After receipt of your corrections your article will be published initially within the online version of the journal. Please note that the volume and page numbers shown on the proofs are for position only, and this will be your only chance to correct your proof. Please do not send corrections by fax or post.

Check figures and tables carefully. Check sizes, numbering, and orientation of figures. All images in the PDF are downsampled (reduced to lower resolution and file size) to facilitate Internet delivery. These images will appear at higher resolution and sharpness in the printed article. Review figure legends to ensure that they are complete. Check all tables. Review layout, titles, and footnotes.

Please answer all queries on proofs (queries are attached as the last page of your proof.) List all corrections and send back via e-mail to the production contact as detailed in the covering e-mail, or mark all corrections directly on the proofs and send the scanned copy via e-mail. Please do not send corrections by fax or post.

Please complete the copyright transfer agreement (CTA) if you have not already signed one. Please send a scanned signed copy with your proofs by e-mail. Your article cannot be published unless we have received the signed CTA.

Reprint and journal issue purchases:

Should you wish to purchase a minimum of 100 copies of your article, please visit http://www3.interscience.wiley.com/aboutus/contact_reprint_sales.html To acquire the PDF file of your article or to purchase reprints in smaller quantities, please visit http://www3.interscience.wiley.com/aboutus/ppv-articleselect.html. Restrictions apply to the use of reprints and PDF files – if you have a specific query, please contact permreq@wiley.co.uk. Corresponding authors are invited to inform their co-authors of the reprint options available. To purchase a copy of the issue in which your article appears, please contact cs-journals@wiley.co.uk upon publication, quoting the article and volume/issue details. Please note that regardless of the form in which they are acquired, reprints should not be resold, nor further disseminated in electronic or print form, nor deployed in part or in whole in any marketing, promotional or educational contexts without authorization from Wiley. Permissions requests should be directed to mailto: permreq@wiley.co.uk.
Effective detoxification and decoloration of *Lupinus mutabilis* seed derivatives, and effect of these derivatives on bread quality and acceptance

Norma Gührés-Vera,1* Roberto J Peña-Bautista,2 Cristian Jiménez-Martínez1 and Gloria Dávila-Ortiz1

1Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Departamento de Graduados e Investigación en Alimentos, 06470 México, DF, México.
2Centro Internacional de Mejoramiento de Maíz y Trigo, Apartado Postal 6-641, Col. Juárez, 06600 México, DF, México

Abstract

BACKGROUND: A study was done to develop procedures for detoxifying *Lupinus mutabilis* seeds, and decreasing or eliminating yellow colour in derivatives from them. An evaluation was done of the effect of replacement of wheat flour with the detoxified and decolorized *L. mutabilis* derivatives on the quality properties of three types of bread products (loaf, bun and sweet).

RESULTS: Physicochemical and nutritional analyses coincided with previous reports. The *Lupinus* protein concentrate and isolate had lower phenolic compound and oligosaccharide (3.6) concentrations than the untreated seeds (0.58). Amino acid composition was determined for wheat flour (WF), *L. mutabilis* defatted and detoxified flour (LF), *L. mutabilis* protein concentrate (LPC) and *L. mutabilis* protein isolate (LPI). The resulting values were used to calculate the replacement levels at which lysine content would be increased significantly in WF–lupin blends. Replacement levels were: LF (5%, 10%, 15% and 20%); LPC (2.5%, 5%, 7.5% and 10%); LPI (0.5%, 1%, 2%, 3% and 4%).

CONCLUSION: The detoxifying treatments employed decreased non-nutritional and toxic compounds present in original lupin seed. Use of citric acid (1%) reduced yellow coloration in LF and LPC.

© 2008 Society of Chemical Industry

Keywords: bread; *Lupinus mutabilis*; lupin flour; legumes

INTRODUCTION

Lupin seeds are employed as a protein source for animal and human nutrition in various parts of the world, not only for their nutritional value (high in protein, lipids and dietary fibre), but also their adaptability to marginal soils and climates. Human consumption of lupins has increased in recent years. Lupin flour is added for its nutritive value (high protein efficiency ratio) and also to provide functional properties in bakery and pastry products. Seed has high protein (30–45 g kg⁻¹) and oil (10–18 g kg⁻¹) content in some species.1 Worldwide total cultivation of lupin is still limited and has never exceeded 7000 ha y⁻¹. However, the potential cultivation² area is estimated at around 10⁶ ha. About 90 species have been reported throughout Mexico. These wild lupins have not been exploited at a commercial level in countries such as Germany, Spain, Australia or South Africa.³ The use of this crop as a source of food has been limited by the presence of toxic factors such as quinolizidine alkaloids (Qas); non-nutritional compounds such as the oligosaccharides (OGS) stachyose, raffinose and verbascose, which are not digested in the human intestine, and are flatulence-causing agents;⁴ and phenolic compounds (PC) which interact with human salivary praline-rich protein to produce an astringent sensation and diminish protein digestibility through inhibition of enzymes.⁶ It has also been suggested that the consumption of these compounds may also have beneficial effects on human health by reducing the risk of some diseases.⁷ Nutritionally, *Lupinus mutabilis* significantly improves the amino acid balance, mainly

by increasing lysine content, and is a good fibre
source. Addition of small quantities of L. mutabilis
flour in replacement of cereal flour tends to improve
baked product textural properties, flavour and often
colour. Some L. mutabilis species confer a yellow
colour that is highly valued in foods such as pasta, but
constitutes a visual sensory disadvantage in others food
products such as white bread. Addition of 4% white L.
mutabilis flour to whole wheat flour results in slightly
heavier bread due to the dough’s increased water
absorption capacity, but this property also increases
shelf life. Acceptability is very high for products
with up to 10% added L. mutabilis flour, and, in
fact, L. mutabilis flour has been used at up to 50%
replacement levels of wheat flour in biscuits, with good
results.

The benefits of this legume in baked goods can be
brought to poorer populations in Mexico by adding
L. mutabilis flour, and/or derivatives such as protein
concentrate or protein isolate, to wheat flour used in a
wide variety of commonly consumed, low-cost cereal-
based foods such as leavened white loaf bread, bun
bread and sweet bread. In an effort to increase the use
of L. mutabilis in cereal-based foods in Mexico, the
present study objective was to evaluate the decrease
or elimination of non-nutritional compounds present
in L. mutabilis derivatives, colour quality attributes
and acceptability of Mexican-style loaf, white bolillo-
type bread and sweet bread prepared with wheat flour
enriched with different levels of L. mutabilis flour, protein concentrate or protein isolate.

MATERIALS AND METHODS

Raw material

Lupinus mutabilis var. multulopa seed (L) was acquired
from the Institute of Technological Investigation,
National Polytechnical School in Quito, Ecuador, and
wheat (Triticum aestivum) var. Pastor flour (WF)
was a gift from the International Maize and Wheat
Improvement Centre (CIMMYT) in Mexico.

Chemical analyses

Protein (N × 6.25; method 955.04), lipids (method
920.39), crude fibre (method 962.09) and ash
(method 923.03) were determined according to
AOAC methods.17

Detoxification and milling of L. mutabilis seeds

Detoxification of L. mutabilis seeds was done by first
soaking in boiling water for 5 min, as recommended by
Acuña and Ormaza, followed by a continuous water
wash for 15 h. The detoxified seeds were oven-dried
at 60°C for 4 h and milled using an electric coffee
grinder until a coarse flour was produced.

Decoloration of L. mutabilis flour with benzoyl
peroxide and ascorbic acid

Benzoyl peroxide (100 ppm) and ascorbic acid
(40 ppm) were added to L. mutabilis flour (LF) at
levels permitted for their use as antioxidants in wheat
flour.19

Defatting and citric acid decoloration of L.
mutabilis flour (LF)

LF was defatted by soaking in hexane (1:4, LF:solvent)
for 8 h in a cold chamber under constant stirring. Once
defatted, the flour was decolourised by soaking in water
for 6 h, followed by addition of an aqueous 1.0% citric acid solution (1:4, LF:citric acid solution) every
30 min during a 90 min period.20

L. mutabilis protein concentrate (LPC)

LPC was produced following the method of Fernández. Briefly, one part detoxified, defatted LF
was mixed with four parts 80% aqueous isopropyl alco-
hol for 30 min under constant agitation, the mixture
allowed to rest for 3.5 h and the solubilized material
decanted. The process was then repeated three times.
A second protein concentration process was run using
60% aqueous isopropyl alcohol. All LPCs were freeze-
dried, ground and sifted through 8xx mesh to produce
a particle size similar to that of wheat flour.

L. mutabilis protein isolate (LPI)

LPI was produced following the method of Onayemi and Lorenz. Briefly, one part defatted LF
was suspended in four parts water (w/v), and suspension
pH adjusted to 9 with 0.1 mol L⁻¹ NaOH. The suspension
was stirred for 30 min, centrifuged at 3000 × g for 15 min each time, and the precipitate extracted. This was repeated, producing a second supernatant, and decanted. The supernatants from both extraction steps were combined, placed in a
centrifuge tube, pH adjusted to 4.6 with 0.1 mol L⁻¹
HCl in the new solution, the mixture stirred for 30 min
and then centrifuged at 3000 × g for 10 min. The LPI
(i.e., the resulting precipitate) was freeze-dried• the
end test, ground and sifted through 8xx mesh to produce
a particle size similar to that of wheat flour.

Amino acid analyses

Amino acid composition of each studied sample –wheat flour, L. mutabilis flour, LPC and LPI
protein – was determined by high-performance liq-
uid chromatography (HPLC) according to Elkin and
Wazynozuck.23

Carbohydrate (CH) extraction and quantification

CH extraction from LF, LPC and LPI was done following the method of Muzzquiz et al.24 The different
samples studied (0.1G) were ground and then homogenized with aqueous ethanol solution (50% v/v, 5 mL) for 1 min at 4°C and the supernatant
was recovered. The procedure was repeated twice and the combined supernatants were concentrated
under vacuum at 35°C. The concentrated supernatant
was dissolved in deionized water (1 mL) and passed
through a Waters minicolumn (Waters C-18 at 500 mg
mL⁻¹) with a Supelco vacuum system (Waters, Milford, MA, USA).

Samples (20 μl) were analyzed using a Beckman HPLC chromatograph f156 with refraction index detector. A Waters Spherisorb 5-NH2 column (250 × 4.6 mm i.d.) was used with acetonitrile:water (65:35, v/v) as the mobile phase at a flow rate of 1 mL min⁻¹.

Individual sugars were quantified by comparison with standards of sucrose, raffinose, stachyose and verbascose. Calibration curves were prepared for all these sugars and a linear response was obtained for the range of 0–5 mg mL⁻¹ with a determination coefficient (r²) > 0.99.

Tannin analyses
Tannin determination was done using the method of Singleton and Roos.²⁵

Colour analysis
Colour was determined with a Color Mate HDS colorimeter (Milton Roy Co., Ivyland, PA, USA), calibrated using a standard white tile. The test plastic bags, sealed with Ziploc®, measured 17 × 17 cm. A 500 g sample of flour was used. Three readings were taken per sample, and the results expressed as the average of CIELAB L*, a* and b* uniform colour space, where L* indicates lightness, a* indicates hue on a green (−) to red (+) axis and b* indicates hue on a blue (−) to yellow (+) axis.²⁶

Wheat–L. mutabilis blends
Based on the amino acid profile results, and calculations of lysine content in the LF, LPC, and LPI, replacement percentages were determined for enrichment of WF. With the purpose of increasing lysine content in WF, the lupin flour and its derivatives were added at the following proportions: LF 5%, 10%, 15% and 20%; LPC 2.5%, 5%, 7.5% and 10%; LPI 0.5%, 1%, 2%, 3% and 4%.

Preparation of white loaf bread
Dough was prepared as described in the standard ‘Breadmaking Procedure’ (AACC, Method 10-10B).²⁷ After mixing it was placed in a covered aluminium bowl (●Hobart), allowed to rest for 5 min and then manually kneaded; consistency was determined based on whether the dough stuck to the hands when separated. Floor time was 30 min, during which the dough was placed in a fermentation cabinet at 32 ± 2 °C and 75% ± 5% RH, and punched down once. The dough was then weighed (100 g), manually rounded and placed in individual metal bread moulds. Proofing was done for 30 min at 32 ± 2 °C, and 85% ± 5% RH, and baking was done in an electric rotary oven, for 24 min at 210 °C.

Preparation of white bolillo-type bread
Bun bread, known as bolillo in Mexico, was prepared according to National Baking Industry Association methods.²⁸ Flour (1000 g), water, yeast, salt and fat were mixed together (Hobart), the dough divided into 50 g portions and shaped into the bolillo form. These were left to rise for 30 min at 30 °C, and then baked for 20 min at 200 °C.

Preparation of Mexican-style sweet bread
Mexican-style sweet bread was prepared according to National Baking Industry Association methods.²⁸ Flour (1000 g), water, yeast, salt and fat were mixed together (Hobart), and the dough was divided into 50 g portions and shaped into different sweet bread forms. These were left to rise for 30 min at 30 °C, and then baked for 20 min at 200 °C.

Bread firmness
Bread firmness was tested with a complete piece of bread in triplicate using a double compression test applied with a texture analyser (model TAXT2, Texture Technologies Corp., Scarsdale, NY, USA). Samples were analysed 0 h and 24 h after baking, under the following equipment conditions: time 0 or 24 h; loading cell ● 50 k; 25 mm lapped Perspex cylinder probe. Compression was increased from 0% to 20%, when force as a function of time was measured. The double compression test produces two curves. Firmness is the highest point on the first curve and is read directly on the graph. Three replicates were done per treatment to determine evaluation reproducibility.

Bread volume
Bread volume was determined by the rapeseed displacement procedure²⁹ after cooling for 2 h.

Sensory evaluation
An experienced baker scored crumb structure on a scale of 1 to 5 (i.e., poor, fair, good and very good, respectively) based on crumb cell size, shape and distribution. Taste acceptability was determined using 35 untrained judges, who scored product flavour on a 1 to 5 hedonic scale (i.e., ‘like very much’ to ‘dislike very much’). Results were analysed with a one-way ANOVA.

Statistical analyses
All results were statistically evaluated using analysis of variance (ANOVA) and correlation procedures.

RESULTS AND DISCUSSION
Chemical composition
The proximate composition analyses (Table 1) showed protein content to increase with defatting of the lupin flour from 34.0% in LF to 49.4% in LDF. This is higher than reported by Duque³⁰ (45.0%) and Acuña and Ormaza 18 (46.5%) for defatted L. mutabilis seeds, and the difference may be due to seed origin. The LPC protein ● (70 ± 1.3) and fat contents (0.8 ± 4.5) were lower than values reported
by D’Appolonia,31 probably because of the different extraction methods.32 Protein content in the LPI
(93.5%) was similar to that reported for L. albus (95.7%).33 The low fat content in the LDF (0.8%) confirmed that the extraction method eliminates a high proportion of fat (16%), and was equally efficient as that used by Duque.30 Fat content in the LPI (1%) was slightly higher than that reported by King24 (0%) (1985). Fibre content in LF (3.2%) was lower than reported by Schoeneberger et al. (4.4%).34 Both the LPC and LPI had no measurable fibre content (0%), although due to traces of fibre a one way both had measurable ash content (2.0% and 2.2%, respectively). Moisture in the LF (12.0%) was higher than in the LPC (1.2%) and the LPI (2.1%).

Amino acid composition
The essential amino acid profiles (Table 2) showed that lysine content was higher in the LF (7.3), LPC
(6.8) and LPI (4.3) than in the WF (2.1). Lysine proportion decreased slightly with protein extraction, being lower in the LPC than in the LF, and lower in the LPI than in the LF and LPC. Lysine values reported in the literature13 (Ballester) for other Lupinus variety seeds (L. albus, 4.2%; L. luteus, 3.8%) are lower than obtained here for L. mutabilis, perhaps because of residual fat content in the other varieties or differing environmental conditions13 (Ballester). The lower lysine content in the LPI may be explained by the alkaline treatment (NaOH 0.1 mol L−1, pH 9.3) employed for protein isolate extraction. This can lead to formation of lysinoalanine, a compound produced in some cereals when they are exposed to Na and K alkaline solutions.35 The previous results and the calculations carried out with base in the lysine content in derivatives of L. mutabilis showed higher lysine content, up to 18 g kg−1 of protein.

Total carbohydrates and oligosaccharides
Total carbohydrates results (Table 3) showed the LDF to contain • 9.3 g kg−1 CH, consisting of sucrose and oligosaccharides: raffinose (2.29 g kg−1); stachyose (4.12 g kg−1); and verbascose (1.04 g kg−1). The protein concentrate and protein isolate extraction protocols applied here reduced sucrose content slightly and substantially reduced oligosaccharides content, producing a total carbohydrate content 41% lower in the LPC and 61% lower in the LPI. Oligosaccharide content in the untreated LF was similar to that reported by Silva and Leite,37 who indicated a reduction of 45% in the total CH of different Lupinus varieties by cooking for 60 min.

Tannin compounds
The results obtained for tannin content in LF, LPC and LPI are presented in Table 4. The original content
• in LF 2.5% and LFa lower than that obtained

Table 1. Chemical composition of wheat flour (WF), L. mutabilis flour (LF), L. mutabilis defatted flour (LDF), L. mutabilis protein concentrate (LPC) and L. mutabilis protein isolate (LPI)

<table>
<thead>
<tr>
<th>Component</th>
<th>WF (% N × 5.27)</th>
<th>LF (%)</th>
<th>LDF (%)</th>
<th>LPC (%)</th>
<th>LPI (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>14.8 ± 0.2</td>
<td>7.1 ± 0.1</td>
<td>8.0 ± 0.4</td>
<td>6.4 ± 0.7</td>
<td>3.0 ± 0.3</td>
</tr>
<tr>
<td>Protein (N × 6.25) for legumes</td>
<td>10.0 ± 0.2</td>
<td>34.0 ± 2.0</td>
<td>49.4 ± 5.0</td>
<td>70 ± 1.3</td>
<td>93.5 ± 1.8</td>
</tr>
<tr>
<td>Lipids</td>
<td>1.3 ± 0.2</td>
<td>16.0 ± 1.4</td>
<td>0.8 ± 0.05</td>
<td>0.8 ± 0.05</td>
<td>1.0 ± 0.2</td>
</tr>
<tr>
<td>Crude fibre</td>
<td>ND</td>
<td>6.5 ± 1.3</td>
<td>3.2 ± 0.7</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Ash</td>
<td>0.5 ± 0.1</td>
<td>2.8 ± 0.6</td>
<td>2.0 ± 0.5</td>
<td>2.0 ± 0.1</td>
<td>2.2 ± 0.3</td>
</tr>
<tr>
<td>Carbohydrates (by difference)</td>
<td>73.4 ± 0.2</td>
<td>33.6 ± 0.4</td>
<td>36.6 ± 1.2</td>
<td>20.8 ± 0.6</td>
<td>0.3 ± 0.3</td>
</tr>
</tbody>
</table>

Values are the mean ± SD of three replicates.

Table 2. Amino acid composition of wheat flour (WF), lupin detoxified flour (LF), lupin protein concentrate (LPC) and lupin protein isolate (LPI) (g amino acid per 16 g N)

<table>
<thead>
<tr>
<th>Amino acids</th>
<th>WF</th>
<th>LF</th>
<th>LPC</th>
<th>LPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threonine</td>
<td>1.7</td>
<td>3.2</td>
<td>3.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>4.3</td>
<td>5.1</td>
<td>3.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Valine</td>
<td>1.2</td>
<td>3.2</td>
<td>4.8</td>
<td>2.9</td>
</tr>
<tr>
<td>Methionine + Cysb</td>
<td>ND</td>
<td>3.0</td>
<td>0.8</td>
<td>0.7</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>3.7</td>
<td>4.0</td>
<td>4.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Leucine</td>
<td>6.8</td>
<td>8.5</td>
<td>8.1</td>
<td>7.0</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>4.7</td>
<td>4.2</td>
<td>4.5</td>
<td>4.2</td>
</tr>
<tr>
<td>Lysine</td>
<td>2.1</td>
<td>2.4</td>
<td>6.8</td>
<td>4.3</td>
</tr>
</tbody>
</table>

Values are the mean of three replicates.

Table 3. Carbohydrate content of lupin defatted flour (LDF), lupin protein concentrate (LPC) and lupin protein isolate (LPI) (g kg−1)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Sucrose</th>
<th>Raffinose</th>
<th>Stachyose</th>
<th>Verbascose</th>
<th>Total CH reduction %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDF</td>
<td>1.82 ± 0.0</td>
<td>2.29 ± 0.85</td>
<td>4.12 ± 0.203</td>
<td>1.04 ± 0.3</td>
<td>ND</td>
</tr>
<tr>
<td>LPC</td>
<td>1.55 ± 0.09</td>
<td>1.12 ± 0.19</td>
<td>2.34 ± 0.029</td>
<td>0.45 ± 0.1</td>
<td>41.3</td>
</tr>
<tr>
<td>LPI</td>
<td>1.34 ± 0.17</td>
<td>0.82 ± 0.02</td>
<td>1.46 ± 0.024</td>
<td>0.00</td>
<td>61.1</td>
</tr>
</tbody>
</table>

Values are the mean ± SD of three replicates.
Decoloration

Decoloration of LF with benzoyl peroxide was largely ineffective since \(b \) values were essentially the same as the blank (Table 5). Benzoyl peroxide reduces the yellow colour by degrading carotenoids, for example in wheat flour.\(^{40} \) Lack of an effect in the blank and treated LF suggest that the yellow coloration in this lupin species is the result of phenolic compounds such as catechins,\(^{40} \) which would explain why benzoyl peroxide had no bleaching effect.

Table 4. Tannin content of lupin flour without defatted (LFA), lupin defatted flour (LDF), lupin protein concentrate (LPC) and lupin protein isolate (LPI) (g kg\(^{-1}\))

<table>
<thead>
<tr>
<th>Sample</th>
<th>Tannin content</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFA</td>
<td>0.5837 ± 0.14</td>
</tr>
<tr>
<td>DLF</td>
<td>0.569 ± 0.05</td>
</tr>
<tr>
<td>LPC</td>
<td>0.3567 ± 0.02</td>
</tr>
<tr>
<td>LPI</td>
<td>0.2354 ± 0.08</td>
</tr>
<tr>
<td>Soy bean flour</td>
<td>0.5188 ± 0.11(^{19})</td>
</tr>
</tbody>
</table>

\(^{19} \) Values are the mean ± SD of triplicate determinations.

Table 5. Effect of benzoyl peroxide (100 ppm) and ascorbic acid (40 ppm) treatments on decoloration of lupin flour (LF)

<table>
<thead>
<tr>
<th>Sample/depths of treatment</th>
<th>0 days</th>
<th>8 days</th>
<th>15 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>(L = 98.83)</td>
<td>(L = 103.93)</td>
<td>(L = 103.93)</td>
</tr>
<tr>
<td></td>
<td>(b = 20.17)</td>
<td>(b = 21.23)</td>
<td>(b = 21.40)</td>
</tr>
<tr>
<td>LF(^{a})</td>
<td>(L = 104.38)</td>
<td>(L = 103.93)</td>
<td>(L = 101.33)</td>
</tr>
<tr>
<td></td>
<td>(b = 21.28)</td>
<td>(b = 21.26)</td>
<td>(b = 21.02)</td>
</tr>
</tbody>
</table>

\(^{a} \) Treated with 100 ppm benzoyl peroxide and 40 ppm ascorbic acid.

In response, a second treatment was applied utilizing an aqueous 1% citric acid solution as an antioxidant,\(^{20} \) with increased soaking time followed by 12 washings (30 min per washing). This treatment partially decoloured after 6 h of continuous washing and very effectively decoloured after 8 h, producing a decrease in yellow colour \((b) \) in both LF and LPC (Fig. 1). These results may be due to the presence of catechins in the tannins at pH values between 4.5 and 7.0.\(^{40} \)

Extensive research has been done on the yellow colour given to final products by flours from soy,\(^{41} \) some \(L. \) mutabilis varieties,\(^{10,11} \) navy bean\(^{41} \) and Great Northern bean.\(^{29} \) Colour intensity increases in proportion to legume flour inclusion levels. This yellow colour is not necessarily disagreeable to trained panellists, and can even provide considerable appeal to products such as pasta and noodle dishes.\(^{12} \) Nonetheless, yellow tonalities are not always desired, and so efforts have been made to reduce the yellow tones produced by \(L. \) mutabilis flours to the lowest possible levels. The procedure used here was effective in substantially lowering yellow tones in the studied \(L. \) mutabilis flours and derivatives, suggesting that it may have potential applications in developing new flour preparation technology.

Bread product firmness

Overall, firmness at 0 h decreased in the loaf and \(bolillo \) bread products containing LF, LPC or LPI when compared to the respective bread products in the control (WF), but increased in the sweet bread products (Fig. 2). This variable increased in the loaf bread and sweet rolls containing LPC, but remained unchanged in \(bolillo \) bread with LPC. Addition of LPI increased firmness in the loaf bread and sweet bread, but decreased it in \(bolillo \) bread. At 24 h, the loaf bread and \(bolillo \) bread products with added LF tended to lose firmness or experience no change compared to their values at 0 h, whereas sweet bread products increased in firmness. The loaf, \(bolillo \) and sweet bread products containing LPC had similar firmness values at 24 h and 0 h, and those containing LPI had the same values.

The difference in firmness behaviour between bread products containing LF, LPC or LPI is probably
the result of the higher protein and carbohydrate proportions in LF compared to LPC and LPI. Higher protein and carbohydrate contents increase firmness in bread products. These results are closely linked to results reported by Güemes et al. They used microstructure studies of wheat flour doughs enriched with LF, LPC or LPI, and generated trough photomicrographs showing a progressive loss of interaction in the wheat gluten protein network with increasing lupin replacement levels. This compromises the bonds in the protein network since the wheat protein does not interact with the lupin protein and leads to empty spaces in the lupin-enriched bread products. Rheological analyses in the same study indicated that the rheological properties of the doughs were modified by increasing levels of LF, LPC or LPI. At higher replacement levels, however, the lupin protein does interact with the gluten protein network, modifying the protein structure. This is reflected in rheological and texture properties, and may cause the higher firmness values in lupin-enriched products. Firmness can also be affected by other protein-containing ingredients such as eggs and milk, which, in conjunction with lupin additives, can increase product firmness. Depending on product end-use, this property can be considered either negative or positive, for instance by facilitating product transport. Campos and El-Dash reported that in bread produced using an experimental baking test enrichment with 5% LF produced bread with quality characteristics similar to the control. Pollard et al. reported that bread structure remains unaffected at up to 5% LF replacement levels.

Bread product volume

Addition of LF and its derivatives had variable effects on bread product volume (Fig. 3). Compared to WF, addition of LF, LPC and LPI in loaf bread increased volume in all the lupin treatments. In bolillo bread, volume decreased in the LF and LPC treatments, but increased at both LPI concentrations (1% and 2%). The sweet bread products fortified with LF, LPC or LPI were all slightly lower in volume than in the WF treatment.

The increased volume in loaf bread enriched with lupin derivatives is probably due to the difference observed in the behaviour of the fortification on the volume of the loaf bread, and would explain the function of several factors: the different periods of fermentation applied in each case; and in laminate and rolled steps and the punched and bowled steps in white bolillo-type bread, a volume decrease was observed in addition to the different components of each formulation. On the other hand, the volume in the sweet bread diminished in all the proved cases. It is important to consider that given the viscoelastic properties of wheat protein, it is thought that gluten net formation during fermentation would allow the

Figure 2. Firmness in loaf bread (), bolillo bread () and sweet bread () made with wheat flour (WF) and enriched with L. mutabilis flour (LF), protein concentrate (LPC) or protein isolate (LPI), at 0 and 24 h.

Figure 3. Volume (cm³) in loaf bread (), bolillo bread () and sweet bread () made with wheat flour (WF) and enriched with L. mutabilis flour (LF), protein concentrate (LPC) or protein isolate (LPI).
trapping of carbon dioxide. This would be modified by the presence of legume globular proteins, derivatives which do not interconnect with gluten proteins, giving as a consequence a smaller trapping capacity of the gas and therefore a smaller volume. A similar behaviour was obtained with microstructure.29 The increased volume observed here coincides with results reported by Fleming and Sosulski46 for loaf bread containing one of three different legumes. Other researchers have reported similar results. King43 found that loaf bread containing 1% soy bean flour attained a higher volume, and Hoover47 reported that bread fortified with 10% L. mutabilis albus flour had a higher volume than unfortified bread. Dervas et al.,11 also observed a slight increase in the volume of bread containing L. albus flour, while Pollard et al.,44 reported that addition of 5% L. albus flour increased bread loaf height.

Finally, other authors found that volume increased in bread containing up to 9% L. mutabilis flour.

Sensory evaluation

The sensory test performed by a trained judge showed the most acceptable products to be those containing 5% LF, 2.5% LPC or 0.5% or 1% LPI (Table 6). Acceptance was based on the texture and colour of the lupin-enriched products.8 Acceptance was based on the texture and colour of the lupin-enriched products.8

The strong coloration of the three bread types fortified with LF, LPC or LPI showed yellow coloration to be most intense in the sweet bread (Table 7). This property had very low values in the loaf bread enriched with 5% LF, 2.5% LPC or 0.5% or 1% LPI. The strong coloration in sweet bread products is not necessarily a negative sensory quality since this colour is normally pleasing to the consumer. Indeed, Dervas et al.,11 reported that the yellow colours imparted by legume flours have considerable appeal and are thus potentially valuable additives in foods such as pasta and noodle dishes.

PROTEIN CONTENT

Protein content was high in LF, LPC and LPI. Lysine concentration was 2.1% in WF, 7.3% in LF, 6.8% in LPC and 4.3% in LPI. These are appropriate amino acid levels for baked good additives. Modification of the decoloration procedure by increasing extraction.

CONCLUSIONS

Protein content was high in LF, LPC and LPI. Lysine concentration was 2.1% in WF, 7.3% in LF, 6.8% in LPC and 4.3% in LPI. These are appropriate amino acid levels for baked good additives. Modification of the decoloration procedure by increasing extraction.

Table 7. Colour (a*) of loaf bread, bolillo bread and sweet bread made with wheat flour (WF), and enriched with L. mutabilis flour (LF), protein concentrate (LPC) or protein isolate (LPI)

<table>
<thead>
<tr>
<th>Sample</th>
<th>(a*) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21.3 ± 0.4</td>
</tr>
<tr>
<td>5</td>
<td>22.6 ± 1.1</td>
</tr>
<tr>
<td>10</td>
<td>23.9 ± 0.3</td>
</tr>
<tr>
<td>2.5</td>
<td>22.0 ± 1.4</td>
</tr>
<tr>
<td>5</td>
<td>26.0 ± 0.7</td>
</tr>
<tr>
<td>0.5</td>
<td>21.0 ± 1.6</td>
</tr>
<tr>
<td>2</td>
<td>22.5 ± 0.8</td>
</tr>
<tr>
<td>1</td>
<td>22.7 ± 0.9</td>
</tr>
</tbody>
</table>

Values are the mean ± SD of three replicates.

Table 6. Sensory evaluation by a trained judge of loaf bread, bolillo bread and sweet bread (crumb colour and crumb texture) made with wheat flour (WF), and enriched with L. mutabilis flour (LF), protein concentrate (LPC) or protein isolate (LPI)

<table>
<thead>
<tr>
<th>Proportion of Lupin Component (%)</th>
<th>Colour</th>
<th>Texture</th>
<th>Colour</th>
<th>Texture</th>
<th>Colour</th>
<th>Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Yellow</td>
<td>VG</td>
<td>Yellow</td>
<td>VG</td>
<td>Yellow</td>
<td>G</td>
</tr>
<tr>
<td>5</td>
<td>Yellow</td>
<td>G</td>
<td>Yellow</td>
<td>G</td>
<td>Yellow</td>
<td>G</td>
</tr>
<tr>
<td>10</td>
<td>Very yellow</td>
<td>P</td>
<td>Very yellow</td>
<td>P</td>
<td>Yellow</td>
<td>G</td>
</tr>
<tr>
<td>2.5</td>
<td>Yellow</td>
<td>VG</td>
<td>Yellow</td>
<td>G</td>
<td>Yellow</td>
<td>G</td>
</tr>
<tr>
<td>0.5</td>
<td>Yellow</td>
<td>G</td>
<td>Yellow</td>
<td>G</td>
<td>Yellow</td>
<td>G</td>
</tr>
<tr>
<td>1</td>
<td>Yellow</td>
<td>VG</td>
<td>Yellow</td>
<td>G</td>
<td>Yellow</td>
<td>G</td>
</tr>
</tbody>
</table>

VG, very good; G, good; P, poor; R, regular.
time, applying continuous washes and the use of 1% citric acid effectively decreased yellow colour in LF, LPC and LPI. This provided favourable properties for loaf bread preparation and is thus a promising technological contribution to the production of certain lupin-enriched baked goods. Volume was optimum in the bread products enriched with 1% and 2% LPI. The bread products with firmness of texture from addition of 5% LF, 2.5% LPC or 0.5% or 1% LPI also manifested prolonged shelf life. Sensory evaluation of the lupin-enriched products by a trained judge based on colour and crumb texture indicated products containing 5% LF, 2.5% LPC or 0.5% LPI to be the most acceptable. Sensory evaluation of lupin-enriched loaf bread by untrained judges showed the products containing 5% LF, 2.5% LPC or 0.5% or 1% LPI to be the most acceptable. The most acceptable sensory evaluations for the sweet bread products was for products containing 5% or 10% LF, 2.5% or 5% LPC or 0.5%, 1% or 2% LPI. These evaluations coincide with the texture and volume results.

ACKNOWLEDGEMENTS
The authors wish to thank the Instituto Politecnico Nacional (IPN), the International Centre for Wheat and Maize Improvement (CIMMYT), the National Council for Science and Technology (CONACyT) and OMNILIFE of Mexico for their financial support. Norma Guemes-Vera received a study grant from the CONACyT and PIFI/IPN.

REFERENCES
Detoxification and decoloration of \textit{Lupinus mutabilis} seed derivatives

QUERIES TO BE ANSWERED BY AUTHOR

IMPORTANT NOTE: Please mark your corrections and answers to these queries directly onto the proof at the relevant place. Do NOT mark your corrections on this query sheet.

Queries from the Copyeditor:

AQ1 I have completed the address – is this correct?
AQ2 Unclear what these values refer to – units required?
AQ3 Should this be ‘pasta flour’?
AQ4 Units of normality (N) or molarity (M) not permitted – I have amended.
AQ5 ‘the end test’ not understood – delete?
AQ6 Is ‘0.1 g’ meant?
AQ7 Location of manufacturer?
AQ8 ‘50 k’ – units OK?
AQ9 Units?
AQ10 King does not appear in ref. 24 – ref. 33 meant?
AQ11 ‘a one way’ not understood.
AQ12 Please check my amendments – also note that ‘g per 100 g’ units are not permitted.
AQ13 Units OK as amended?
AQ14 Sense? Grammatical amendment needed.
AQ15 Please check amendments.
AQ16 Units?
AQ17 Should this read ‘b’?
AQ18 Jiménez does not appear in ref. 33.
AQ19 Should these read ‘L’ and ‘b’ throughout table?
AQ20 Sense unclear in places – please check my amendments.
AQ21 Sense was very unclear – please check my amendments.
AQ22 Ref. 12 meant?
AQ23 Ref. 12 meant?
AQ24 Should this read ‘b’ – and in column head?
AQ25 Ref. 8 is missing.
AQ26 Authors’ initials?
AQ27 Please provide authors’ initials, and journal volume and page numbers.
AQ28 Journal title missing.
WILEY AUTHOR DISCOUNT CARD

As a highly valued contributor to Wiley’s publications, we would like to show our appreciation to you by offering a unique 25% discount off the published price of any of our books.

To take advantage of this offer, all you need to do is apply for the Wiley Author Discount Card by completing the attached form and returning it to us at the following address:

The Database Group
John Wiley & Sons Ltd
The Atrium
Southern Gate
Chichester
West Sussex PO19 8SQ
UK

In the meantime, whenever you order books direct from us, simply quote promotional code S001W to take advantage of the 25% discount.

The newest and quickest way to order your books from us is via our new European website at:

http://www.wiley europe.com

Key benefits to using the site and ordering online include:
- Real-time SECURE on-line ordering
- The most up-to-date search functionality to make browsing the catalogue easier
- Dedicated Author resource centre
- E-mail a friend
- Easy to use navigation
- Regular special offers
- Sign up for subject orientated e-mail alerts

So take advantage of this great offer, return your completed form today to receive your discount card.

Yours sincerely,

Verity Leaver
E-marketing and Database Manager

*TERMS AND CONDITIONS

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias and major reference works) for their personal use. There must be no resale through any channel. The offer is subject to stock availability and cannot be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to amend the terms of the offer at any time.
REGISTRATION FORM FOR 25% BOOK DISCOUNT CARD

To enjoy your special discount, tell us your areas of interest and you will receive relevant catalogues or leaflets from which to select your books. Please indicate your specific subject areas below.

<table>
<thead>
<tr>
<th>Category</th>
<th></th>
<th>Category</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounting</td>
<td>[]</td>
<td>Architecture</td>
<td>[]</td>
</tr>
<tr>
<td>• Public</td>
<td>[]</td>
<td>Business/Management</td>
<td>[]</td>
</tr>
<tr>
<td>• Corporate</td>
<td>[]</td>
<td>Computer Science</td>
<td>[]</td>
</tr>
<tr>
<td>Chemistry</td>
<td>[]</td>
<td>Engineering</td>
<td>[]</td>
</tr>
<tr>
<td>• Analytical</td>
<td>[]</td>
<td>• Civil</td>
<td>[]</td>
</tr>
<tr>
<td>• Industrial/Safety</td>
<td>[]</td>
<td>• Communications Technology</td>
<td>[]</td>
</tr>
<tr>
<td>• Organic</td>
<td>[]</td>
<td>• Electronic</td>
<td>[]</td>
</tr>
<tr>
<td>• Inorganic</td>
<td>[]</td>
<td>• Environmental</td>
<td>[]</td>
</tr>
<tr>
<td>• Polymer</td>
<td>[]</td>
<td>• Industrial</td>
<td>[]</td>
</tr>
<tr>
<td>• Spectroscopy</td>
<td>[]</td>
<td>• Mechanical</td>
<td>[]</td>
</tr>
<tr>
<td>Encyclopedia/Reference</td>
<td>[]</td>
<td>Finance/Investing</td>
<td>[]</td>
</tr>
<tr>
<td>• Business/Finance</td>
<td>[]</td>
<td>• Economics</td>
<td>[]</td>
</tr>
<tr>
<td>• Life Sciences</td>
<td>[]</td>
<td>• Institutional</td>
<td>[]</td>
</tr>
<tr>
<td>• Medical Sciences</td>
<td>[]</td>
<td>• Personal Finance</td>
<td>[]</td>
</tr>
<tr>
<td>• Physical Sciences</td>
<td>[]</td>
<td>• Life Science</td>
<td>[]</td>
</tr>
<tr>
<td>• Technology</td>
<td>[]</td>
<td>Landscape Architecture</td>
<td>[]</td>
</tr>
<tr>
<td>Earth & Environmental Science</td>
<td>[]</td>
<td>Mathematics/Statistics</td>
<td>[]</td>
</tr>
<tr>
<td>Hospitality</td>
<td>[]</td>
<td>Manufacturing</td>
<td>[]</td>
</tr>
<tr>
<td>Genetics</td>
<td>[]</td>
<td>Material Science</td>
<td>[]</td>
</tr>
<tr>
<td>• Bioinformatics/Computational</td>
<td>[]</td>
<td>Psychology</td>
<td>[]</td>
</tr>
<tr>
<td>• Biology</td>
<td>[]</td>
<td>• Clinical</td>
<td>[]</td>
</tr>
<tr>
<td>• Proteomics</td>
<td>[]</td>
<td>• Forensic</td>
<td>[]</td>
</tr>
<tr>
<td>• Genomics</td>
<td>[]</td>
<td>• Social & Personality</td>
<td>[]</td>
</tr>
<tr>
<td>• Gene Mapping</td>
<td>[]</td>
<td>• Health & Sport</td>
<td>[]</td>
</tr>
<tr>
<td>• Clinical Genetics</td>
<td>[]</td>
<td>• Cognitive</td>
<td>[]</td>
</tr>
<tr>
<td>Medical Science</td>
<td>[]</td>
<td>• Organizational</td>
<td>[]</td>
</tr>
<tr>
<td>• Cardiovascular</td>
<td>[]</td>
<td>• Developmental and Special Ed</td>
<td>[]</td>
</tr>
<tr>
<td>• Diabetes</td>
<td>[]</td>
<td>• Child Welfare</td>
<td>[]</td>
</tr>
<tr>
<td>• Endocrinology</td>
<td>[]</td>
<td>• Self-Help</td>
<td>[]</td>
</tr>
<tr>
<td>• Imaging</td>
<td>[]</td>
<td>• Non-Profit</td>
<td>[]</td>
</tr>
<tr>
<td>• Obstetrics/Gynaecology</td>
<td>[]</td>
<td>• Physics/Physical Science</td>
<td>[]</td>
</tr>
<tr>
<td>• Oncology</td>
<td>[]</td>
<td>• Non-Profit</td>
<td>[]</td>
</tr>
<tr>
<td>• Pharmacology</td>
<td>[]</td>
<td>• Non-Profit</td>
<td>[]</td>
</tr>
<tr>
<td>• Psychiatry</td>
<td>[]</td>
<td>• Non-Profit</td>
<td>[]</td>
</tr>
</tbody>
</table>

Note: Please mark the appropriate boxes to indicate your areas of interest.
[] I confirm that I am a Wiley Author/Editor/Contributor/Editorial Board Member of the following publications:

SIGNATURE: ...

PLEASE COMPLETE THE FOLLOWING DETAILS IN BLOCK CAPITALS:

TITLE AND NAME: (e.g. Mr, Mrs, Dr) ..

JOB TITLE: ..

DEPARTMENT: ...

COMPANY/INSTITUTION: ..

ADDRESS: ...

..

..

..

TOWN/CITY: ..

COUNTY/STATE: ..

COUNTRY: ...

POSTCODE/ZIP CODE: ...

DAYTIME TEL: ...

FAX: ...

E-MAIL: ...

YOUR PERSONAL DATA
We, John Wiley & Sons Ltd, will use the information you have provided to fulfil your request. In addition, we would like to:

1. Use your information to keep you informed by post, e-mail or telephone of titles and offers of interest to you and available from us or other Wiley Group companies worldwide, and may supply your details to members of the Wiley Group for this purpose.

[] Please tick the box if you do not wish to receive this information

2. Share your information with other carefully selected companies so that they may contact you by post, fax or e-mail with details of titles and offers that may be of interest to you.

[] Please tick the box if you do not wish to receive this information.

If, at any time, you wish to stop receiving information, please contact the Database Group (databasegroup@wiley.co.uk) at John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, UK.

E-MAIL ALERTING SERVICE
We offer an information service on our product ranges via e-mail. If you do not wish to receive information and offers from John Wiley companies worldwide via e-mail, please tick the box [].

This offer is exclusive to Wiley Authors, Editors, Contributors and Editorial Board Members in acquiring books (excluding encyclopaedias and major reference works) for their personal use. There should be no resale through any channel. The offer is subject to stock availability and may not be applied retrospectively. This entitlement cannot be used in conjunction with any other special offer. Wiley reserves the right to vary the terms of the offer at any time.

Ref: S001W