time-span between jobs. The
information is fed to a simulator, which determines the best
production plan according to the data provided by the
MAS. Also, a multi-agent system including data mining
techniques to set up the profile of resources in a supply
chain is described thoroughly (Symeonidis, Kehagias, &
Mitkas, 2003).

On the other hand, neural networks and agents have
been recently applied in production planning. Paternina-
Arboleda and Das (2005) reports learning algorithms to
schedule multiple products on a single server. The solution
is validated via simulation. Fichtner et al. (2006) describes
an unsupervised learning technique to determine the

appropriate NC machine, having as input unknown design
features coming from a CAD system.

Thus, the agentification of production planning helps
replacing centralized systems for distributed and more flex-
ible architectures. Also, the incorporation of agent technol-
ogy must be grounded on the ability to include intelligence.
Although the related research found in literature is highly
valuable, this present paper pioneers on how a MAS
employs co-ordinately an Expert System and a FANN to
better production planning. Our proposal is not only inno-
vative, but it also shows practical benefits, because it has
already been tested on a real-life setting.

3. Knowledge engineering

3.1. Part I. Analysis of the case study

The environment is a factory dedicated to manufacture
labels. Labels are used almost everywhere: On bottled
products such as wine or sodas, candies, jeans, bar-coding,
CDs, etc. They provide information about a given product.
Consequently, their demand on the market place is high,
yet prone to changes. Minor variations in size, colour, or
raw material impact on the entire manufacturing system.
Few companies have the capacity and expertise to produce
them, and those that manufacture labels face tremendous
production planning problems, because traditional plan-
ning systems are not suitable to handle such a complex
task.

The typical flow of data in our case study is presented in
Fig. 1. The labels are produced according to clients’
requirements. An external application is used by the sales
department to acquire clients’ data, such as label design,
colour, dimensions, material and specific attributes. These
data are stored in the Enterprise Information System
(EIS). Once the client’s order is processed by the sales
department, the production planning department must
elaborate a production order on which the information to
produce the label is comprised. The production order must
be accurate and error-free so that the manufacturing
department can perform adequately.

The possible combinations to produce a label are
numerous. For example, the following raw material can
be employed: glued-paper, non-glued paper, thermal paper,
nylon, polyester, plastic, and cardboard to name but only a
few. Then, the raw material is grouped into families to sim-
plify the planning process and to determine how to acquire
it, which can be in the form of continuous cylinders or in
batches (also called master). Another complexity arises
when a client sets the colours to be used (i.e. blue letters
on white, glued-paper). Thus, the tints combination must
be fixed according to the client’s requirements. The produc-
tion planning manager is responsible for establishing what
the operations (SU1, SU2 and SU3) that are to be per-
formed to comply with the client’s design. On such infor-
mation, the manager must determine the number of tools
(up to three). Once these pieces of data are available, the
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production planning manager must provide the right
machine (out of three options) on which the label will be
produced. The machine depends on the following variables:
raw material family, number of tints, resolution (dots per
inch), type of finishing, and number of tools. This creates
great difficulty to construct consistent production orders.
Normally, the production planning manager relies on his/
her experience; however, production orders normally con-
tain imprecise data, as the manager shows inconsistent
behaviour about his/her decisions. The production man-
ager either assigns the wrong number of tools for a given
machine, or launches a production order for a machine
that is not suitable to deal with a specific design require-
ment. This situation might occur due to fatigue, or the
inability of a human-being to manage larger number of
combinations. Therefore, more accuracy and flexibility
can be achieved by automasing the process of generating
a production order.

3.2. Part II. The rule base

The first decision to be made is to establish the number
of tools, the raw material family, and the way to purchase
such raw material. These decisions are possible to be
achieved by setting a rule base. Therefore, the rule base
receives the following data: length, width, raw material,
and the content of three variables known as SU1, SU2,
and SU3. In this way, the rule base provides the number
of tools, based on the values of SU1, SU2 and SU3. This
is exemplified by the following excerpt:

ruleT1: IF SU1 ! = ‘‘‘‘none”” AND SU2 ! = ‘‘‘‘none””

AND SU3 ! = ‘‘‘‘none”” THEN number_tools = 3
ruleT2: IF SU1 = ‘‘‘‘none”” AND SU2 = ‘‘‘‘none””

AND SU3 = ‘‘none” THEN number_tools = 1
ruleT3: IF SU1 ! = ‘‘none” AND SU2 = ‘‘none” AND
SU3 � = ‘‘none” THEN number_tools = 1
ruleT4: IF SU1 = ‘‘none” AND SU2 ! = ‘‘none” AND
SU3 = ‘‘none” THEN number_tools = 1
ruleT5: IF SU1 = ‘‘none” AND SU2 = ‘‘none” AND
SU3 ! = ‘‘none” THEN number_tools = 1
ruleT6: IF SU1 ! = ‘‘none” AND SU2 ! = ‘‘none” AND
SU3 = ‘‘none” THEN number_tools = 2
ruleT7: IF SU1 ! = ‘‘none” AND SU2 = ‘‘none” AND
SU3 ! = ‘‘none” THEN number_tools = 2
ruleT8: IF SU1 = ‘‘none” AND SU2 ! = ‘‘none” AND
SU3 ! = ‘‘none” THEN number_tools = 2

Based on the raw material, the raw material family is estab-
lished. Some rules read:

ruleRMF01: IF RAW_MATERIAL = ‘‘kimno” THEN
RAW_MATERIAL_FAMILY = ‘‘kimdura”

ruleRMF02: IF RAW_MATERIAL = ‘‘kimsi” THEN
RAW_MATERIAL_FAMILY = ‘‘kimdura”

ruleRMF03: IF RAW_MATERIAL = ‘‘kimte” THEN
RAW_MATERIAL_FAMILY = ‘‘kimdura”

ruleRMF04: IF RAW_MATERIAL = ‘‘valer” THEN
RAW_MATERIAL_FAMILY = ‘‘fabric”
ruleRMF05: IF RAW_MATERIAL = ‘‘poliester”

THEN RAW_MATERIAL_FAMILY = ‘‘fabric”

Fig. 1. Illustration of the case study.
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ruleRMF06: IF RAW_MATERIAL = ‘‘nylon” THEN
RAW_MATERIAL_FAMILY = ‘‘fabric”

ruleRMF07: IF RAW_MATERIAL = ‘‘auttr” THEN
RAW_MATERIAL_FAMILY = ‘‘paper”

ruleRMF08: IF RAW_MATERIAL = ‘‘orono” THEN
RAW_MATERIAL_FAMILY = ‘‘paper”
ruleRMF09: IF RAW_MATERIAL = ‘‘oroag” THEN
RAW_MATERIAL_FAMILY = ‘‘paper”

ruleRMF10: IF RAW_MATERIAL = ‘‘cartd” THEN
RAW_MATERIAL_FAMILY = ‘‘cardboard”

ruleRMF11: IF RAW_MATERIAL = ‘‘carts” THEN
RAW_MATERIAL_FAMILY = ‘‘cardboard”

ruleRMF12: IF RAW_MATERIAL = ‘‘bopbc” THEN
RAW_MATERIAL_FAMILY = ‘‘bopp”
ruleRMF13: IF RAW_MATERIAL = ‘‘boppm”

THEN RAW_MATERIAL_FAMILY = ‘‘bopp”

ruleRMF14: IF RAW_MATERIAL = ‘‘boptr” THEN
RAW_MATERIAL_FAMILY = ‘‘bopp”

Then, the type of purchase is set. Should raw material be
purchased on continuous cylinders or on batches, it all
depends on the raw material family. An excerpt of the rules
to decide what type of purchase must be made, follows
here:

ruleTOP1: IF RAW_MATERIAL_FAMILY = ‘‘fab-
ric”AND RAW_MATERIAL ! = ‘‘nylon”

THEN TYPE_OF_PURCHSE =
‘‘master”

ruleTOP2: IF RAW_MATERIAL_FAMILY = ‘‘fab-
ric” AND RAW_MATERIAL = ‘‘nylon”

THEN TYPE-OF_PURCHASE =
‘‘continuous cylinder”

ruleTOP3: IF RAW_MATERIAL_FAMILY = ‘‘card-
board” AND RAW_MATERIAL ! = ‘‘cartd”

THEN TYPE_OF_PURCHASE =
‘‘master”

ruleTOP4: IF RAW_MATERIAL_FAMILY = ‘‘card-
board” AND RAW_MATERIAL = ‘‘cartd”

THEN TYPE_OF_PURCHASE =
‘‘continuous cylinder”

ruleTOP5: IF RAW_MATERIAL_FAMILY =
‘‘kimdura”

THEN TYPE_OF_PURCHASE =
‘‘master”

ruleTOP6: IF RAW_MATERIAL_FAMILY =
‘‘various”

THEN TYPE_OF_PURCHASE =
‘‘master”

ruleTOP7: IF RAW_MATERIAL_FAMILY =
‘‘paper” AND RAW_MATERIAL ! = ‘‘dual”

THEN TYPE_OF_PURCHASE =
‘‘master”

ruleTOP8: IF RAW_MATERIAL_FAMILY =
‘‘paper” AND RAW_MATERIAL = ‘‘dual”

THEN TYPE_OF_PURCHASE =
‘‘continuous_cylinder”

ruleTOP9: IF RAW_MATERIAL_FAMILY =
‘‘bopp” THEN TYPE_OF_PURCHASE = ‘‘master”

Consequently, one agent must possess the previous
knowledge, receive input data, and provide values for the
number of tools, the way to purchase raw material, and
the raw material family. This agent is called tool agent

(see Section 4 for more details). The purchasing depart-
ment is informed about the type of purchase, whereas the
number of tools and the raw material family are used along
with other data to determine the machine that will be in
charge of producing the label.

3.3. Part III. The FANN and the machine

We provide details of the feed-forward artificial neural
network to determine the right machine. As it has been sta-
ted before, obtaining the appropriate machine depends on
the combination of five different data sets, as follows:

Raw Material FamilyXTintsXResolutionXFinishing

TypeXNumber Tools� > Machine

Each input data set contains the following elements:

Raw Material Family ¼
fFabric; Paper;Kimdura;Cardboard;BOPP ;Otherg

Number Tools ¼ f1; 2; 3g
Tints ¼ f1; 2; 3; 4; 5; 6g
Resolution ¼ fnotspecified; 280; 360; 400; 500; 600; 700; 800g
Finishing Type ¼ fnotspecified; laminated; sulfatedg

The output data set is formed by

Machine ¼ f830; 2200;Nilpeterg

The raw material family and the number of tools are
obtained by the rule base previously described; the rest of
the input variables are provided by the planning depart-
ment based on the client’s specifications.

The entire range of possibilities to determine a right
machine represents an NP-Hard combinatorial problem.
We chose the feed-forward artificial neural network archi-
tecture because such neural networks are known to be good
classifiers. They are trained by backpropagating the error
signal, based on the gradient descent technique: the error
value diminishes as the gradient of a given function i.e.
the logistic function, is calculated (Jang, Sun, & Mizutani,
1997). In each training pass, the weights of the net are
updated. When the error value is less than a given target
value, the training phase is complete and the resultant
weights are stored. A fiable training matrix is employed
to train the feed-forward artificial neural network
(Fig. 2), which is a subset of the entire range of possibilities
to set a machine.

The actual configuration of the FANN is related to the
training matrix. Specifically, one processing unit is created
for each value contained in the training set. For example,
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as input 1 of the training matrix has six different values, six
processing units are built. However, the actual value is rep-
resented by a string, which is not a suitable input type for
the FANN. Thus, such values are converted to a stream of
0’s and 1’s. Table 1 illustrates the codification for the raw
material family.

The prior codification is necessary because FANNs only
handle values within the closed interval [0, 1]. Therefore,
the actual input and output values that the net receives
and obtains are 0’s and 1’s. This codification–decodifica-
tion is done by the encoder class attached to the machine

agent (see Fig. 5). Therefore, the FANN has six processing
units in the input layer, which are in charge of dealing
exclusively with the raw material family. The totality of dis-
crete values contained in the input and output sets were

codified in a similar way. Tables 2–6 show the resultant
codification.

Consequently, the number of processing units in the
input layer of the FANN equals the number of codified
input values. For this case, 25 processing units in the input

Fig. 2. The training matrix.

Table 1
Codification of the raw material family set

Input stream Raw material family

0 0 0 0 0 1 Paper
0 0 0 0 1 0 Fabric
0 0 0 1 0 0 Kimdura
0 0 1 0 0 0 Cardboard
0 1 0 0 0 0 BOPP
1 0 0 0 0 0 Other
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layer are fixed. Once the processing units for the input layer
are generated, then the intermediate layer is set. The Java
code assigns the same number of processing units in the
input layer to the intermediate layer. Only one intermediate
layer is created, since a FANN with a single intermediate
layer is powerful enough to deal with non-linear problems.
The output layer is then constructed.

The number of processing units in the output layer also
depends on the number of values that are provided as valid
outcomes in the training set. In our training matrix, the

output layer is given three different values, and three pro-
cessing units are constructed.

According to the previous codification, the resultant
FANN consists of 3 layers, 25 processing units in both,
the input and intermediate layers, and three processing
units in the output layer. This is represented in Fig. 3.
The processing units on the input layer receive streams of
0’s and 1’s, which result after codifying the incoming sym-
bol. The reverse process is carried out for the output layer,
where the processing units provide 0’s and 1’s, all of which

Table 2
Codification of the tints set

Input stream Number of tints

0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 2
0 0 0 0 1 0 0 3
0 0 0 1 0 0 0 4
0 0 1 0 0 0 0 5
0 1 0 0 0 0 0 6
1 0 0 0 0 0 0 7

Table 3
Codification of the resolution set

Input stream Resolution

0 0 0 0 0 0 0 1 Not specified
0 0 0 0 0 0 1 0 280
0 0 0 0 0 1 0 0 360
0 0 0 0 1 0 0 0 400
0 0 0 1 0 0 0 0 500
0 0 1 0 0 0 0 0 600
0 1 0 0 0 0 0 0 700
1 0 0 0 0 0 0 0 800

Table 4
Codification for the finishing type set

Input stream Finishing type

0 0 Not specified
0 1 Laminated
1 0 Sulfated

Table 5
Codification for the number of tools set

Input stream Number of tools

0 0 1
0 1 2
1 0 3

Table 6
Codification of the machine set

Input stream Machine

0 0 1 830
0 1 0 2200
1 0 0 Nilpeter

Fig. 3. Configuration of the resultant FANN.
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are further converted to the symbol that represents a
machine.

Although there are countless simulators of neural net-
works, none of them is suited to be used by a multi-agent
system. Hence, it was necessary to incorporate supervised
learning in the machine agent by means of Java program-
ming. To comply rightly with the requirements to imple-
ment backpropagation, a number of technological
innovations were carried out, adapting the work of (Bigus
& Bigus, 2002) on Java coding of backpropagation. Fig. 4
presents the module that we created to set training matrices
for FANNs.

4. Design and implementation of the multi-agent system

The primary goal of the MAS is to construct a produc-
tion order. Our solution is to decompose the decision pro-
cess carried out by the human manager in a series of tasks
performed by software agents. These tasks are:

1. To read the EIS for newly created sales orders, and to
acquire relevant variables.

2. To determine all the necessary tooling information.
3. To determine the correct machine.
4. To establish a sequence for launching production orders

to the manufacturing department.
5. To maintain data consistency and robustness along the

process.

According to the previous requirements the general
design of the multi-agent system is presented. The AUML
(Bauer & Odell, 2005) has been employed extensively to
model the MAS, whereas JADE is employed as the imple-
mentation platform. The class diagram of the system is pre-
sented in Fig. 5. The MAS has the following agents:

� coordinator agent
� machine agent
� tool agent
� spy agent
� scheduler agent

Fig. 4. The software module to train the FANN.

Fig. 5. Structure of the MAS.
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In order to actually implement intelligent agents on the
JADE platform, external tools must be employed. In the
proposed design both, the machine agent and the tool agent

possess intelligent capabilities. The tool agent has a rule-
based system to determine the right tooling, whereas, the
machine agent incorporates a FANN. In the previous sec-
tion we already discussed about the specifics of the rule
base and the FANN.

The coordinator agent is responsible for maintaining
data consistency during the process by controlling the
flow of messages. A spy agent must read the Enterprise
Information System in order to acquire clients’ orders,
and send the information to the coordinator. The machine

agent obtains the appropriate machine, whereas the tool

agent is responsible for providing the right tooling. As
soon as the machine, tools and other data are established,
a priority is assigned to the production order. To do so,
we include a scheduler agent. When the production order
gets the priority, it is then launched to the manufacturing
department. The behaviours of the agents were set up
properly in order to avoid interferences while the agents
are exchanging information. Interested readers may con-
sult (Bellifemine, Caire, & Greenwood, 2007) for insights
on how to program agents on the JADE platform. In the
following section we present the results achieved by the
multi-agent system.

4.1. The MAS exemplified

We illustrate the series of tasks and partial decisions
achieved by the software agents. We deliberately use the
command line to illustrate the entire process of message
exchange between the agents. The process starts as soon
as the sales department enters a client’s requirement. The
spy agent, which possesses a cyclic behaviour, realizes that
a new order has just entered the EIS, and it sends a series
of messages to the coordinator, informing about the values
of the following variables:

In the example, the client demands labels made of a
material called ‘‘BOPBC”, with a laminated finishing type,
and a resolution of 360 dots per inch. The planning depart-
ment feeds the following values to the EIS:

Sales order: 595
Width: 110
Length: 1500
Raw material: BOPBC
SU1: R107
SU2: ‘‘”
SU3: ‘‘”

Number of tints: 5
Resolution: 360
Type of finishing: laminated

Fig. 6. Inferences and communication occurring inside the MAS.
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Fig. 6a shows how the spy agent informs the coordinator

agent about the previous data, organized in the sales order
595. When the coordinator acknowledges reception of mes-
sages from the spy, then it informs the tool agent regarding
width, length, raw material, SU1, SU2 and SU3.

The tool agent assesses that it has enough data to initiate
its reasoning process (‘‘Agente herramienta con suficientes
datos”), then it runs the expert system and obtains a con-
clusion (Fig. 6a, bottom). The following rules are triggered
according to the input data of the current example:

ruleRMF12: IF RAW_MATERIAL = ‘‘bopbc” THEN
RAW_MATERIAL_FAMILY = ‘‘bopp”

ruleTOP9: IF RAW_MATERIAL_FAMILY =
‘‘bopp” THEN TYPE_OF_PURCHASE = ‘‘master”

ruleT3: IF SU1 ! = ‘‘none” AND SU2 = ‘‘none” AND
SU3 = ‘‘none” THEN number_tools = 1

Therefore, the tool agent reaches the next conclusion:

RAW MATERIAL FAMILY: BOPP
NUMBER OF TOOLS: 1
TYPE OF PURCHASE: Master (batch)

The tool agent informs the coordinator agent about its
conclusions. On the reception of messages from the tool

agent, the coordinator sends the following data to the
machine agent (Fig. 6b, bottom – ‘‘la cadena entrante es:
BOPP 5 360 Laminado 1”):

RAW MATERIAL FAMILY: BOPP
NUMBER OF TINTS: 5
RESOLUTION: 360
TYPE OF FINISHING: laminated
NUMBER OF TOOLS: 1

Based on this type of information, the FANN embedded
within the machine agent, which is set into execution mode,
obtains a valid machine, and sends a message to the coor-

dinator (Fig. 6c – ‘‘Agente coordinador recibi mensaje
MR = Nilpeter”). In this example, the obtained machine
is known as ‘‘Nilpeter”, which is a valid machine for this
combination of values. For this production order, the
assigned priority is 1, since it was the only order set the
day of executing this example. The bottom side of Fig. 6c
summarizes the results. This process is repeated entirely
every time the spy agent reads a new sales order. Thus,
the construction and release of a valid production order
is fully automized by the intelligent and collaborative sys-
tem that we developed.

5. Conclusions and research perspectives

Based on theoretical and practical results, we sustain
that multi-agent systems represent a major swift in sup-
porting systems for manufacturing. We contribute to

agent-based production planning with the collaborative
and intelligent MAS presented here. Marı́k (op cit) argues
that the agentification process of the production planning
department provides an elegant mechanism for system inte-
gration, and supports the migration from centralized plan-
ning towards distributed and flexible architectures. The
MAS we developed contributes to achieve this flexibility.
To the best of the authors’ knowledge, this is the first
report on how to coordinate a rule-based system and super-
vised learning, making more flexible the production plan-
ning activity.

Although production planning is improved by the col-
laborative and intelligent system presented here, it is neces-
sary to develop a solid scheduling policy to provide more
realistic plans. Our scheduler agent employs a FIFO policy,
even though it is the simplest ordering/queuing mechanism.
We can asses that integrating planning and scheduling is
not a trivial task, yet it opens up opportunities to actually
close the loop between production planning and manufac-
turing execution. The current configuration of the MAS
that we developed enhances production planning, yet pro-
duction control is not fully covered. Thus, a dynamic con-
trol policy might be obtained when relevant variables, such
as Work In Process (WIP) inventory, backorder penalty
cost, setup time and cost, processing and transportation
cost and time, or machine disruption time, are sent back
to planning for achieving production control. The loop is
closed when events within the manufacturing department,
such as machine failure or a delay in the setup time, are
communicated in real-time to the planning department.
Therefore, communication must be bidirectional, from
production planning to manufacturing execution and vice
versa. We suggest to design a hierarchy of agents, or a hol-

archy (Walter, Brennan, & Norrie, 2006), to accomplish
agent-based PAC. Communication, intelligence, and the
capability to integrate data from external applications are
key features that must be exploited thoroughly. Achieving
such a necessary feedback is an opportunity to continue
research in the field of agent-based manufacturing.
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2946 O. López-Ortega, I. Villar-Medina / Expert Systems with Applications 36 (2009) 2937–2946


