

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería

Estacionariedad débil en registros polisomnográficos de adultos mayores, como marcador de posible deterioro cognitivo

Presenta

Julio Cesar Enciso Alva

Dirección

Dra. Erika Elizabeth Rodríguez Torres Dra. Alejandra Rosales Lagarde

Mineral de la Reforma, Hidalgo, México. Mayo de 2018

Resumen

La demencia es una enfermedad no-transmisible asociada a la edad, y el deterioro cognitivo leve (DCL) se considera una etapa temprana de la demencia en adultos mayores. Se han reportado varios marcadores para el DCL usando registros de polisomnografía (PSG), muchos de ellos usando el espectro de potencias; entre ellos destaca el papel de la etapa de sueño denominada MOR. En particular, para este estudio se consideran registros de PSG obtenidos con 19 electrodos para actividad eléctrica cerebral (electroencefalografía, EEG), 2 para movimientos oculares (electrooculografía, EOG) y 2 para actividad muscular (electromiografía, EMG). En este trabajo se buscan marcadores del DCL basados en la homogeneidad del espectro de potencias en los registros de PSG, identificada usando pruebas de estacionariedad débil. La estacionariedad está ligada a la complejidad de la actividad cerebral, pero usualmente se deshecha debido a las complicaciones que implica considerarla. Se fragmentaron los registros de PSG durante el sueño MOR, y se usó la cantidad de fragmentos estacionarios; se encontró que hay diferencias estadísticamente significativas para esta cantidad en el EEG en ambos hemisferios de la región frontal, así como en el EOG, entre sujetos con y sin DCL y al transitar entre etapas de sueño. Estos resultados son consistentes, por un lado con las características distintivas del sueño MOR, y por otro con el papel de la región frontal del cerebro en la toma de decisiones y consolidación de la memoria. Los resultados presentados, usando la estacionariedad débil, confirman que esta característica posee información relevante respecto a la estructura del sueño y su deterioro durante el DCL; un estudio más profundo de los fenómenos asociados permitirá usarla eficientemente como un marcador DCL.

Abstract

Dementia is a non-communicable disease associated with age, and Mild Cognitive Impairment (MCI) is considered an early stage of dementia in Older Adults. There are a variety of tracers for MCI using polysomnographic (PSG) records, many of them derived from the power spectrum; among them, the importance of the sleep stage referred to as Rapid Eye Movement (REM) sleep stage is in here highlighted. In this study in particular, we considered PSG registers obtained with 19 electrodes for electrical brain activity (electroencephalography, EEG), 2 for eye movements (electrooculography, EOG) and 2 for muscle activity (electromyography, EMG). In this work, diagnostic markers of MCI were searched using the power spectrum homogeneity for the PSG registers, which is identified using weak stationarity tests. Stationarity is associated with the complexity of brain activity, but is usually discarded beacause of the complications implied for using it. PSG registers at REM sleep stage were fragmented, and the amount of such stationary fragments was used; statistical differences were found for this quantity on the EEG at both hemispheres at frontal regions, and also for the EOG, both between subjects with and without DCL and between different sleep stages. These results are consistent both with the characteristics of REM sleep and the function of frontal regions of the brain in decision making and memory consolidation. The results presented, using weak stationarity, confirm that this characteristic contains relevant information about sleep structure and its deterioration during MCI; a further study of the associated phenomena will make possible to use it as an effective tracer for MCI.

La Dra. Alejandra Rosales Lagarde propuso investigar el tema del sueño en el adulto mayor en el Área Académica de Gerontología de la UAEH, institución a la cual está comisionada de acuerdo al contrato con el programa Cátedras CONACYT con el número de investigadora 1411 y el proyecto número 2162, Evaluación y diagnóstico de los aspectos biopsicosociales del adulto mayor y sus cuidadores primarios.

Se agradece a la Lic. Martha Hernández Rojo, del Instituto de Atención a los Adultos Mayores del Estado de Hidalgo (IAAMEH) y a la Mtra. Patricia Padilla del Centro Gerontológico Integral de Punta Azul en Mineral de la Reforma, Hidalgo, por las facilidades otorgadas para la realización de este trabajo y a los adultos mayores que participaron en él.

De manera adicional, el presente estudio fue apoyado parcialmente por las siguientes entidades: SNI-CONACYT (96080), Convenio PROMEP UAEHGO-103.5-14-10567, la Sociedad Matemática Mexicana Sofía Kovalévskaya (2014); otorgados a a la Dra. Erika E. Rodríguez Torres.

Agradecimientos

Antes que nada a mis padres, María Guadalupe Alva González y Nicolás Enciso Maturano, quienes además de darme la vida me han soportado y apoyado en ella. Y también a mi hermano, Erick Ricardo Enciso Alva, por su apoyo incondicional. Les agradezco por su enorme paciencia conmigo.

A todos los profesores de la Licenciatura en Matemáticas Aplicadas por los muchos conocimientos que han compartido y a mis compañeros; han sido más que una inspiración, ejemplos a seguir.

Doblemente a mis asesoras, Dra. Erika Rodríguez Torres y Dra. Alejandra Rosales Lagarde, por obligarme a superarme a mí mismo a través de este trabajo. Así mismo a los sinodales Dr. Roberto Ávila Pozos, Dra. Liliana Peralta Hernández, Dr Aarón Víctor Reyes Rodríguez, Dr. Raúl Temoltzi Ávila; por sus valiosos comentarios que le dieron gran valor a mi trabajo.

Gracias al Dr. Jorge Viveros Rogel y a la M. en C. Margarita Tetlalmatzi Montiel por su apoyo en las primeras fases de este proyecto, aunque algunas propuestas de aquél entonces tendrán que esperar para después.

De manera particular a la Dra. Alejandra Rosales Lagarde y a la Mtra. Génesis Vázquez Tagle por permitirme el acceso y análisis a los registros de polisomnografía. Mi contribución con esta tesis luce pequeña en comparación.

También a los amigos que conocí durante la carrera: Alberto, Augusto, Omar, Angie, Magali, Daniel, Alejandro; por hacer la vida más llevadera.

Índice general

Ín	Índice de figuras xi			XIII	
Índice de cuadros xv			XVII		
In	trod	ucción			1
	Ante	ecedent	es		2
	Preg	gunta de	e investigación y objetivos	•	4
1.	Pre	limina	res		7
	1.1.	Proces	sos estocásticos		7
		1.1.1.	Estacionariedad débil		9
		1.1.2.	Ejemplos	•	11
	1.2.	Estim	ación de parámetros	•	13
	1.3.	Prueb	as de hipótesis	•	16
		1.3.1.	Prueba de correlación de Spearman	•	17
		1.3.2.	Prueba χ^2 para proporciones	•	19
		1.3.3.	Prueba de Wilcoxon-Mann-Whithney	•	19
		1.3.4.	ANOVA de una vía		21
		1.3.5.	ANOVA de dos vías		23

2.	Esp	ectro evolutivo y la prueba de Priestley-Subba Rao	25
	2.1.	Definición del espectro evolutivo	26
	2.2.	Sobre la estimación del espectro evolutivo	29
	2.3.	Estimador de doble ventana	31
		2.3.1. Logaritmo del estimador de doble ventana	33
		2.3.2. Sobre la implementación	34
	2.4.	Prueba de Priestley-Subba Rao	36
		2.4.1. Ejemplos	40
	2.5.	Estacionariedad local	47
3.	Det	erioro cognitivo y sueño	51
	3.1.	Deterioro Cognitivo Leve	52
		3.1.1. Probable Deterioro Cognitivo Leve	54
		3.1.2. Pruebas neuropsicológicas utilizadas	55
	3.2.	Estudio clínico del sueño	56
		3.2.1. Electroencefalografía	58
		3.2.2. Polisomnografía	62
	3.3.	Relación entre deterioro cognitivo y sueño	64
4.	Met	odología y resultados	67
	4.1.	Características de los participantes	68
		4.1.1. Registro del polisomnograma	70
	4.2.	Características muestrales	71
	4.3.	Análisis a nivel de época	74
	4.4.	Análisis a nivel de registro	78
	4.5.	Análisis a nivel de grupo	80
5.	Dise	cusión y Conclusiones	85
	5.1.	Conclusiones	86
	5.2.	Trabajo futuro	87
А.	Pro	piedades formales del espectro de potencias	93
	A.1.	Espacios de variables aleatorias	93
	A.2.	Espectro de potencias y representación espectral	97
	A.3.	Filtros lineales	99

A.3.1. Procesos semi-estacionarios	101
A.4. Propiedades del estimador de doble ventana \ldots	106
A.5. Un resultado sobre el logaritmo	113
B. Puntajes para pruebas neuropsicológicas	115
C. Cuadros y figuras adicionales	119
C.1. Total de épocas estacionarias	119
Bibliografía	139

Índice de figuras

1.1.	Ejemplos de procesos estocásticos	12
2.1.	Realización de un proceso estocástico, usado para ejemplificar la prue- ba de Priestley-Subba Rao	42
2.2.	Algunos pasos en el cálculo del estimador Y	45
2.3.	Fragmento de registro de PSG, usado para ejemplificar la prueba de Priestey-Subba Rao	46
2.4.	Efecto esperado del tamaño de ventana sobre la clasificación de esta- cionariedad, bajo el supuesto de estacionariedad local	49
2.5.	Ejemplo de cambios en la clasificación de estacionariedad débil al cam- biar el tamaño de ventana	50
3.1.	Ejemplos de ondas cerebrales encontradas en el EEG	60
3.2.	Colocación de electrodos para EEG según el sistema 10–20 \ldots .	61
3.3.	Colocación de electrodos para electro oculografía y electromiografía	63
3.4.	Registro de polisom nograma durante sueño MOR $\ .\ .\ .\ .\ .$.	64
4.1.	Representación minimalista de los electrodos para PSG	75

4.2.	Derivaciones para las cuales la proporción de épocas clasificadas co- mo estacionarias de acuerdo a la prueba de Priestley-Subba Rao fue significativamente diferente durante el sueño MOR y NMOR. En la parte superior se representa al grupo CTRL y en la parte inferior al grupo con PDCL. Para esta figura se usaron épocas de 30 segundos de duración. La posición de los círculos representa a las derivaciones, en correspondencia con la figura 4.1.	75
4.3.	Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura 4.1. W = vigilia, recordando que la cantidad de tiempo de los registros clasificada como vigilia es negligible	77
4.4.	Distribución en el tiempo de las ventanas clasificadas como estaciona- rias, considerando diferentes tamaños de ventana	79
4.5.	Proporciones de épocas estacionarias, durante sueño MOR y NMOR y para todas las derivaciones. Los puntos representan valores <i>atípicos</i> , según su definición para diagramas de caja. Los asteriscos indican en qué derivaciones se hallaron <i>efectos</i> significativos usando una ANOVA de dos factores: 'etapa de sueño' y 'grupo'; el efecto de 'etapa de sueño' fue significativo para Fp2, F7, LOG y ROG, mientras que el efecto 'grupo' fue significativo para LOG y ROG. Las posiciones de cada	
F 1	gráfico se corresponden con aquellos de la figura 4.1	83
5.1.	Distribución en el tiempo de las ventanas clasificadas como estaciona- rias, considerando diferentes tamaños de ventana	88
5.2.	Distribución en el tiempo de las ventanas clasificadas como estaciona- rias, considerando diferentes tamaños de ventana	89
5.3.	Distribución en el tiempo de las ventanas clasificadas como estaciona- rias, considerando diferentes tamaños de ventana	90
5.4.	Distribución en el tiempo de las ventanas clasificadas como estaciona- rias, considerando diferentes tamaños de ventana	91

A.1.	Geometría esperada para un proceso estocástico débilmente estacio-	
	nario y estocásticamente continuo <i>dentro</i> del espacio de variables alea-	
	torias con varianza finita	95

Índice de cuadros

2.1.	Ejemplos de funciones ventana (función de respuesta)	35
2.2.	Ejemplos de funciones ventana (función de transferencia) \ldots .	35
2.3.	Sumas de cuadrados en la prueba PSR	38
2.4.	Promedios del estimador Y para el primer ejemplo	43
2.5.	ANOVA de la prueba PSR para el primer ejemplo	44
2.6.	Promedios del estimador Y para el segundo ejemplo	46
2.7.	ANOVA de la prueba PSR para el segundo ejemplo $\ .\ .\ .\ .\ .$	47
3.1.	Criterios para la clasificación de etapas de sueño	57
4.1.	Datos generales de los participantes	69
4.2.	Datos generales sobre los registros de PSG	71
4.3.	Variables independientes entre grupos	72
4.4.	Coeficiente de correlación de Spearman	73
4.5.	ANOVA para los efectos Grupo y Etapa de sueño sobre las cantidades	
	P_{MOR} y P_{NMOR}	82
B.1.	Puntajes de corte para las pruebas SAST y GDS	116
B.2.	Puntuación para la prueba KATZ	116
B.3.	Puntajes de corte para la prueba Neuropsi	117
B.4.	Puntajes de corte para la prueba MMSE	118

C.1. Épocas estacionarias y comparación, MJH (1/2) 120
C.2. Épocas estacionarias y comparación, MJH (2/2) \ldots
C.3. Épocas estacionarias y comparación, JAE (1/2) \hdots
C.4. Épocas estacionarias y comparación, JAE (2/2) $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill\$
C.5. Épocas estacionarias y comparación, MGG (1/2) $\hfill \ldots \ldots \ldots \hfill 124$
C.6. Épocas estacionarias y comparación, MGG (2/2) $\hfill \ldots \ldots \ldots \hfill 125$
C.7. Épocas estacionarias y comparación, EMT $(1/2)$
C.8. Épocas estacionarias y comparación, EMT $(2/2)$
C.9. Épocas estacionarias y comparación, CLO $(1/2)$
C.10. Épocas estacionarias y comparación, CLO $(2/2)$
C.11. Épocas estacionarias y comparación, RLO $(1/2)$
C.12. Épocas estacionarias y comparación, RLO $(2/2)$
C.13. Épocas estacionarias y comparación, JGZ (1/2) $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill $
C.14. Épocas estacionarias y comparación, JGZ (2/2) $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \hfill \ldots \hfill \hfill \ldots \hfill \hfill \hfill \ldots \hfill \hfill \hfill \hfill \hfill \hfill \ldots \hfill \hf$
C.15. Épocas estacionarias y comparación, AEFP $(1/2)$ $\hfill \ldots$ $\hfill \ldots$ $\hfill 134$
C.16. Épocas estacionarias y comparación, AEFP $(2/2)$ $\ .$ $\ .$ $\ .$ $\ .$ $\ .$ $\ .$ 135
C.17. Épocas estacionarias y comparación, PCM (1/2)
C.18. Épocas estacionarias y comparación, PCM (2/2)

"Creo que el conocimiento científico tiene propiedades fractales; que por mucho que aprendamos, lo que queda, por pequeño que parezca, es tan infinitamente complejo como el todo por el que empezamos. Ese, creo yo, es el secreto del universo."

ISAAC ASIMOV [3]

Introducción

Gracias a los avances médicos del último siglo se han incrementado tanto la esperanza como la calidad de vida. Desafortunadamente, también ha aumentado la presencia de enfermedades no-transmisibles asociadas con la edad. En México el sector de la población con más de 60 años de edad (considerados en alto riesgo para este tipo de enfermedades) contempló a 10 millones de personas en 2010, y en 2015 dicha cifra creció a 12 millones [18, 19]. En este trabajo se destaca la demencia entre las enfermedades asociadas con la edad.

La demencia consiste en el desarrollo de deficiencias cognoscitivas (especialmente en atención y memoria) suficientemente graves como para interferir en las actividades del individuo. Hasta el momento se considera que la demencia es irreversible y no se han identificado curas [20], debido a lo cual ha surgido un gran interés en definir y diagnosticar sus etapas tempranas. El deterioro cognitivo leve (DCL), una etapa temprana de la demencia, se entiende como el desarrollo de deficiencias cognoscitivas *objetivas* que no son lo suficientemente graves para calificarse como demencia.

Existen varios métodos para detectar el DCL, como la autopercepción por parte del paciente, pruebas neuropsicológicas, análisis genéticos, químicos o de imagenología cerebral. Las pruebas neuropsicológicas son usadas en el presente trabajo; se definen como *muestras* de algún comportamiento de interés, obtenidas bajo protocolos estandarizados y calificados de forma objetiva. Debido a la naturaleza parcialmente subjetiva de las pruebas neuropsicológicas, en este trabajo se destaca la técnica de polisomnografía (PSG) que consiste en el registro conjunto de varias señales electrofisiológicas durante el sueño. De manera concreta, será analizada una PSG compuesta por registros de electroencefalografía (EEG), electrooculografía (EOG) y electromiografía (EMG), para medir actividad eléctrica cerebral, tono muscular y movimientos oculares, respectivamente. Se decidió usar la PSG porque es una técnica relativamente barata y no invasiva –en relación al tipo de información que se obtiene–, y porque en la literatura hay una gran cantidad de reportes sobre marcadores para el DCL usando la EEG.

Se han encontrado asociaciones entre el DCL en adultos mayores con la *presencia* de algunos tipos de ondas cerebrales [4, 42, 43]. Conviene destacar que se ha indicado que los mejores predictores del DCL son los obtenidos durante el sueño de Movimientos Oculares Rápidos o sueño MOR (a diferencia de la otra gran división del sueño, o No MOR (NMOR)) en comparación con los obtenidos durante la vigilia mediante el uso del análisis espectral [6].

Antecedentes

Se considera que la técnica de EEG fue inventada en la década de 1920 por el fisiólogo Hans Berger, quien adicionalmente descubrió que la EEG es *sensible* a algunos cambios en la actividad mental del participante, como estar despierto en reposo y con ojos cerrados, abrirlos o atender de forma sostenida. Desde entonces se estableció que hay una *conexión* entre los fenómenos eléctricos en el cerebro y el funcionamiento de la mente.

Los fenómenos eléctricos en el cerebro que dan origen al EEG se consideran comprendidos en sus *niveles* más básicos: cada neurona genera un potencial eléctrico estable a través de su membrana celular, debido al intercambio de iones con el medio extracelular. Las perturbaciones en estos potenciales se trasmiten a través de la membrana, e inducen perturbaciones similares en neuronas cercanas; la morfología de las neuronas permite que formen *redes* para la transmisión de impulsos eléctricos, las cuales se extienden por todo el sistema nervioso.

A partir del mecanismo para la transmisión de impulsos eléctricos, sin embargo, no es muy claro cómo funciona el sistema nervioso central como un todo –o cómo deja de funcionar, como en el caso del DCL. Es necesario considerar que las neuronas no se distribuyen ni forman conexiones de forma aleatoria u homogénea dentro del sistema nervioso, sino que obedecen a un tipo de *organización* que influye en su funcionalidad. Más aún, la existencia de múltiples niveles de organización en la actividad cerebral la han colocado como un *paradigma* de complejidad.

Bajo este contexto se entiende a la complejidad no como complicación, sino como la presencia de características *emergentes*, es decir, que están presentes en un sistema pero no en sus componentes: una neurona individual no exhibe (cualitativamente) el mismo comportamiento eléctrico que todo el cerebro [66]. La complejidad puede describirse informalmente con la frase "el todo es más que [simplemente] la suma de las partes", entendiendo que la organización es parte de un sistema.

En su célebre libro "Cybernetics or Control and Communication in the Animal and the Machine", el matemático Norbert Wiener propuso que, debido a la gran complejidad de la actividad cerebral, el comportamiento del EEG roza la aleatoriedad; entonces es posible estudiar estos fenómenos usando herramientas de estadística, ignorando parcialmente los procesos físicos y biológicos subyacentes [67]. Con base a tal comentario, surge históricamente la pregunta sobre hasta qué punto es posible es posible modelar efectivamente al EEG como señales aleatorias con propiedades simples e independientes de los complejos procesos subyacentes. Por ejemplo, pueden mencionarse varios trabajos pioneros donde se investiga si los registros de EEG siguen una distribución normal, si son estacionarios, y si su espectro de potencias es estable en el tiempo [8, 25, 34, 62]; en dichos trabajos se demuestra experimentalmente que el EEG puede considerarse estacionario si se usan segmentos de hasta 20 segundos, e incluso se sugiere que esta cantidad puede cambiar para personas con alguna daño neuronal.

Es sumamente interesante el contraste entre la complejidad *innata* del EEG, y la posibilidad de señalar segmentos cuyo comportamiento es relativamente simple. Se ha propuesto que esta característica refleja el comportamiento hipotético de la actividad cerebral como la *orquestación* de múltiples estados de actividad, cada uno con características distintivas, los cuales se alternan entre sí logrando una gran heterogeneidad global [23]. En el caso de la estacionariedad, se usará la formalización para este comportamiento descrita por Dahlhaus, referida como <u>estacionariedad local</u> [12].

Respecto al supuesto de estacionariedad local en el EEG, cabe destacar que la verificación formal de estacionariedad ha caído en desuso; en cambio, se suelen usar fragmentos de EEG *suficientemente pequeños* para poder suponer estacionariedad [21]. Sin embargo, se ha mostrado que las pruebas de estacionariedad pueden ser útiles, por ejemplo, para segmentar de forma *fisiológicamente relevante* registros de

EEG [22] y de magnetoencefalografía¹ [26], o como apoyo a otras técnicas [1].

Bajo el supuesto de estacionariedad local, en el presente trabajo se explora la hipótesis sobre si el DCL afecta a la organización de la actividad cerebral durante el sueño. De manera concreta, se realizaron análisis de estacionariedad en segmentos de PSG de sueño MOR y NMOR para comprobar si hay diferencias entre individuos con y sin DCL. Previamente, se han mostrado resultados que sugieren es posible observar tales cambios [52].

Para detectar la estacionariedad se ha usado la prueba descrita por Priestley y Subba Rao [47], ya que se ha señalado como una de las más rápidas hasta la fecha [35], y porque puede ser interpretada de forma relativamente sencilla en términos de un espectro de potencias cambiante en el tiempo.

El presente trabajo es un paso en el desarrollo de una metodología para determinar DCL con base en registros de PSG en adultos mayores. En otras palabras, se pretende explorar si es posible encontrar un marcador anatomofisiológico que respalde o complemente los resultados de las pruebas neuropsicológicas.

Preguntas de investigación y objetivos

Se ha supuesto que el fenómeno de estacionariedad local es consecuencia de la complejidad en la actividad eléctrica cerebral, y que ésta última se encuentra asociada a la actividad mental. Los registros de PSG en adultos mayores, modelados como procesos estocásticos, ¿pueden considerarse como débilmente estacionarios?

Bajo el supuesto de estacionariedad local, ¿la clasificación de estacionariedad débil se ve influida por *parámetros técnicos* como el tamaño de ventana? Con relación a la conexión entre registros de EEG y actividad cerebral, ¿hay diferencias en la clasificación de estacionariedad débil *explicadas* por diferentes estados cognitivos (con o sin DCL) o de actividad cerebral (etapa de sueño NMOR o MOR)?

¹La técnica de magnetoencefalografía (MEG) consiste en el registro de actividad eléctrica del cerebro, a través de perturbaciones en campos magnéticos artificiales.

Objetivos

- Detectar si una realización dada proviene de un proceso estocástico débilmente estacionario; en particular, ésto se logra usando la prueba de Priestley-Subba Rao (PSR) [47]. De forma concreta, se busca evaluar registros de PSG de adultos mayores con y sin DCL.
- Revisar los factores que puedan influir en la clasificación de los registros de PSG: el tamaño de ventana considerado, la etapa de sueño, el estado cognoscitivo (presencia de probable DCL).

Acerca de la estructura del texto

Debido al enfoque *aplicado* del presente trabajo, el primer objetivo se satisface en los dos primeros capítulos y el primer apéndice.

El primer capítulo se exponen varios temas preliminares, con el fin de lograr un texto autocontenido y accesible. En el segundo capítulo se expone, de forma puramente teórica, la herramienta principal del presente trabajo: la prueba de estacionariedad débil de PSR. Este objeto exige la exposición previa del *espectro evolutivo* y de un estimador para éste, ya que representan la base formal de la prueba. Para mantener el enfoque del texto, las demostraciones formales sobre las propiedades de estos objetos son relegadas al apéndice A.

Se incluye en el tercer capítulo una se expone brevemente los temas *necesarios* para entender el DCL y la PSG. Se describe qué es el DCL y cómo se detecta, qué es el sueño y cómo se analiza (en particular usando la PSG), y se menciona la relación entre el sueño y el DCL; en al apéndice **B** se presentan los criterios concretos para interpretar las pruebas descritas para evaluar el DCL.

Se responde a las últimas dos preguntas de investigación en el capítulo cuarto y quinto, exponiendo los resultados obtenidos y las conclusiones. Se concluye que las diferencias entre la *presencia* de estacionariedad débil en registros de PSG puede explicarse por el *tránsito* entre etapas de sueño.

El apéndice C contiene material de apoyo a la discusión y las conclusiones, ya que se propone un mecanismo fisiológico asociado cuya naturaleza es más bien cualitativa.

capítulo 1

Preliminares

En este capítulo se exponen varios temas que, en lo posterior, serán considerados simplemente como conocidos. El lector interesado en una mayor profundización sobre teoría de la medida, probabilidad y estadística puede referirse a los libros "Probability for Statisticians" por Galen R. Shorack [57], y "Statistical Theory" por Bernard W. Lindgren [30]. El tema de pruebas de hipótesis –en particular del tipo que se usan en este trabajo– se expone de manera extensiva en el libro "Estadística No Paramétrica Aplicada a ceincias de la conducta" por Sidney Siegel [58].

1.1. Procesos estocásticos

Los procesos estocásticos se definen formalmente como variables aleatorias cuyo espacio muestral es un espacio de funciones. Intuitivamente es posible definir los procesos estocásticos como una *concatenación* de variables aleatorias, es decir, un conjunto de variables aleatorias indexadas sobre algún conjunto arbitrario. Sin embargo, indexar un conjunto infinito de variables aleatorias representa un problema técnico en el cuanto a definir al proceso estocástico como espacio de probabilidad, especialmente al definir la medida de probabilidad asociada.

Debido a las limitaciones del presente trabajo, el tema se expone de manera

parcial bajo un enfoque formal; la exposición se basa en aquella presentada por Kolmogorov [29], de modo que el lector interesado debe dirigirse a dicho texto.

Primeramente se define a $\mathbb{R}^{\mathcal{T}}$, el conjunto de funciones con dominio en \mathcal{T} y codominio en \mathbb{R} , el cual será usado como espacio de eventos. A modo de *intervalos generalizados* se definen los conjuntos de la forma

$$I([t_1, a_1, b_1], \cdots, [t_N, a_N, b_N]) = \left\{ f \in \mathbb{R}^{\mathcal{T}} \mid f(t_i) \in (a_i, b_i], i = 1, \cdots, N \right\}$$
(1.1)

Es relativamente fácil extender la familia de estos intervalos por uniones e intersecciones finitas. Es un tanto más interesante definir una σ -álgebra generada por éstos conjuntos, pero tal parte se omite en el presente trabajo.

Definición 1.1. Un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$ es una colección de variables aleatorias indexadas por el símbolo $t\in\mathcal{T}$.

Definición 1.2. Se dice que un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$ es un proceso estocástico en \mathbb{R} si cumple que $\mathcal{T} \subseteq \mathbb{R}$. Por notación, el índice t es referido como tiempo, mientras que \mathcal{T} es el conjunto de tiempos admisibles.

Por simplicidad, durante el presente trabajo sólo se usarán dos familias de procesos estocásticos en \mathbb{R} : si \mathcal{T} es un intervalo, o si es parte de una *malla*. La primera familia se reserva para modelar las señales electrofisiológicas, mientras que la segunda se usará para modelar los registros de estas mismas señales. La distinción consiste en que las señales electrofisiológicas sólo pueden ser registradas digitalmente en un conjunto finito de puntos en el tiempo; la atención del texto recae en ambos grupos de procesos, en espera que sus características sean similares de algún modo.

Definición 1.3. Se dice que un proceso estocástico en \mathbb{R} es a tiempo continuo si existen $a, b \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que

$$\mathcal{T} = (a, b) \tag{1.2}$$

Así mismo, se dice que un proceso estocástico en \mathbb{R} es **a tiempo discreto** si existen $t_0, \Delta_X \in \mathbb{R} \cup \{-\infty, \infty\}$ tales que

$$\mathcal{T} = \{ t_0 + t \in \mathbb{R} \mid t \cdot \Delta_X \in \mathbb{Z} \}$$
(1.3)

Por notación, Δ_X es referida como frecuencia de muestreo.

Conviene destacar que el término *'frecuencia de muestreo'* hace referencia al proceso de registro, que algunos textos es referido como *muestreo*. Esta terminología entra claramente en conflicto con las muestras de una variable aleatoria, por lo que es evitada en lo posterior, pero se conservará el término *'frecuencia de muestro'*.

Cabe mencionar que hay un conflicto similar con los términos *tiempo continuo* y *tiempo discreto*; estos términos <u>no guardan ninguna analogía</u> con las variables aleatorias discretas y continuas, ni con los espectro de potencias puramente continuos o puramente discretos (ver el capítulo siguiente). Estos términos se usan porque se encuentran muy extendidos en la literatura sobre análisis de señales.

Para facilitar la referencia de procesos estocásticos, los elementos que lo componen son denotados como:

 ${X(t)}_{t\in\mathcal{T}}$ Todo el proceso.

X(t) Variable aleatoria en el proceso, para el tiempo $t \in \mathcal{T}$.

x(t) Una observación de X(t), para el tiempo $t \in \mathcal{T}$.

 $F_{X(t)}$ Función de probabilidad acumulada para X(t).

1.1.1. Estacionariedad débil

De forma general, la estacionariedad significa que *algunas* propiedades de un proceso sean *invariantes* en el tiempo; la decisión sobre cuáles son estas características lleva a diferentes definiciones de estacionariedad. Se decidió conveniente usar la definición 1.4 con m = 2, ya que garantiza que los momentos conjuntos de orden 2 son constantes en el tiempo y por tanto pueden ser estimadas. La motivación principal para ello es la siguiente: si se modela una señal como proceso estocástico, entonces los momentos están asociados con variables físicas relevantes; en particular, el segundo momento está asociado con la *energía* (definición 1.5).

Definición 1.4. Un proceso $\{X(t)\}_{t\in\mathcal{T}}$ se dice **estacionario de orden m** si, para cualesquiera $t_1, t_2, \ldots, t_n \in \mathcal{T}$ y cualquier τ tal que $t_i + \tau \in \mathcal{T}$, se cumple que

$$E \left[X^{m_1}(t_1) X^{m_2}(t_2) \cdots X^{m_n}(t_n) \right] = E \left[X^{m_1}(t_1 + \tau) X^{m_2}(t_2 + \tau) \cdots X^{m_n}(t_n + \tau) \right]$$
(1.4)

para cualesquiera enteros m_1, m_2, \ldots, m_n tales que $m_1 + m_2 + \cdots + m_n \leq m$.

Definición 1.5. Sean $[a,b] \subseteq \mathbb{R}$ un intervalo arbitrario, y sea $f : [a,b] \to \mathbb{R}$ una función integrable. La **energía disipada** por la función f en el intervalo de tiempo [a,b] es

$$energia_{[a,b]}[f] = \int_{a}^{b} \left| f(t) \right|^{2} dt \tag{1.5}$$

Similarmente, la **potencia** de f en el intervalo de tiempo [a, b] es

$$potencia_{[a,b]}[f] = \frac{1}{b-a} \int_{a}^{b} |f(t)|^{2} dt$$
 (1.6)

La definición 1.4 es conveniente para expresar propiedades y condiciones adicionales; por ejemplo, para estimar la varianza de un estimador para la potencia, se requiere que el proceso sea estacionario de orden 4. Como segundo ejemplo, por motivos meramente fisiológicos se puede garantizar que los registros de EEG son estacionarios de orden 1.

En otro sentido, usar la estacionariedad de orden 2 permite calcular las covarianzas de forma sencilla. Con base a lo anterior, es común usar la <u>estacionariedad débil</u>, una definición equivalente pero más extendida.

Definición 1.6. Un proceso $\{X(t)\}_{t\in\mathcal{T}}$ se dice **débilmente estacionario** si existe $\mu \in \mathbb{R}$ y una función $\mathbb{R}^* : \mathcal{T} \to \mathbb{R}$ tales que, para cualesquiera $t, s \in T$ se cumple

- $\operatorname{E}\left[X(t)\right] = \mu$
- Cov $(X(t), X(s)) = R^{\star}(|s-t|)$

Proposición 1.1. Para que un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$ sea débilmente estacionario es suficiente y necesario que sea estacionario de orden 2.

El que un proceso sea débilmente estacionario implica la existencia de una función, R^* , referida como función de autocovarianza. Conviene definir una versión generalizada de esta función para cualquier proceso estocástico, entendiendo que adopta cierta forma cuando el proceso es débilmente estacionario.

Definición 1.7. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso estocástico en los reales. Su **núcleo de** covarianza se define, para cualesquiera tiempos admisibles $t, s \in \mathcal{T}$, como

$$R(s,t) := \mathbf{E}\left[\left(X(t) - \mathbf{E}\left[X(t)\right]\right)\left(X(s) - \mathbf{E}\left[X(s)\right]\right)\right]$$
(1.7)

1.1.2. Ejemplos

Ejemplo 1.1. Un proceso oscilante es un proceso estocástico $\{S(t)\}_{t\in\mathbb{R}}$ definido como

$$S(t) = \cos\left(t + \phi\right) \tag{1.8}$$

donde $\phi \sim unif(-\pi,\pi)$. Es muy notable que el proceso esté caracterizado por una única variable aleatoria y que sus realizaciones siempre son funciones suaves.

Su valor esperado puede ser calculado fácilmente

$$E[S(t)] = E[\cos(t+\phi)] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \cos(t+\phi) \, d\phi = 0$$
(1.9)

Similarmente para la función de autocovarianza

$$E[S(t)S(s)] = E\left[\cos(t+\phi)\cos(s+\phi)\right]$$

= $E\left[\frac{1}{2}\cos(t-s) + \frac{1}{2}\cos(t+s+2\phi)\right]$
= $\frac{1}{2}\cos(t-s) + \frac{1}{2}E\left[\cos(t+s+2\phi)\right]$
= $\frac{1}{2}\cos(t-s)$ (1.10)

Se concluye que el proceso oscilante es débilmente estacionario.

Ejemplo 1.2. Un proceso ruido blanco es un proceso estocástico $\{\varepsilon(t)\}_{t\in\mathbb{R}}$ tal que si $t, s \in \mathbb{R}$ son diferentes entonces $\varepsilon(t)$ y $\varepsilon(s)$ son indepentiendes. Se dice que el proceso ruido blanco es 'normal' si $\varepsilon(t) \sim N(0, 1)$. Por simplicidad, el término ruido blanco será usado de forma general para procesos normales estándar.

La función de autocovarianza de un proceso ruido blanco es

$$R(\tau) = \begin{cases} 1 &, \tau = 0 \\ 0 &, otro \ caso \end{cases}$$
(1.11)

Se concluye que el proceso ruido blanco es débilmente estacionario.

Figura 1.1: Ejemplos de realizaciones para algunos procesos estocásticos. **A.** Proceso oscilante, del cual se grafican tres realizaciones diferentes. **B.** Proceso Ruido Blanco. **C.** Proceso de Wiener. **D.** Proceso medias móviles a tiempo continuo con parámetro $A = \frac{1}{4}$.

Ejemplo 1.3. Un proceso de Wiener es un proceso estocástico $\{W(t)\}_{t\in\mathbb{R}}$ que satisface las siguientes propiedades para cualesquiera $t, s, \in \mathbb{R}$

- $W(0) \sim D(0)$
- $\left[W(t) W(s)\right] \sim N(0, |t s|)$
- [W(t) W(s)] es independiente de W(u) para $u < \min\{t, s\}$

Es relativamente fácil notar que E[W(t)] = 0 y Cov $(W(t), W(s)) = \min\{t, s\}$, de donde se deduce que el proceso de Wiener no es débilmente estacionario.

Ejemplo 1.4. Sea $\{W(t)\}_{t\in\mathbb{R}}$ un proceso de Wiener y sea $A \in \mathbb{R}_+$ arbitrario. Se define a $\{Y(t)\}_{t\in\mathbb{R}}$, un proceso medias móviles tiempo continuo con parámetro A, como

$$Y(t) = \frac{1}{A} \int_{t-A/2}^{t+A/2} dW(u)$$
(1.12)

donde la integral está definida en el sentido de $It\hat{o}^1$. Bajo estas condiciones, la función de autocovarianza para el proceso es

$$R(\tau) = \frac{1}{A^2} \min\{A - |\tau|, 0\}$$
(1.13)

1.2. Estimación de parámetros

Hasta ahora se ha hablado de las variables aleatorias y procesos estocásticos únicamente como objetos definidos formalmente. En el contexto del presente trabajo, dichos objetos son usados para modelar fenómenos físicos, es decir que se espera que ciertos fenómenos presenten comportamientos similares a cierto tipo de variables aleatorias. En esta sección se aborda el problema formal de *recuperar* información sobre estos objetos en base a las observaciones obtenidas del fenómeno estudiado, las cuales son interpretadas como *huellas* de estos objetos aleatorios.

Considérese a X, una variable aleatoria entre los espacios medibles $(\Omega_1, \mathcal{U}_1)$ y $(\Omega_2, \mathcal{U}_2)$. Para poder *conectar* a X con el fenómeno estudiado, Ω_1 debe incluir todas los estados posibles del sistema bajo las condiciones de estudio; mientras, Ω_2 es

¹Este tema no será discutido a detalle en el presente texto. Se recomienda consultar, por ejemplo, la introducción por Luis Rincón [48].

típicamente un conjunto *basado* en \mathbb{R} suficientemente general para cuantificar *adecuadamente* a las mediciones hechas sobre el sistema. Con un conjunto basado en \mathbb{R} se engloba informalmente al mismo \mathbb{R} , alguno de sus subconjuntos, a \mathbb{C} , a \mathbb{R}^n para algún $n \in \mathbb{N}$, o incluso a $\mathbb{R}^{\mathcal{T}}$, entre otros.

En concreto, se considera el problema en que la variable aleatoria modelo, X, admite una función de probabilidad acumulada $F(\bullet; \theta)$ que depende de un parámetro $\theta \in \Theta$, donde Θ es referido como **espacio de parámetros**. El objetivo es deducir el valor de θ a partir de las observaciones recabadas.

Definición 1.8. Sea X una variable aleatoria real. Una **muestra de X de ta**maño N es una colección de variables aleatorias $\{X_1, X_2, ..., X_N\}$ tales que son independientes y comparten la misma distribución que X. Mientras no se indique lo contrario, las variables aleatorias en la muestra no están ordenadas.

Proposición 1.2. Sea X una variable aleatoria continua, sea f_X su función de densidad de probabilidad, y sea $\{X_1, \ldots, X_N\}$ una muestra de tamaño N. La función de densidad de probabilidad conjunta para el vector $\mathbf{X} = [X_1, X_2, \ldots, X_N]$ es

$$f_{\mathbf{X}}(x_1, \dots, x_N) = \prod_{j=1}^N f(x_j)$$
 (1.14)

Definición 1.9. Sea X una variable aleatoria y sea $\{X_1, \ldots, X_N\}$ una muestra de tamaño N. Un **estadístico** es una función $\hat{\theta} : \mathbb{R}^n \to \mathbb{R}$ evaluada en la muestra.

Si se pretende que el valor del estadístico sea parecido a un parámetro θ , entonces se dice que el estadístico $\hat{\theta}$ es un **estimador** de θ .

Definición 1.10. Sea X una variable aleatoria que depende de un parámetro θ , y sea $\{X_1, \ldots, X_N\}$ una muestra de tamaño N. Se dice que un estimador $\hat{\theta}$ es **insesgado** si cumple que

$$\mathbf{E}\left[\widehat{\theta}(X_1, X_2, \dots, X_N)\right] = \theta \tag{1.15}$$

Definición 1.11. Sea X una variable aleatoria que depende de un parámetro θ , sea $\{X_1, \ldots\}$ una muestra de tamaño infinito. Considérese a $\{\widehat{\theta}_N\}_{N\in\mathbb{N}}$, una familia de estimadores definidos para muestras de tamaño arbitrario. Dicha familia de estimadores se dice **consistente** si para cualquier $\varepsilon > 0$ se cumple que

$$\lim_{n \to \infty} P\left(\left| \widehat{\theta}_N(X_1, X_2, \dots, X_N) - \theta \right| > \varepsilon \right) = 0$$
(1.16)

Definición 1.12. Considérese a $\{\widehat{\theta}_N\}_{N\in\mathbb{N}}$, una familia de estimadores como en la definición anterior. Se dice que dicha familia de estimadores converge en media cuadrática si cumplen que

$$\lim_{n \to \infty} \mathbb{E}\left[\left(\widehat{\theta}_N(X_1, X_2, \dots, X_N) - \theta\right)^2\right] = 0$$
(1.17)

Si esto se cumple, se dice que la familia de estimadores es **consistente en media** cuadrática

Proposición 1.3. Si $\{\widehat{\theta}_N\}_{N\in\mathbb{N}}$ es una familia de estimadores consistente en media cuadrática, entonces es consistente.

Corolario 1.4. Una condición suficiente para para que una familia sea consistente en en media cuadrática es

$$\lim_{N \to \infty} \mathbb{E}\left[\widehat{\theta}_N(X_1, X_2, \dots, X_N)\right] = \theta$$
(1.18)

$$\lim_{N \to \infty} \operatorname{Var}\left(\widehat{\theta}_N(X_1, X_2, \dots, X_N)\right) = 0 \tag{1.19}$$

Ejemplo 1.5. Sea $X \sim N(\mu, 1)$, y sea $\{X_1, X_2, \ldots, X_N\}$ una muestra de tamaño N. El estadístico \overline{X}_N , definido como

$$\overline{X}_N(X_1, X_2, \dots, X_N) = \frac{1}{N} \sum_{i=1}^N X_i$$
 (1.20)

será usado como estimador para el parámetro μ . De forma relativamente fácil puede verificarse que

- $\operatorname{E}\left[\overline{X}_N(X_1, X_2, \dots, X_N)\right] = \mu$
- Var $\left(\overline{X}_N(X_1, X_2, \dots, X_N)\right) = 1/N$

Entonces \overline{X}_N es un estimador insesgado que satisface $\lim_{N\to\infty} \operatorname{Var}\left(\overline{X}_N\right) = 0$; se deduce que es consistente en media cuadrática.

En base a la proposición 1.2, se puede deducir que $\overline{X}_N \sim N\left(\mu, \frac{1}{N}\right)$

1.3. Pruebas de hipótesis

En el lenguaje coloquial, una hipótesis es una afirmación sobre algún aspecto desconocido. Una tarea común en el análisis de datos es decidir si alguna hipótesis dada puede *sostenerse* a partir de la información proporcionada por un conjunto de observaciones. Una herramienta de uso común para producir estas decisiones es la **prueba de hipótesis**, la cual consiste en dos afirmaciones complementarias (es decir, tales que exactamente una de ellas es verdadera) y una *regla* para decidir entre ambas a partir de las observaciones consideradas.

Dichas afirmaciones complementarias son referidas como *hipótesis*; éstas deben elegirse de forma que el decidir entre una u otra hipótesis sea equivalente a la decisión que se busca tomar. Usualmente una hipótesis representa la afirmación más general o que se cree verdadera por omisión (hipótesis nula, H_0), mientras que la otra hipótesis se tomará como verdadera si existe suficiente información para rechazar la veracidad de la primera (hipótesis alternativa, H_A).

Usualmente una regla de decisión involucra un **estadístico de prueba**, $\hat{\theta}$; una vez que $\hat{\theta}$ es calculado para las observaciones obtenidas, su valor se compara con el valor *típico* que tendría si H_0 fuera cierta, y en base a ello se formula la decisión. Los estadísticos de prueba suelen construirse para tener una distribución conocida y preferiblemente sencilla, la cual es determinada por unos pocos parámetros fáciles de estimar usando las observaciones.

La interpretación usual es que, si H_0 es verdadera entonces $\hat{\theta}$ puede no tener el valor predicho debido a factores ajenos al fenómeno estudiado, en consecuencia se suele hablar de una *región de rechazo* para el espacio de los posibles valores muestrales (ver definición 1.15). Bajo esta interpretación, un valor de $\hat{\theta}$ dentro de la región de rechazo significa que los datos representan evidencia para rechazar H_0 ; un no-rechazo no significa precisamente que H_0 sea verdadera, sino que las observaciones no representan evidencia suficiente para rechazar H_0 .

Definición 1.13. En una prueba de hipótesis, el rechazar H_0 cuando es verdadero es referido como un **error del tipo I**. De forma similar, el aceptar H_0 cuando es falsa es referido como un **error del tipo II**.

La naturaleza e interpretación de los estadísticos de prueba suelen ser muy particulares de las situaciones bajo las cuales son definidos. Una forma típica de normalizar
los diferentes estadísticos es a través del p-valor, definido como la probabilidad de que ocurra un valor extremo del estadístico de prueba; el p-valor suele interpretarse como la *fuerza* de la evidencia contra H_0 .

Definición 1.14. Sea $\hat{\theta}$ un estadístico de prueba asociado a la hipótesis $\hat{\theta} = 0$, y sea \hat{t}_N el valor del estadístico de prueba evaluado en una muestra de tamaño N. El **p-valor** asociado a la hipótesis es

$$Prob\left(\left|\widehat{\theta}\right| > \left|\widehat{t}_{N}\right| \ \middle| \ \widehat{\theta} = 0\right)$$

$$(1.21)$$

aunque los valores absolutos pueden ser modificados según las características particulares de la prueba de hipótesis.

El p-valor suele interpretarse como 'la probabilidad de que el estadístico de prueba tenga el valor observado, dado que la hipótesis nula es verdadera'.

Una **prueba de significancia** se entiende como una pruebas de hipótesis para algunos p-valores predefinidos, usualmente 0.05, 0.01, 0.005, entre otros.

Definición 1.15. Dada una muestra poblacional y dos afirmaciones complementarias H_0 y H_A , una **prueba de hipótesis** es una regla de decisión que asigna a cada punto del espacio de estados una acción del conjunto Aceptar H_0 , rechazar H_A , Rechazar H_0 , aceptar H_A . Al conjunto del espacio muestral sonde se rechaza H_0 se le denomina **región crítica**.

A continuación se describen algunas pruebas usadas durante el texto para investigar (como pruebas de hipótesis) las posibles asociaciones entre el fenómeno estudiado, estacionariedad débil en registros de PSG, y sus posibles factores asociados. Para consultar mayores detalles sobre estas pruebas se recomienda consultar, por ejemplo, el libro *"Estadística No Paramétrica Aplicada a las ciencias de la conducta"* [58].

1.3.1. Prueba de correlación de Spearman

Para medir el grado de asociación entre dos variables aleatorias se usa la **correlación**, una forma normalizada de covarianza. Un problema muy interesante es verificar, a partir de observaciones, si la correlación entre dos variables aleatorias es *negligible* o *significativa* –entendiendo estos términos como antónimos. En respuesta a esta situación se la prueba de hipótesis propuesta por Spearman contempla una definición de correlación con propiedades estadísticas *agradables* para su estimación.

Definición 1.16. Sea [X, Y] un vector aleatorio y sea $\{[x_1, y_1], \ldots, [x_N, y_N]\}$ una muestra de tamaño N; supóngase que $x_1 < x_2 < \cdots < x_N$. Se define a la función ord: $\{1, \ldots, N\} \rightarrow \{1, \ldots, N\}$ de modo que

$$y_{ord(1)} < y_{ord(2)} < \ldots < y_{ord(N)}$$
 (1.22)

El coeficiente de correlación de Spearman es el estadístico construido como

$$\rho(X,Y) = 1 - \frac{6\sum_{n=1}^{N} \left(n - ord^{-1}(n)\right)^2}{N(N^2 - 1)}$$
(1.23)

Este coeficiente toma valores en el intervalo [-1, 1], y su valor absoluto se suele interpretar como la *fuerza* de la correlación monotónica entre las variables aleatorias; una correlación de Spearman de 0 tiene la misma interpretación que una covarianza igual a 0. Así entonces, se formulan las siguientes hipótesis

$$H_0: \rho(X, Y) = 0$$

$$H_A: \rho(X, Y) \neq 0$$
(1.24)

Usualmente, la decisión en la prueba de Spearman es efectuada según dos criterios a según el tamaño de la muestra:

 Si hay *muchas* muestras (usualmente más de 30), entonces se usa el siguiente estadístico

$$\tau = \frac{\rho(X, Y)}{\sqrt{\left(1 - \rho(X, Y)^2\right)(N - 2)}}$$
(1.25)

que sigue aproximadamente una distribución t de Student.

 Si hay pocas muestras, se usan las llamadas pruebas de permutación², es decir, intercambiar valores entre las parejas de observación y verificar qué tan común es obtener valores altos para ρ.

La prueba de correlación de Spearman es no-paramétrica, es decir, no hace supuestos sobre las distribuciones de $X \ge Y$.

 $^{^{2}}$ Este tema no será descrito en el presente trabajo, el lector interesado puede referirse a [58].

1.3.2. Prueba χ^2 para proporciones

Tomando en cuenta dos clasificaciones dicotómicas, una pregunta interesante es si las dos clasificaciones son independientes en cierto sentido. Un caso particular ocurre cuando se *juntan* las observaciones de dos variables aleatorias independientes, $X ext{ y}$ Y, con distribuciones de Bernaulli³ con parámetros $p_X ext{ y} ext{ } p_Y$; probar la independencia de las clasificaciones ($X ext{ o} Y, 0 ext{ o} 1$) es equivalente a probar que $p_X \neq p_Y$. La prueba de χ^2 para proporciones, en particular, sirve para efectuar tal decisión sin necesidad de supuestos sobre la distribución conjunta de [X, Y].

Se define el siguiente estadístico de prueba

$$\chi^{2} = \frac{N\left(|A_{0}B_{1} - A_{1}B_{0}| - N/2\right)^{2}}{(A_{0} + A_{1})(B_{0} + B_{1})(A_{0} + B_{0})(A_{1} + B_{1})}$$
(1.26)

donde

$$A_j = \#$$
 observaciones de X iguales a j
 $B_j = \#$ observaciones de Y iguales a j (1.27)

El estadístico χ^2 sigue una distribución χ^2 con 1 grado de libertad; dicho estadístico es usado para probar las siguientes hipótesis

$$H_0: {}^{A_0}/({}^{A_0+A_1}) = {}^{B_0}/({}^{B_0+B_1})$$

$$H_A: {}^{A_0}/({}^{A_0+A_1}) \neq {}^{B_0}/({}^{B_0+B_1})$$
(1.28)

1.3.3. Prueba de Wilcoxon-Mann-Whithney

Existe una gran cantidad y variedad de pruebas para decidir si dos muestras provienen de variables aleatorias distintas. En el caso particular de la prueba de Wilcoxon-Mann-Whithney (WMW) se busca decidir si dos variables aleatorias, X y Y, siguen distribuciones *parecidas*, es decir

$$H_0: P(X < Y) = P(X > Y)$$

$$H_0: P(X < Y) \neq P(X > Y)$$
(1.29)

Conviene mencionar que no se requieren supuestos sobre la distribución conjun-

³Se dice que una variable aleatoria Z sigue una distribución de Bernaulli con parámetro p, si P(Z = 0) = p y P(Z = 1) = 1 - p.

ta de [X, Y]. En cambio, considérense las muestras $\{x_1, \ldots, x_{N_X}\}$ y $\{y_1, \ldots, y_{N_Y}\}$ correspondientes a X y Y, respectivamente. Sin pérdida de generalidad, y para simplificar la referencia, puede construirse el conjunto ordenado

$$[z_1, \dots, z_{N_X + N_Y}] = [x_1, \dots, x_{N_X}, y_1, \dots, y_{N_Y}]$$
 (1.30)

Se defina la función ord : $\{1, \ldots, N_X + N_Y\} \rightarrow \{1, \ldots, N_X + N_Y\}$ tal que

$$z_{\text{ord}(1)} < z_{\text{ord}(2)} < \ldots < z_{\text{ord}(N_X + N_Y)}$$
 (1.31)

Posteriormente se construyen el estadístico W_X y W_Y como

$$W_X = N_X N_Y + \frac{N_X (N_X + 1)}{2} - \sum_{n=1}^{N_X} \operatorname{ord}^{-1}(n)$$
(1.32)

$$W_Y = N_X N_Y + \frac{N_Y (N_Y + 1)}{2} - \sum_{n=N_X+1}^{N_X + N_Y} \operatorname{ord}^{-1}(n)$$
(1.33)

y finalmente se construye el estadístico U como

$$U = \min\left\{W_X, W_Y\right\} \tag{1.34}$$

De manera similar a la prueba de correlación de Spearman, la decisión en la prueba de WMW se efectúa siguiendo dos criterios:

• Si los tamaños muestrales son suficientemente grandes (usualmente $N_X \ge 10$, $N_Y \ge 10$) entonces se construye el estadístico de prueba

$$Z = \frac{U - (N_X N_Y)/2}{\sqrt{N_X N_Y (N_X + N_Y + 1)/12}}$$
(1.35)

el cual sigue una distribución normal estándar.

Si los tamaños muestrales son pequeños, se procede a usar una prueba de permutaciones⁴; ésto cambiando la cantidad de observaciones en A₀, A₁, B₀, B₁, pero conservando los valores de A₀ + A₁, B₀ + B₁ o A₀ + B₀, A₁ + B₁.

⁴Este procedimiento no será expuesto de forma explícita en el presente texto, el lector interesado puede referirse a [58].

1.3.4. ANOVA de una vía

Las ANOVA son pruebas de hipótesis en las que se decide si varios grupos de observaciones tienen el mismo valor esperado. Estas pruebas suelen usarse para decidir si un factor determinado *afecta* a una cantidad de interés, interpretando el cambio en el valor esperado como una marca del *efecto* debido a dicho factor.

El acrónimo ANOVA son siglas para <u>Analysis Of Va</u>riance (análisis de varianza). A grosso modo, el procedimiento consiste en los siguientes pasos:

- 1. Calcular la varianza muestral total, usando todas las observaciones.
- 2. Calcular las varianzas grupales, es decir, separando las observaciones en grupos.
- 3. Comparar las cantidades obtenidas, y decidir qué porción de la varianza total puede *explicarse* por la separación entre grupos.

La motivación para el procedimiento es que las medias grupales son desconocidas pero pueden ser estimadas. Sin embargo, deben considerarse las varianzas de tales estimadores; si la varianza es más grande que la diferencia –estimada– para las medias, entonces la evidencia no es suficiente para afirmar que las medias son efectivamente diferentes. Por ese motivo la varianza estimada ocupa un papel central.

El tema de ANOVA's es explorado en una gran cantidad de libros de estadística, por ejemplo, "Análisis de varianza" por Franciso Tejedor [63]. Por simplicidad, en este trabajo únicamente se expondrán algunos casos sencillos de ANOVA.

En el primer caso particular se consideran J grupos, para cada uno de ellos se han obtenido I observaciones; la *i*-ésima observación del *j*-ésimo grupo será denotada por $Y_{i,j}$. Por simplicidad se supondrá que las observaciones son independientes y que siguen distribuciones normales de la forma

$$Y_{i,j} \sim \mathcal{N}(\mu + \mu_j, \sigma^2) \tag{1.36}$$

con μ la media de todas las observaciones, μ_j la media grupal del grupo j (las cuales satisfacen que $\sum_{j=1}^{J} \mu_j = 0$), y $\sigma \in \mathbb{R}$. Bajo estas condiciones, puede escribirse

$$Y_{i,j} = \mu + \mu_j + \varepsilon_{i,j} \tag{1.37}$$

donde $\varepsilon_{i,j} \sim N(0, \sigma^2)$.

A partir de las observaciones, se construyen los estimadores $\hat{\mu} \ge \hat{\mu}_j$ para la media total y las medias grupales, respectivamente, como

$$\widehat{\mu_j} := \frac{1}{I} \sum_{i=1}^{I} Y_{i,j}$$
(1.38)

$$\widehat{\mu} := \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} Y_{i,j}$$
(1.39)

Así mismo, se construyen los estimadores $S_{\rm T}$, $S_{\rm I}$ –para la varianza total y las grupales, respectivamente– y el residuo $S_{\rm F}$, como

$$S_{\rm T} := \sum_{i=1}^{I} \sum_{j=1}^{J} \left(Y_{i,j} - \hat{\mu} \right)^2 \tag{1.40}$$

$$S_{\rm I} := \sum_{i=1}^{I} \sum_{j=1}^{J} \left(Y_{i,j} - \hat{\mu}_j \right)^2 \tag{1.41}$$

$$S_{\rm F} := I \sum_{j=1}^{J} \left(\widehat{\mu}_j - \widehat{\mu} \right)^2 \tag{1.42}$$

los cuales cumplen que $S_{\rm T} = S_{\rm I} + S_{\rm F}$.

Los estimadores $S_{\rm T}$, $S_{\rm I}$ y $S_{\rm F}$ son referidos como **sumas de cuadrados**. Bajo la interpretación de μ_j como *efectos grupales*, el residuo $S_{\rm F}$ puede entenderse como la porción de la varianza total que no es *explicada* por la agrupación de las observaciones; en otras palabras, es la varianza adicional que aparece por juntar observaciones de grupos que, en principio, tienen medias diferentes.

Ahora bien, se pueden formular formalmente las siguientes hipótesis

$$H_0: \mu_1 = \mu_2 = \dots = \mu_J = 0$$

(1.43)
$$H_A: \mu_k \neq 0 \quad \text{para algún } k \in \{1, 2, \dots, J\}$$

Con base a las distribuciones de las sumas de cuadrados, se construye el siguiente estadístico de prueba

$$\widehat{F} = \frac{S_{\rm F}/(J-1)}{S_{\rm I}/(IJ-J)} \sim F(IJ - J, J - 1)$$
(1.44)

el cual sigue una distribución F de Fisher con parámetros IJ - J, J - 1.

1.3.5. ANOVA de dos vías

El procedimiento de una ANOVA puede extenderse para condiciones más generales, como que las varianzas grupales sean diferentes o que los diferentes grupos tengan cantidades diferentes de observaciones. Otro tipo de generalización ocurre cuando se usan dos clasificaciones simultáneas para las observaciones, lo cual implica el efecto simultáneo de dos factores sobre la misma variable de interés. En el presente trabajo, este tipo de clasificaciones serán usadas con diversos fines.

En esta clasificación se consideran I grupos en el primer factor y J grupos en el segundo factor; por comodidad, los factores serán referidos como A y B.

El modelo general entonces tiene la forma

$$Y_{i,j} = \mu + \alpha_i + \beta_j + \gamma_{i,j} + \varepsilon_{i,j} \tag{1.45}$$

donde α contiene las media grupales según el factor A, similarmente β para el factor B; γ contiene las medias para las intersecciones de los grupos según ambos factores.

De forma similar al ANOVA de una vía, los efectos grupales deben ser tales que

$$\sum_{i=1}^{I} \alpha_i = \sum_{j=1}^{J} \beta_j = \sum_{i=1}^{I} \sum_{j=1}^{J} \gamma_{i,j} = 0$$
(1.46)

Así mismo, se definen sumas de cuadrados

$$S_A := J \sum_{i=1}^{I} (\alpha_i - \mu)^2$$
(1.47)

$$S_B := I \sum_{j=1}^{J} \left(\beta_j - \mu \right)^2$$
 (1.48)

$$S_I := \sum_{i=1}^{I} \sum_{j=1}^{J} \left(Y_{i,j} - \alpha_i - \beta_j + \mu \right)^2$$
(1.49)

$$S_T := \sum_{i=1}^{I} \sum_{j=1}^{J} \left(Y_{i,j} - \mu \right)^2 \tag{1.50}$$

Esta variedad de estadísticos sugiere una mayor variedad de pruebas de hipótesis.

Por ejemplo, se pueden probar las hipótesis

$$H_0: \gamma_{1,1} = \gamma_{1,2} = \dots = \gamma_{1,J} = \gamma_{2,1} = \dots = \gamma_{I,J} = 0$$

$$H_A: \gamma_{i,j} \neq 0 \text{ para algunos } i, j$$
(1.51)

usando el estadístico de prueba

$$F_I = \frac{S_I / (I-1)(J-1)}{S_T / (IJ-1)}$$
(1.52)

el cual sigue una distribución F de Fisher con ((I-1)(J-1), IJ-1) grados de libertad. De forma análoga se pueden probar las hipótesis

$$H_0: \alpha_1 = \alpha_2 = \dots = \alpha_I = 0$$

$$H_A: \alpha_i \neq 0 \text{ para algún } i$$
(1.53)

usando el estadístico de prueba

$$F_A = \frac{S_A/(I-1)}{S_T/(IJ-1)}$$
(1.54)

el cual sigue una distribución F de Fisher con (I - 1, IJ - 1) grados de libertad; sin embargo, para este segundo par de hipótesis se necesita suponer la hipótesis alternativa de la expresión 1.51.

capítulo 2

Espectro evolutivo y la prueba de Priestley-Subba Rao

El espectro evolutivo es una generalización del módulo de la transformada de Fourier, para procesos estocásticos que no necesariamente son débilmente estacionarios. Esta definición fue presentada por Maurice B. Priestley en la década de 1960 [44, 45, 47]; para el lector interesado, es igualmente recomendable la exposición del tema (por el mismo autor) en el libro *"Spectral Analysis and Time Series"* [46].

Por simplicidad expositiva, en este capítulo se presenta únicamente la definición de espectro evolutivo, un estimador para el mismo y una herramienta asociada –que se describe más adelante. En el apéndice A se exponen los teoremas que garantizan que el estimador de doble ventana es consistente.

Bajo esta línea de pensamiento, conviene destacar que el espectro evolutivo de un proceso débilmente estacionario se *reduce* a su espectro de potencias (teorema 2.1). Este hecho es usado en la sección 2.4 para construir un *detector* de estacionariedad débil: la prueba de Priestley y Subba Rao (PSR). El uso de dicha prueba en registros electrofisiológicos constituye el punto central del presente trabajo.

El enfoque de este capítulo es <u>puramente teórico</u>, y se presenta para explicar el funcionamiento y los supuestos de la prueba de PSR. Con mira a su uso en registros electrofisiológicos, dicha prueba de PSR (tal cual es descrita en la sección 2.4.1) fue implementado en el lenguaje de programación R; el lector interesado en el uso de la prueba puede referirse a la implementación incluida en el paquete **fractal** [9].

2.1. Definición del espectro evolutivo

De aquí en adelante únicamente serán considerados los procesos estocásticos de media 0, varianza finita y estocásticamente continuos¹; ésto con vista al teorema de Wiener-Khintchine (teorema A.5), el cual garantiza la existencia del espectro de potencias para proceso débilmente estacionarios. Usando ese mismo teorema como motivación, conviene considerar el caso en los procesos cuyo núcleo de covarianza puede escribirse de la forma

$$R(s,t) = \int_{-\infty}^{\infty} \overline{\phi(\omega;s)} \phi(\omega;t) d\mu(\omega)$$
(2.1)

para alguna familia de funciones $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}.$

Ejemplo 2.1. Sea $\{X(t)\}_{t\in\mathbb{R}}$ un proceso de Wiener, cuyo núcleo de covarianza es

$$R(t,s) = \min\{t,s\}$$

$$(2.2)$$

Considérese la familia de funciones $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}, donde$

$$\phi(\omega;t) = \begin{cases} 1 & , 0 \le \omega \le t \\ 0 & , otro \ caso \end{cases}$$
(2.3)

No es difícil verificar que $R(s,t) = \int_{-\infty}^{\infty} \overline{\phi(\omega;s)} \phi(\omega;t) d\mu_L(\omega)$, con μ_L la medida de Lebesgue. Intuitivamente, la familia \mathbf{F} no tiene las mismas propiedades que la base de Fourier; este comentario será formalizado a continuación.

Definición 2.1. Una función $\phi : \mathbb{R} \to \mathbb{C}$ se dice **oscilatoria** si admite una representación de la forma

$$\phi(t) = A(t)e^{i\omega t} \tag{2.4}$$

donde A es de la forma

$$A(t) = \int_{-\infty}^{\infty} e^{i\omega t} dK(\omega)$$
(2.5)

y donde $|dK(\omega)|$ tiene un único máximo global en $\omega = 0$.

¹La continuidad estocástica se describe formalmente en la definición A.1. El conjunto de propiedades descrito es suficiente para garantizar la existencia del espectro de potencias.

Ejemplo 2.2. La función $\phi(t) = e^{i\omega t}$ es oscilatoria. Basta considerar $A \equiv 1$, la cual puede expresarse como en la expresión 2.1 usando

$$K(\omega) = \begin{cases} 1 & , 0 \le \omega \\ 0 & , otro \ caso \end{cases}$$
(2.6)

donde |dK| tiene un máximo en 0. La condición del máximo global indica que A no es predominantemente una función cosenoidal, sino que sólo 'modula' a ϕ . Para ilustrarlo, conviene notar que puede expresarse a ϕ de forma alternativa como

$$\phi(t) = e^{i\lambda t} e^{i(\omega-\lambda)t} \tag{2.7}$$

en este caso $A_2(t) = e^{i\lambda t}$, la cual tiene una representación de la forma 2.1 usando

$$K_2(\omega) = \begin{cases} 1 & ,\lambda \le \omega \\ 0 & , otro \ caso \end{cases}$$
(2.8)

la cual no tiene un máximo global en $\omega = 0$.

Ejemplo 2.3. La función $\phi(t) = e^{i\omega t}e^{-t^2/2}$ es oscilatoria, usando $A(t) = e^{-t^2/2}$. Para ello, A puede escribirse en la forma 2.1 con

$$K(\omega) = \int_{-\infty}^{\omega} e^{-\lambda^2/2} d\lambda$$
(2.9)

Claramente $|dK(\omega)| = e^{-\lambda^2/2}$ tiene un máximo absoluto en 0. Este ejemplo resulta más ilustrativo sobre el papel modulador de A.

Definición 2.2. Un proceso estocástico $\{X(t)\}_{t\in\mathcal{T}}$ se dice **oscilatorio** si su núcleo de covarianza acepta una representación de la forma

$$R(s,t) = \int_{-\infty}^{\infty} \overline{\phi(\omega;s)} \phi(\omega;t) d\mu(\omega)$$
(2.10)

para alguna familia de funciones oscilatorias $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}\ y$ alguna función μ . Como referencia, si un proceso es oscilatorio para alguna familia \mathbf{F} , se dirá que dicha familia está 'asociada' al proceso. **Definición 2.3.** Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso oscilatorio, y sea $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}$ una familia de funciones oscilatorias asociadas al proceso. Por simplicidad, las funciones en \mathbf{F} serán escritas de la forma $\phi(\omega; t) = A(\omega; t)e^{i\omega t}$. Se define a H, el espectro evolutivo integrado respecto a la familia \mathbf{F} como

$$dH(\omega;t) := \left| A(\omega;t) \right|^2 d\mu(\omega) \tag{2.11}$$

donde μ es como en la definición 2.2. Si H es absolutamente continua se define h, el espectro evolutivo respecto a la familia F, como

$$h(\omega, t) = dH(\omega; t) \tag{2.12}$$

Ejemplo 2.4. Sea $\{X(t)\}_{t\in\mathbb{R}}$ un proceso de medias móviles con parámetro A = 1, como se definió en el ejemplo 1.4. Su núcleo de covarianza es

$$R(t,s) = \max\{1 - |t - s|, 0\}$$
(2.13)

Considerando a la familia $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}\ con\ \phi(\omega; t) = e^{i\omega t},\ entonces\ R$ puede escribirse como

$$R(t,s) = \int_{-\infty}^{\infty} \phi(\omega;t) \overline{\phi(\omega;s)} \frac{1}{2\pi} \left[\frac{\operatorname{sen} \left(\frac{\omega/2}{\omega/2} \right)}{\frac{\omega}{2}} \right]^2 d\omega$$
(2.14)

con lo cual la función de densidad espectral del proceso es

$$h(\omega, t) = \frac{1}{2\pi} \left[\frac{\operatorname{sen} \left(\frac{\omega/2}{\omega} \right)}{\frac{\omega}{2}} \right]^2$$
(2.15)

Ejemplo 2.5. Sea $\{X(t)\}_{t\in\mathbb{R}}$ un proceso de medias móviles con parámetro A = 1, como se definió en el ejemplo 1.4. Ahora, se construye al proceso $\{Y(t)\}_{t\in\mathbb{R}}$ como

$$Y(t) = X(t)e^{-t^2/2}$$
(2.16)

El núcleo de covarianza para $\{Y(t)\}_{t\in\mathbb{R}}$ es

$$R(t,s) = \max\{1 - |t-s|, 0\}e^{-t^2/2}e^{-s^2/2}$$
(2.17)

De forma análoga al ejemplo anterior, se usan las funciones $\phi(\omega; t) = e^{i\omega t}e^{-t^2/2}$, que son oscilatorias. R admite una representación en términos de dichas funciones como

$$R(t,s) = \left[e^{i\omega t}e^{-t^2/2}\right] \overline{\left[e^{i\omega s}e^{-s^2/2}\right]} dH_{\star}(\omega)$$
(2.18)

donde H_{\star} es la función de espectro integrado para X. Entonces, el espectro evolutivo para Y es

$$dH(\omega;t) = e^{-t^2} dH_{\star}(\omega) \tag{2.19}$$

2.2. Sobre la estimación del espectro evolutivo

A continuación se presentan algunas propiedades sobre el espectro evolutivo, cuya relevancia impide relegarlas a un apéndice. Si bien estas características no impactan directamente en la estimación *per se* del espectro evolutivo, conforman una advertencia sobre las condiciones bajo las cuales funcionan las aproximaciones que se emplean (y que pueden ser revisadas a detalle en el apéndice A).

Por ejemplo, a continuación se demuestra el fenómeno en el que el espectro evolutivo de un proceso débilmente estacionario es equivalente al espectro de potencias.

Proposición 2.1. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso estocástico a tiempo continuo, débilmente estacionario, estocásticamente continuo, de media cero y varianza finita. Entonces $\{X(t)\}_{t\in\mathcal{T}}$ es un proceso oscilatorio. Más aún, la función de espectro integrado para $\{X(t)\}_{t\in\mathcal{T}}$, H_{\star} , y su espectro evolutivo integrado con respecto a la familia $\{e^{i\omega t}\}$, H, cumplen que

$$dH(\omega;t) = dH_{\star}(\omega) \tag{2.20}$$

Demostración. Sea R el núcleo de covarianza para $\{X(t)\}_{t\in\mathcal{T}}$ y sea R^* su función de autocorrelación. En virtud del teorema A.5, y porque el proceso es débilmente estacionario puede escribirse

$$R(s,t) = R^{\star}(t-s) = \int_{-\infty}^{\infty} \overline{\left[e^{i\omega s}\right]} \left[e^{i\omega t}\right] dH_{\star}(\omega)$$
(2.21)

Previamente se mostró que las funciones de la forma $\phi(t) = e^{i\omega t}$ son oscilatorias, de donde se obtiene que $\{X(t)\}_{t\in\mathcal{T}}$ es un proceso oscilatorio. De manera similar a los

ejemplos anteriores, se deduce que el espectro evolutivo de $\{X(t)\}_{t\in\mathcal{T}}$ es

$$dH(\omega;t) = dH_{\star}(\omega) \tag{2.22}$$

con lo cual se termina de demostrar la proposición.

Definición 2.4. Una familia de funciones $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}$ se dice semiestacionaria si, para todo $t \in \mathcal{T}$, se cumple que

$$\int_{-\infty}^{\infty} |\omega| \left| dK_t(\omega) \right| < \infty$$
(2.23)

donde $\phi(\omega;t) = \int_{-\infty}^{\infty} e^{i\omega t} dK_t(\omega)$. Si así fuere, se define el **ancho de banda carac**terístico de **F** como

$$B_{\mathbf{F}} := \left[\sup_{\omega \in \mathbb{R}} \int_{-\infty}^{\infty} |\omega| \left| dK(\omega) \right| \right]^{-1}$$
(2.24)

Ejemplo 2.6. La familia de funciones $\{\phi(t) = e^{i\omega t}\}$ es semi-estacionaria. Usando a K como en el ejemplo 2.2, se tiene que

$$\int_{-\infty}^{\infty} |\omega| \left| dK_t(\omega) \right| = 0 \tag{2.25}$$

El ancho de banda característico de la familia no está bien definido como un número real, pero si se usa a $\mathbb{R} \cup \{\pm \infty\}$, su ancho de banda es ∞ .

Ejemplo 2.7. La familia de funciones $\{\phi(t) = e^{i\omega t}e^{-t^2/2}\}$ es semi-estacionaria. Usando a K como en el ejemplo 2.3, se tiene que

$$\int_{-\infty}^{\infty} |\omega| \left| dK_t(\omega) \right| = \int_{-\infty}^{\infty} e^{-\omega^2/2} d\omega = \frac{1}{2}$$
(2.26)

El ancho de banda característico para esta familia de funciones es $B_X = 2$.

Definición 2.5. Un proceso $\{X(t)\}_{t\in\mathcal{T}}$ se dice **semi-estacionario** si su núcleo de covarianza, R, admite una representación de la forma

$$R(s,t) = \int_{-\infty}^{\infty} \overline{\phi(\omega;s)} \phi(\omega;t) d\mu(\omega)$$
(2.27)

para alguna familia de funciones $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}$ que es semi-estacionaria, y alguna función μ .

Sea C_X la clase de las familias semi-estacionarias para las cuales el núcleo de covarianza de $\{X(t)\}_{t\in\mathcal{T}}$ admite una representación de la forma 2.5. Se define a B_X , el **ancho de banda característico para** $\{X(t)\}_{t\in\mathcal{T}}$, como

$$B_X := \sup_{\mathbf{F} \in \mathcal{C}_X} B_{\mathbf{F}} \tag{2.28}$$

Proposición 2.2. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso estocástico a tiempo continuo, débilmente estacionario, estocásticamente continuo, de media cero y varianza finita. Entonces $\{X(t)\}_{t\in\mathcal{T}}$ es un proceso semi-estacionario, cuyo ancho de banda característico es $B_X = \infty$.

Demostración. En el ejemplo 2.1 se demostró que todos los procesos con las características descritas son oscilatorios, y que tienen asociada a la familia de funciones $\mathbf{F} = \{\phi(t) = e^{i\omega t}\}$. En el ejemplo 2.6 se demostró que esa familia tiene un ancho de banda característico $B_{\mathbf{F}} = \infty$. Entonces es inmediato que el ancho de banda característico para $\{X(t)\}_{t\in\mathcal{T}}$ es $B_X = \infty$.

2.3. Estimador de doble ventana

Para esta sección se considera un proceso a tiempo continuo $\{X(t)\}_{t\in\mathbb{R}}$ y una muestra del mismo de longitud T, suficientemente larga. Por simplicidad se supondrá que admite un espectro evolutivo h.

Definición 2.6. El estimador de doble ventana es un estimador para h definido como

$$\widehat{h}(\omega,t) = \int_{T-t}^{t} w_{\tau}(u) \left| U(\omega,t-u) \right|^2 du \qquad (2.29)$$

donde U se define como

$$U(t) = \int_{t-T}^{t} g(u)X(t-u)du$$
 (2.30)

donde la función g satisface

- $B_g \ll B_X \ll T$
- $g(t) \rightarrow 0$ cuando $|t| \rightarrow \infty$

• $2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)|^2 d\omega = 1$

con $\Gamma(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} g(t) d\lambda$. Así mismo, la función w_{τ} satisface

- $w_{\tau}(t) \ge 0$ para cualesquiera t, τ
- $w_{\tau}(t) \rightarrow 0$ cuando $|t| \rightarrow \infty$, para todo τ

•
$$\int_{-\infty}^{\infty} w_{\tau}(t) dt = 1 \text{ para todo } \tau$$

•
$$\int_{-\infty}^{\infty} \left[w_{\tau}(t) \right]^2 dt < \infty \text{ para todo } \tau$$

•
$$\exists C \in \mathbb{R} \ tal \ que \ \lim_{\tau \to \infty} \tau \int_{-\infty}^{\infty} |W_{\tau}(\lambda)|^2 \, d\lambda = C$$

donde $W_{\tau}(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} w_{\tau}(t) d\lambda.$

El supuesto sobre que w_{τ} y g decaigan rápidamente lejos de 0 permite reemplazar los intervalo de integración entre \mathbb{R} y [t - T, t] (excepto cerca de 0).

En virtud de las proposiciones A.12 y A.13, se cumple que

$$\mathbf{E}\left[\widehat{h}(\omega,t)\right] = \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^2 \overline{h}(\omega,t) \, d\omega + \mathcal{O}\left(B_g/B_X\right) \tag{2.31}$$

$$\operatorname{Var}\left(\widehat{h}(\omega,t)\right) \approx \widetilde{h}^{2}(\omega_{0},t) \left[\int_{-\infty}^{\infty} \left|W_{\tau}(\omega)\right|^{2} d\omega\right] \left[\int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{4} d\omega\right] \left[1 + \delta\left(0,\omega_{0}\right)\right] + \mathcal{O}\left(B_{g/B_{X}}\right)$$

$$(2.32)$$

 ${\rm donde}$

$$\overline{h}(\omega,t) = \int_{-\infty}^{\infty} w_{\tau}(u)h(\omega,t-u)\,du$$
(2.33)

$$\widetilde{h}^{2}(\omega,t) = \frac{\int_{-\infty}^{\infty} h^{2}(\omega_{0},t-u) \left[w_{\tau}(u)\right]^{2} du}{\int_{-\infty}^{\infty} \left[w_{\tau}(u)\right]^{2} du}$$
(2.34)

Aún más, si se usa que lím $_{\tau\to\infty}\,\tau\int_{-\infty}^\infty \left|W_\tau(\lambda)\right|^2 d\lambda = C$

$$\operatorname{Var}\left(\widehat{h}(\omega,t)\right) \approx \widetilde{h}^{2}(\omega_{0},t)\frac{C}{\tau} \left[\int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{4}\right] \left[1 + \delta\left(0,\omega_{0}\right)\right] + \mathcal{O}\left(\frac{B_{g}}{B_{X}}\right)$$
(2.35)

Es importante notar que \tilde{h} y \bar{h}^2 son muy parecidos a h y h^2 , respectivamente; usando la terminología de filtros lineales (ver sección A.3, son versiones *filtradas* de dichas funciones. Si w_{τ} y w_{τ}^2 son similares a la función δ de Dirac ($w_{\tau}(u) \ll 1$ si $u \gg 0$, pero sus integrales son positivas), o si el ancho de banda de h es muy grande, entonces es de esperarse que $\tilde{h} \approx h$ y $\bar{h}^2 \approx h^2$. Bajo el supuesto de estas condiciones, y adicionalmente que $\mathcal{O}\left({}^{B_g/B_X}\right)$ es negligible, se pueden hacer las siguientes aproximaciones:

$$\mathbf{E}\left[\widehat{h}(\omega,t)\right] \approx h(\omega,t) \tag{2.36}$$

$$\operatorname{Var}\left(\widehat{h}(\omega,t)\right) \approx \frac{C}{\tau} h^2(\omega,t) \int_{-\infty}^{\infty} \left|\Gamma_{\kappa}(\theta)\right|^4 d\theta \qquad (2.37)$$

2.3.1. Logaritmo del estimador de doble ventana

Aplicar el logaritmo es una herramienta de uso común para *estabilizar* al espectro de potencias, a según la siguiente proposición (la cual es un corolario de la proposición A.14).

Corolario 2.3. Pueden usarse las siguientes aproximaciones

$$\mathbf{E}\left[\log(X)\right] \approx \log\left(\mathbf{E}\left[X\right]\right) \tag{2.38}$$

$$\operatorname{Var}\left(\log(X)\right) \approx \frac{\operatorname{Var}\left(X\right)}{\left(\operatorname{E}\left[X\right]\right)^{2}}$$

$$(2.39)$$

Considerando las propiedades de \widehat{h} descritas en la sección anterior, se define al estimador Y como

$$Y(t,\omega) = \log\left(\widehat{h}(t,\omega)\right)$$
(2.40)

el cual satisface las siguientes propiedades

$$E[Y(t,\omega)] \approx \log(h(t,\omega))$$
 (2.41)

$$\operatorname{Var}\left(Y(t,\omega)\right) \approx \frac{C}{T} \int_{-\infty}^{\infty} \left|\Gamma_{\kappa}(\theta)\right|^{4} d\theta \qquad (2.42)$$

Es muy notorio el que la varianza de Y es aproximadamente independiente de *h* (la *estabilización*), lo cual hace de Y un excelente candidato para la prueba de estacionariedad.

2.3.2. Sobre la implementación

Para poder efectuar el cálculo del estimador de doble ventana sobre un conjunto de datos, y en particular usando una computadora, debe considerar una versión discretizada del estimador de doble ventana. Por simplicidad se considerará que el proceso a estudiar fue registrado a con una frecuencia de muestro arbitraria, y posteriormente fue re-indexado a la frecuencia de muestreo $\Delta_X = 1$.

Los cambios en el procedimiento son intuitivos y sencillos. Primeramente, en lugar de seleccionar dos funciones, $g y w_{\tau}$, se deben usar dos *secuencias* con características similares; basta con elegir una función que cumpla las condiciones requeridas y evaluarla en los puntos de interés. El estimador de doble ventana adquiere entonces la forma

$$\widehat{h}(\omega,t) = \sum_{T-t}^{t} w_{\tau}(u) \left| U(\omega,t-u) \right|^2$$
(2.43)

donde U se define como

$$U(t) = \sum_{t-T}^{t} g(u)X(t-u)du$$
 (2.44)

Respecto a las funciones g y w_{τ} , en los cuadros 2.1 y 2.2 se muestran algunos ejemplos sencillos. Usando la terminología de filtros, los pares (g, Γ) y (w, W) son referidos como <u>función de respuesta</u> y <u>función de transferencia</u>, respectivamente. Las funciones mostradas fueron escritas para ser usadas como ventanas de escalamiento, es decir que puede declararse un parámetro arbitrario M < T tal que la función gdel estimador de doble ventana se escriba como

$$g(u) = k \left(\frac{u}{M}\right) \tag{2.45}$$

La optimalidad de estas ventanas depende, naturalmente, de las propiedades de los datos que serán analizados. En este trabajo no se discutirá al respecto, suponiendo cierto agnosticismo sobre los registros de PSG y sus propiedades.

Nombre	$k(u), u \le \pi$	Bosquejo
	_	0.5-
Bartlett	1	0.5 1.0 1.5
Fejer	1 - u	0.5 1.0 1.5
Daniell	$\frac{\operatorname{sen}\left(\pi u\right)}{\pi u}$	
Bartlett-Priestley	$\frac{3}{(\pi u)^2} \left[\frac{\operatorname{sen}\left(\pi u\right)}{\pi u} - \cos\left(\pi u\right) \right]$	

Cuadro 2.1: Ejemplos de funciones ventana (función de respuesta)

Cuadro 2.2: Ejemplos de funciones ventana (función de transferencia)

Nombre	$K(\theta)$	Bosquejo
Bartlett	$\frac{1}{\pi} \frac{\mathrm{sen}\left(heta ight)}{ heta}$	1/π 0.5/π 0/π
Fejer	$\frac{1}{2\pi} \left[\frac{\operatorname{sen} \left(\theta/2 \right)}{\theta/2} \right]^2$	0.5/π 0/π 1/π 2π
Daniell	$1/2\pi$, si $ \theta \le \pi$	1/π 0.5/π 0/π 1π 2π
Bartlett-Priestley	$\frac{3}{4\pi} \left[1 - \left(\theta/\pi \right) \right], \text{si} \left \theta \right \le \pi$	1/π 0.5/π 0/π 1π 2π

2.4. Prueba de Priestley-Subba Rao

La prueba de estacionariedad usada en el presente trabajo, fue propuesta por Priestley y Subba Rao en la década de 1960 [47]. Dicha prueba consiste en probar estadísticamente si el espectro evolutivo de un proceso dado puede reducirse a un espectro de potencias, como en el teorema 2.1, lo cual es equivalente a probar si el proceso es débilmente estacionario. El procedimiento consiste en los siguientes pasos:

- 1. Estimar el espectro evolutivo en algunos puntos en tiempo y frecuencia.
- 2. Calcular el logaritmo para estabilizar al estimador.
- 3. Efectuar una ANOVA de dos vías para verificar si el espectro cambia en el tiempo.

El primer paso, está sujeto a todas las restricciones descritas anteriormente en el presente capítulo. Por notación, sea $\{x_t\}_{t=0,...,N}$ un proceso semi-estacionario a tiempo discreto, de media cero y varianza finita cuya frecuencia de muestreo es $\Delta_t = 1$; y sea $\{x_t\}_{t=0,...,N}$ un conjunto de N observaciones. Usando esta información se calcula para estos datos el estimador de doble ventana, \hat{h} ; para ello se eligen las funciones ventana $g_{\kappa} \neq w_{\tau}$ que, por simplicidad, son ventanas de escalamiento con parámetros $\kappa \neq \tau$. Sus funciones de transferencia serán $\Gamma_{\kappa} \neq W_{\tau}$, respectivamente.

Se define al estimador Y como

$$Y(t,\omega) = \log\left(\widehat{h}(t,\omega)\right)$$
(2.46)

Como se dijo en la sección anterior, Y satisface las siguientes propiedades

$$E[Y(t,\omega)] \approx \log(h(t,\omega))$$
 (2.47)

$$\operatorname{Var}\left(Y(t,\omega)\right) \approx \frac{C}{T} \int_{-\infty}^{\infty} \left|\Gamma_{\kappa}(\theta)\right|^{4} d\theta \qquad (2.48)$$

La forma que tiene la varianza de Y –aproximadamente constante– sugiere que puede escribirse como

$$Y(t,\omega) = \log\left(\widehat{h}(t,\omega)\right) + \varepsilon(t,\omega)$$
(2.49)

Debido a la naturaleza discreta de los datos, conviene construir una malla de puntos en el tiempo y las frecuencias, equiespaciado en el tiempo por Δ_t y en las frecuencias por Δ_{ω} . Si dichas distancias son suficientemente grandes como para que se cumplan las condiciones en 2.50, entonces los valores de Y sobre la cuadrícula serán aproximadamente no-correlacionados.

$$\left. \int_{-\infty}^{\infty} \left| \Gamma_{\kappa}(\theta) \right|^{2} \left| \Gamma_{\kappa}(\theta + \Delta_{\omega}) \right|^{2} d\theta \approx 0 \\
\frac{1}{\Delta_{t}} \int_{-\infty}^{\infty} \left| t \right| \left| w_{\tau}(t) \right| dt \approx 0 \right\} \Rightarrow \operatorname{Cov} \left(Y(t, \omega), Y(t + \Delta_{t}, \omega + \Delta_{\omega}) \right) \approx 0$$
(2.50)

Así entonces, sea $\{(t_i, \omega_j) \in \mathcal{T} \times [-\pi, \pi] | i = 1, \dots, I; j = 1, \dots, J\}$ la cuadrícula descrita, con $|t_i - t_{i+1}| = \Delta_t$ y $|\omega_j - \omega_{j+1}| = \Delta_{\omega}$. Se construye una versión discretizada del estimador Y como

$$Y_{i,j} := \log\left(\widehat{h}(t_i, \omega_j)\right)$$
(2.51)

la cual satisface la versión discretizada de la expresión 2.49

$$Y_{i,j} \approx \log(h(t_i, \omega_j)) + \varepsilon_{i,j}$$
 (2.52)

donde

$$\mathbf{E}\left[\varepsilon_{i,j}\right] \approx 0 \tag{2.53}$$

$$\operatorname{Cov}\left(\varepsilon_{i,j}\right) \approx \frac{C}{T} \int_{-\infty}^{\infty} \left|\Gamma_{\kappa}(\theta)\right|^{4} d\theta \left[\delta(i,i_{0})\delta(j,j_{0})\right]$$
(2.54)

Una vez descrito formalmente el efecto del logaritmo como estabilizador de h, conviene describir el efecto de la estacionariedad débil sobre Y. Con base en la proposición 2.1, si el proceso $\{X(t)\}_{t\in\mathcal{T}}$ es débilmente estacionario **entonces**

$$h(t_1, \omega_j) = h(t_2, \omega_j) = \dots = h(t_I, \omega_j)$$
, para $j = 1, 2, \dots, J$ (2.55)

condición que puede reescribirse en términos de Y como

$$E[Y_{1,j}] = E[Y_{2,j}] = \dots = E[Y_{I,j}]$$
, para $j = 1, 2, \dots, J$ (2.56)

37

Descripción	Estadístico	Gr. de libertad
Efecto tiempo	$S_T = J \sum_{i=1}^{I} \widehat{\alpha_i}^2$	I-1
Efecto frecuencia	$S_F = I \sum_{j=1}^J \widehat{\beta_j}^2$	J-1
Interacción	$S_{I+R} = \sum_{i=1}^{I} \sum_{j=1}^{J} \left(Y_{i,j} - \widehat{\alpha}_i - \widehat{\beta}_j - \widehat{\mu} \right)^2$	(I-1)(J-1)
Total	$S_0 = \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{i,j} - \hat{\mu})^2$	IJ-1
Prom. general	$\widehat{\mu} = \frac{1}{IJ} \sum_{i=1}^{I} \sum_{j=1}^{J} Y_{i,j}$	
Prom. tiempo	$\widehat{\alpha}_i = \frac{1}{J} \sum_{j=1}^J Y_{i,j} - \widehat{\mu}$	
Prom. frecuencia	$\widehat{\beta}_j = \frac{1}{I} \sum_{i=1}^{I} Y_{i,j} - \widehat{\mu}$	

Cuadro 2.3: Sumas de cuadrados en la prueba PSR

la cual, a su vez, puede reescribirse como

$$\mathbf{E}\left[\varepsilon_{1,j}\right] = \mathbf{E}\left[\varepsilon_{2,j}\right] = \dots = \mathbf{E}\left[\varepsilon_{I,j}\right] \text{, para } j = 1, 2, \dots, J$$
(2.57)

Sin embargo, la expresión en 2.57 puede deducirse directamente de las propiedades de Y en caso de que la expresión en 2.56 es cierta. En consecuencia, rechazar 2.57 implica rechazar 2.56, lo cual aporta evidencia para rechazar 2.55; si se rechaza 2.55 entonces puede rechazarse que el proceso sea estacionario, pero un no-rechazo no garantiza que el proceso sea estacionario.

El objetivo de la prueba puede fijarse en decidir si puede rechazarse la condición en 2.57, en cuyo caso se podrá concluir que el proceso **no** es débilmente estacionario. Con base a la expresión en 2.56, la prueba puede formularse en términos de un ANOVA de dos vías (ver sección 1.3.5); para ello, se propone como hipótesis nula que Y sigue el modelo general

$$H_0: Y_{i,j} = \mu + \alpha_i + \beta_j + \gamma_{i,j} + \varepsilon_{i,j}$$

$$(2.58)$$

donde ε es como en la expresión 2.52; se consideran a los parámetros α , β , γ normalizados de forma que

$$\sum_{i=1}^{I} \alpha_i = \sum_{j=1}^{J} \beta_j = \sum_{i=1}^{I} \sum_{j=1}^{J} \gamma_{i,j} = 0$$
(2.59)

En la tabla 2.3 se muestran las sumas de cuadrados asociadas al ANOVA. Dentro del contexto de la estimación del espectro evolutivo, los parámetros involucradas

pueden interpretarse como

- μ Promedio de Y sobre tiempo y frecuencia.
- $\alpha\,$ Efecto lineal sólo del tiempo.
- β Efecto lineal sólo de la frecuencia.
- γ Efecto lineal de tiempo y frecuencia.

Ahora bien, la expresión 2.56 puede formularse como hipótesis para contrastarse contra H_0 , de la forma

$$H_A: \quad Y_{i,j} = \mu + \alpha_i + \varepsilon_{i,j} \tag{2.60}$$

Por simplicidad conviene considerar, como paso intermedio, una segunda prueba de hipótesis con una hipótesis *intermedia encadenada*

$$H_{A_0}: Y_{i,j} = \mu + \alpha_i + \beta_j + \varepsilon_{i,j} \tag{2.61}$$

Para la prueba de hipótesis H_0 v
s H_{A_0} se usa el siguiente estadístico de prueba

$$\frac{S_{I+R}/(I-1)(J-1)}{S_0/(IJ-1)} \sim F\left((I-1)(J-1), IJ-1\right)$$
(2.62)

En caso de que se rechace a H_0 , se procede a realizar la prueba de hipótesis H_{A_0} vs H_A , para lo cual se usa el siguiente estadístico de prueba

$$\frac{S_T/(I-1)}{S_0/(IJ-1)} \sim F\left(I-1, IJ-1\right)$$
(2.63)

Si se rechazan H_0 y H_{A_0} (en ese orden), y se acepta H_A , entonces puede decirse que el registro corresponda a una observación de un proceso débilmente estacionario; por simplicidad, se dirá simplemente que la observación *es* estacionaria.

Es importante enfatizar que, en el contexto de la estimación del espectro evolutivo, los resultados de la ANOVA adquieren una interpretación un tanto diferente a la usual: cuando el estadístico de prueba ocurre en la región de rechazo entonces se acepta que el *efecto* del tiempo es estadísticamente significativo, y en consecuencia se acepta H_0 y se rechaza H_{A_0} . En el contraste de H_{A_0} contra H_A ocurre lo mismo.

Lo más común es rechazar la hipótesis nula –típicamente interpretada como un efecto negligible para un factor de interés– si el estadístico de prueba supera un cierto valor umbral; en el caso de la prueba de PSR tal situación se invierte porque su hipótesis nula es un modelo general del cual se desean *eliminar* ciertas variables cuyo efecto es negligible. Todo este asunto se resuelve sencillamente reportando, el lugar del *p*-valor para el estadístico de prueba, el complemento a 1 de dicho valor.

Cabe mencionar que en gran parte del trabajo se usará la implementación de la prueba de PSR hecha por Constantine y Percival para el lenguaje de programación R [9]. En la siguiente subsección se muestra el uso de la prueba de PSR sobre dos ejemplos, y se compara la implementación en R.

2.4.1. Ejemplos

El procedimiento de la prueba de PSR será usado primeramente en un proceso estocástico construido analíticamente para exhibir algunas características de interés (estacionariedad local); por fines ilustrativos se fingen desconocidas estas propiedades. Posteriormente será usado un fragmento arbitrario de registro de PSG para una derivación arbitraria; esto con el fin de mostrar el método sobre un conjunto de datos con propiedades desconocidas.

Como primer ejemplo se construye al proceso $\{Z(t)\}_{t\in\mathbb{R}}$ como

$$Z(t) = \frac{1}{\sqrt{\psi(t)}} \int_{t-\psi(t)/2}^{t+\psi(t)/2} dW(u)$$
(2.64)

donde la integral está definida en el sentido de Itô² con $\{W(t)\}_{t\in\mathbb{R}}$ es un proceso de Wiener y la función $\psi : \mathbb{R} \to \mathbb{R}$ es como sigue

$$\psi(t) = \frac{1}{2} \left(\tanh(t) + 1 \right)$$
(2.65)

El que el proceso $\{Z(t)\}_{t\in\mathbb{R}}$ sea construido de forma parecida a un proceso medias móviles sugiere que tiene propiedades similares, con algunas *complicaciones* debido a que depende del tiempo. En particular se usarán las mismas técnicas para calcular

 $^{^{2}}$ El lector interesado puede referirse, por ejemplo, a la introducción por Luir Rincón [48]. Este conceptop fue usado anteriormente para definir los procesos de medias móviles en el ejemplo 1.4.

su valor esperado y núcleo de covarianza; con respecto al valor esperado:

$$E\left[Z(t)\right] = E\left[\frac{1}{\sqrt{\psi(t)}} \int_{t-\psi(t)/2}^{t+\psi(t)/2} dW(u)\right]$$

$$= \frac{1}{\sqrt{\psi(t)}} \int_{t-\psi(t)/2}^{t+\psi(t)/2} E\left[dW(u)\right] = 0$$
(2.66)

posteriormente, respecto al núcleo de covarianza:

$$R(t,s) = \mathbb{E}\left[Z(t)Z(s)\right]$$

$$= \mathbb{E}\left[\frac{1}{\sqrt{\psi(t)}\sqrt{\psi(s)}} \int_{t-\psi(t)/2}^{t+\psi(t)/2} dW(u) \int_{s-\psi(s)/2}^{s+\psi(s)/2} dW(v)\right]$$

$$= \frac{1}{\sqrt{\psi(t)}\psi(s)} \mathbb{E}\left[\int_{\Omega_t \cap \Omega_s} du\right]$$

$$= \max\left\{\frac{\psi(t) + \psi(s) - 2|t-s|}{2\sqrt{\psi(t)}\psi(s)}, 0\right\}$$
(2.67)

donde $\Omega_t = [t - \psi(t)/2, t + \psi(t)/2]$, y similarmente para Ω_s . Con base a lo anterior, se puede deducir trivialmente que Var (Z(t)) = R(t, t) = 1.

Se concluye que el proceso $\{Z(t)\}_{t\in\mathbb{R}}$ es de media 0 y varianza finita, pero no es débilmente estacionario porque no admite una función de autocorrelación. Como su núcleo de covarianza es continuo en la diagonal t = s, el proceso es estocásticamente continuo. Por simplicidad expositiva, se supondrá *sin más* que $\{Z(t)\}_{t\in\mathbb{R}}$ es un proceso semi-estacionario.

En la figura 2.1 se muestra una realización de $\{Z(t)\}_{t\in\mathbb{R}}$; el proceso fue discretizado usando $\Delta_Z = 1/1000$ en el intervalo [-3.5, 3.5], y posteriormente se reescaló el tiempo para usar $\Delta_Z = 1$. Conviene mencionar que este proceso fue construido para exhibir un comportamiento muy particular, que es *visible* en su realización y en su núcleo de covarianza:

- Si $0 \ll t$, entonces $\{Z(t)\}_{t \in \mathbb{R}}$ es aproximadamente un proceso medias móviles.
- Si $0 \gg t$, entonces $\{Z(t)\}_{t \in \mathbb{R}}$ es aproximadamente un proceso ruido blanco.

Una vez expuestas las características del proceso $\{Z(t)\}_{t\in\mathbb{R}}$, pero no su espectro evolutivo, se procede a aplicarle la prueba de PSR.

Figura 2.1: Realización del proceso estocástico $\{Z(t)\}_{t\in\mathbb{R}}$, usado para ejemplificar el procedimiento de la prueba de PSR.

Primer ejemplo

Como primer paso se calcula el estimador de doble ventana, \hat{h} , según la definición 2.6; este estimador será calculado en una malla de puntos en el tiempo y las frecuencias. para una malla de puntos en el tiempo y las frecuencias. De manera concreta en este ejemplo, la malla es construida usando $\Delta_t = 1000$ y $\Delta_{\omega} = 50$, con un total de 35 puntos. Por simplicidad, conviene escribir nuevamente la expresión para \hat{h}

$$\widehat{h}(\omega,t) = \sum_{u=T-t}^{t} w_{\tau}(u) \left| U(\omega,t-u) \right|^2$$
(2.68)

donde

$$U(t) = \sum_{u=T-t}^{t} g(u)X(t-u)$$
(2.69)

En este ejemplo particular, se usa la ventana de Bartlett-Priestley, $k_{\rm BP}$, para cubrir el papel de $g \ge w_{\tau}$; esta función es tomada del cuadro 2.1 y escalada adecuadamente.

$$g_{\tau}(u) = w_{\kappa}(u) = \frac{1}{G_{\rm BP}} k_{\rm BP} \left(\frac{u}{500}\right)$$
 (2.70)

	Frecuencia ω_i						
	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6	$\widehat{\alpha_i}$
i = 1	-4.504	-5.328	-8.623	-6.393	-8.953	-9.340	2.155
i = 2	-1.418	-7.526	-8.463	-11.453	-9.392	-9.381	1.406
i = 3	-1.315	-9.812	-10.681	-11.370	-12.126	-11.837	-0.179
i = 4	1.462	-9.852	-10.176	-10.732	-11.823	-11.880	0.511
i = 5	-1.159	-11.056	-12.269	-14.145	-12.297	-12.965	-1.304
i = 6	0.221	-10.473	-11.111	-12.568	-13.392	-14.044	-0.883
i = 7	-2.713	-11.255	-12.739	-13.670	-13.560	-12.373	-1.707
$\widehat{\beta}_j$	7.998	0.016	-1.235	-2.131	-2.304	-2.344	

Cuadro 2.4: Promedios del estimador Y para el primer ejemplo

donde

$$k_{\rm BP}(u) = \begin{cases} \frac{3}{(\pi u)^2} \left[\frac{\sin(\pi u)}{\pi u} - \cos(\pi u) \right] &, |u| \le 1\\ 0 &, \text{otro caso} \end{cases}$$
(2.71)

$$G_{\rm BP} = \int_{-\infty}^{\infty} \left[k_{\rm BP} \left(\frac{u}{500} \right) \right]^2 du \qquad (2.72)$$

Bajo estas instrucciones es claro cómo calcular los valores de \hat{h} y $Y = \log(\hat{h})$; estos valores se muestran en el cuadro 2.4. Con fines de claridad, en la figura 2.2 se enfatiza esquemáticamente la interpretación que tienen dichas cantidades.

A partir de los datos del cuadro 2.4 efectúa el ANOVA de dos vías usando los estimadores descritos en el cuadro 2.3. Primeramente se calcula el promedio global $\hat{\mu} = -9.345$; posteriormente se calculan $\hat{\alpha}_i$ y β_j para $i = 1, \ldots, 7$ y $j = 1, \ldots, 6$, respectivamente. Después se calculan las sumas de cuadrados, estas últimas reportadas en el cuadro 2.5. Finalmente se calculan los estadísticos de prueba

$$F_{I+R} = \frac{S_{I+R}/(I-1)(J-1)}{S_0/(IJ-1)} = 0.589$$
(2.73)

$$F_T = \frac{S_T/(I-1)}{S_0/(IJ-1)} = 0.112$$
(2.74)

Se calcula el p-valor de los estadísticos de prueba comparándolos con las distribuciones de los estadísticos: F de Fisher con (6,34) y (30,34) grados de libertad, respectivamente. Como se mencionó, la decisión de la prueba de PSR en base a los

Efecto		GL	Total	Promedio	F	p	1 - p
S_T	Tiempo	6	73.834	12.306	0.589	0.26290	0.73710
S_F	Frecuencia	5	565.891	113.178	5.420	0.99935	0.00065
S_{I+R}	Interacción	30	70.247	2.342	0.112	0.00000	1.00000
S_0	Total	34	709.972	20.882			

Cuadro 2.5: ANOVA de la prueba PSR para el primer ejemplo

GL = Grados de libertad

p-valores es *opuesta* a los ANOVA usuales: como hay suficiente información para afirmar que $F_{I+R} \neq 0$, entonces se acepta que el proceso es no-estacionario. Cabe recalcar que la decisión sobre estacionariedad se hace aún sin consultar a F_T .

Para el análisis anterior se usó una cantidad muy baja de puntos con el fin de ilustrar claramente cómo son procesados estos datos. Una versión más realista requiere usar la mayor cantidad de puntos posibles en el tiempo y las frecuencias, pero que sean tales que se cumplan las aproximaciones usadas; en principio no existen criterios para hallar estos parámetros de forma óptima, al menos no si las propiedades de los datos son desconocidas.

En la implementación del comando **stationarity** se sugiere que el número de bloques sea $\lfloor \log_2(N) \rfloor$, con N el número total de puntos considerados y $\lfloor \bullet \rfloor$ la función parte entera, y $\Delta_{\omega} = 6$.

Segundo ejemplo

Como segundo ejemplo se usa un fragmento arbitrario de registro de PSG; en particular se ha usado una época³ de 30 segundos de duración, correspondiente a la derivación Fp2 registrada en el participante MHJ durante sueño MOR; en la sección 3.2.1 se explica a detalle el significado de estos términos. El registro fue efectuado usando una frecuencia de muestreo de 512 Hz ($\Delta_X = 1/512$), de modo que se contemplan 15,360 puntos; éstos mismos puntos son graficados en la figura 2.3.

Cabe destacar que este fragmento de registro no fue elegido para representar alguna característica en particular sino, más bien, el comportamiento general de los registros de PSG durante sueño MOR.

 $^{^{3}}$ La palabra 'época' es usada como sinónimo de 'fragmento de registro' por concordancia con la literatura sobre registros electrofisiológicos.

Figura 2.2: Ilustración de algunos pasos en el cálculo del estimador Y sobre la malla de puntos $\{t_1, t_2, \ldots, t_I\} \times \{\omega_1, \omega_2, \ldots, \omega_J\}$. **A.** Realización del proceso estocástico $\{Z(t)\}_{t \in \mathbb{R}}$, fragmentada en bloques de longitud Δ_t . Los puntos en el *i*-ésimo bloque son usados para calcular $Y_{i,j}$ en los puntos $\omega_1, \omega_2, \ldots, \omega_J$. **B.** Estimador Y, calculado para los bloques definidos anteriormente. Por fines expositivos se grafica a $Y(t_i, \bullet)$ para diferentes valores de ω , y posteriormente se marcan con puntos los valores correspondientes a la malla.

Figura 2.3: Fragmento de registro de PSG, usado para ejemplificar el procedimiento de la prueba de PSR. El fragmento, referido como época, corresponde a 30 segundos registradas con una frecuencia de muestreo de 512 Hz; posteriormente fue reindexado.

El estimador Y es calculado de la misma forma que en el ejemplo anterior; en esta ocasión simplemente se reportan los resultados en las tablas 2.6 y 2.7. Para estos datos se calcula que $\hat{\mu} = -9.265$; aunque este dato no se reporta en las tablas, efectivamente es importante.

Tras revisar los estadísticos de prueba se decide, como se esperaba intuitivamente, que el fragmento de registro es no-estacionario.

	Frecuencia ω_i						
	j = 1	j = 2	j = 3	j = 4	j = 5	j = 6	$\widehat{\alpha}_i$
i = 1	-0.858	-9.903	-11.987	-12.942	-11.632	-11.962	-0.616
i = 2	1.709	-10.475	-11.567	-12.401	-12.267	-13.068	-0.413
i = 3	3.701	-8.860	-9.321	-10.844	-11.392	-12.501	1.062
i = 4	3.236	-9.175	-10.387	-12.345	-14.106	-12.106	0.118
i = 5	1.474	-10.461	-11.116	-12.332	-12.835	-13.399	-0.513
i = 6	1.442	-9.301	-10.257	-10.947	-12.500	-11.852	0.362
\widehat{eta}_j	11.049	-0.431	-1.508	-2.704	-3.190	-3.216	

Cuadro 2.6: Promedios del estimador Y para el segundo ejemplo

Efecto)	GL	Total	Promedio	F	p	1-p
S_T	Tiempo	5	12.520	2.504	0.093	0.00721	0.99279
S_F	Frecuencia	5	914.235	182.847	6.774	0.99984	0.00016
S_{I+R}	Interacción	25	17.998	0.720	0.027	0.00000	1.00000
S_0	Total	35	944.753	26.993			

Cuadro 2.7: ANOVA de la prueba PSR para el segundo ejemplo

GL = Grados de libertad

2.5. Estacionariedad local

Conviene destacar que el objetivo central del presente trabajo es utilizar las herramientas descritas anteriormente (en especial la prueba de PSR) sobre registros de PSG en adultos mayores. Para que los análisis sean significativos, desde el punto de vista fisiológico, deben resaltarse algunos *comportamientos* esperados; en otras palabras, algunas propiedades de estas señales se deben considerar conocidas a priori, con base a lo que se ha reportado en la literatura. De forma particular, se ha propuesto que el cerebro es un mecanismo con una gran *complejidad* asociada [66].

Bajo este contexto se entiende a la complejidad como la presencia de características propias de un conjunto de elementos, que inducen estados independientes de los elementos individuales, pero que dependen *críticamente* de parámetros macroscópicos. Un ejemplo sencillo es la solidificación del agua, que depende principalmente de la temperatura y permite múltiples estados de equilibrio macroscópicos (la forma del hielo) que no están determinados por las partículas de agua; cerca de la temperatura de congelamiento el agua pasa de líquido a sólido, sin permitir estados intermedios.

La complejidad del cerebro se deduce de la existencia de múltiples niveles de organización, que corresponden a comportamientos cualitativamente diferentes –los cuales deben ser modelado usando herramientas que respeten tales diferencias. Como ejemplo pueden mencionarse los campos eléctricos inducidos por neuronas individuales y por grandes conjuntos de neuronas; estos dos fenómenos están estrechamente relacionados de manera intuitiva, pero cualitativamente son abismalmente diferentes. En el libro *"Mathematical Foundations of Neuroscience"*, por G. Bard Ermentrout [15], se describe a detalle cómo los potenciales para neuronas pueden modelarse satisfactoriamente mediante el sistema de ecuaciones diferenciales de Hodgkin–Huxley; en contraparte, los *potenciales de campo* responden mejor al sistema de ecuaciones diferenciales estocásticas Wilson-Cowan.

Para el caso muy concreto del EEG, se ha propuesto la complejidad de la actividad eléctrica cerebral se traduce en la orquestación de múltiples estados de actividad a lo largo del tiempo [23]. En otras palabras, el EEG es una señal compleja que está formada por una gran variedad de fragmentos *simples*; en concreto, se espera que estos fragmentos sean débilmente estacionarios. Concordando con la definición formal hecha sobre el tema por Rainer Dahlhaus [12], este fenómeno será referido como <u>estacionariedad local</u>.

Bajo el supuesto de la estacionariedad local el EEG es un fenómeno globalmente heterogéneo pero localmente homogéneo; en consecuencia el EEG es globalmente no-estacionario, pero es posible segmentarlo en fragmentos que son débilmente estacionarios. Dentro de esta línea de pensamiento se espera que los fragmentos de EEG débilmente estacionarios –o que clasifiquen como estacionarios según la prueba de PSR, en concreto– se *agrupen* replicando algún nivel de organización.

De manera pragmática y de acuerdo a los protocolos (ver más adelante), los registros de PSG son segmentados en ventanas sin traslape con una duración fija decidida a priori. Así entonces, se espera que el efecto de la estacionariedad local se más notorio al cambiar el tamaño de tales segmentos; este procedimiento se ilustra en la figura 2.4, así como el efecto esperado sobre la clasificación de estacionariedad.

Cabe destacar que bajo este supuesto, surge la pregunta sobre hasta qué punto es posible es posible modelar efectivamente al EEG como señales aleatorias con propiedades *simples*. En varios trabajos pioneros [8, 25, 34, 62] se demuestra experimentalmente que el EEG puede considerarse estacionario si se usan segmentos de hasta 20 segundos, e incluso se sugiere que esta cantidad puede cambiar para personas con daños neuronales. Esta pregunta es explorada en el presente trabajo repitiendo la prueba de PSR para diferentes tamaños de ventana. Es importante considerar, debido a la –posible– variabilidad en el tiempo, el efecto de tomar una cantidad menor de puntos es cualitativamente diferente al efecto de, por ejemplo, considerar una frecuencia de muestreo menor.

Por ejemplo, considérese al primer ejemplo de la sección anterior, el proceso $\{Z(t)\}$, que es aproximadamente un proceso ruido blanco para $t \ll 0$ y aproximadamente un proceso medias móviles para $t \gg 0$; este proceso es localmente estacionario por diseño. En la figura 2.5 se efectúa esta clasificación repetida para diversos tamaños de ventana, revelando que los fragmentos pequeños son clasificados como esta-

Figura 2.4: Efecto esperado del tamaño de ventana sobre la clasificación de estacionariedad, bajo el supuesto de estacionariedad local. Suponiendo que la señal es heterogénea, pero que está *compuesta* por múltimples fragmentos homogéneo de duración corta, entonces al disminuir el tamaño de ventana se espera *hallar* con mayor frecuencia estos fragmentos homogéneos. Adaptado de [51].

Figura 2.5: Ejemplo de cambios en la clasificación de estacionariedad débil, según la prueba de PSR, usando diferentes tamaños de ventana y un proceso localmente estacionario. En la parte superior se muestra a la señal usada ejemplo, una realización para un proceso estocástico localmente estacionario cuyas propiedades se describen en el texto. En la parte inferior se muestran las ventanas usadas para segmentar la señal, las cuales fueron coloreadas según si dicho fragmento de señal fue clasificado como estacionario. Puede notarse cómo la señal es efectivamente estacionaria, pero algunos fragmentos pequeños son clasificados como estacionarios.

cionarios. Este efecto era de esperarse por la descripción de estacionariedad local: un fenómeno que es globalmente heterogéneo pero que está *compuesto* por fragmentos homogéneos.

Posteriormente se replica este análisis para los registros de PSG en el total de su duración. Los tamaños de ventana se tomaron de la forma 30×2^n segundos, por compatibilidad con las ventanas de 30 segundos (recomendación protocolaria de la AASM); para más detalles sobre el procedimiento, ver la sección 4.4. Conviene mencionar que esta metodología es similar a aquella usada por McEwen en 1975 [34].

capítulo 3

Deterioro cognitivo y sueño

En este capítulo se exponen varios temas para poder entender adecuadamente al sujeto de estudio (registros de PSG en adultos mayores), así como el contexto y la motivación para su estudio (el Posible Deterioro Cognitivo Leve, PDCL, en adultos mayores). Se responden, de manera muy breve, las siguientes preguntas:

- ¿Qué es el Deterioro Cognitivo Leve y cómo se diagnostica?
- Clínicamente, ¿qué es el sueño y cómo se estudia?
- ¿Cómo se relacionan el Deterioro Cognitivo Leve y el sueño?

Para simplificar la exposición, se considera a la Electroencefalografía como a la técnica principal para el estudio de la actividad cerebral; con la misma intención, se describe primero al sueño (desde el punto de vista clínico) y posteriormente su posible utilidad como marcador para el DCL.

El lector interesado en una exposición amplia sobre técnicas para el estudio del cerebro, puede referirse al libro "Medical Instrumentation. Applications and Design" por John Webster [65]; en contraparte, para obtener más información sobre el EEG es recomendable el libro "Electroencephalography: Basic Principles, Clinical Applications, and Related Fields" por Ernst Niedermeyer [36]. Para indagar más sobre las pruebas neuropsicológicas y su uso diagnóstico, se recomienda el libro "Guía para el

diagnóstico neuropsicológico" por Ardila y Ostrosky [2]. Si se desean revisar a detalle los protocolos para registrar la PSG, o aquellos para clasificar las etapas de sueño, debe consultarse el Manual de la AASM [17]. Para aprender más sobre el sueño, así como los procesos fisiológicos y psicológicos asociados, puede consultarse el libro "Psicofisiología del sueño" de Corsi-Cabrera [10].

3.1. Deterioro Cognitivo Leve

El envejecimiento es determinado por una serie de procesos moleculares, celulares, fisiológicos y psicológicos que conducen directamente al deterioro de funciones cognitivas, específicamente atención y memoria [40]. Como consecuencia, los **adultos mayores** son especialmente propensos al deterioro cognitivo; por precisión, en lo siguiente se usará el término *adulto mayor* para referirse a individuos con 60 o más de edad años. Cabe destacar que la funcionalidad del adulto mayor no depende meramente de la edad, sino que está relacionada con el estilo de vida, los factores de riesgo, el acceso a la educación y las acciones para el cuidado de la salud realizadas en edades más tempranas [54].

La **demencia**, considerada como el estado más grave del deterioro cognitivo, es definida en el Manual Diagnóstico y Estadístico de Trastornos Mentales (DSM-V, por sus siglas en inglés y la versión consultada) como sigue:

"Un síndrome que consiste en el desarrollo de déficits cognoscitivos suficientemente graves como para interferir significativamente en las actividades laborales y sociales, respecto al nivel de actividad previo. Los sujetos con demencia tienen una baja capacidad para aprender información nueva y suelen olvidar lo aprendido anteriormente, siendo éste el síntoma más prominente." [32]

Hasta el momento se considera que la demencia es irreversible, y no se han identificado curas [20]. Debido a ello, ha surgido un gran interés en definir y diagnosticar sus etapas tempranas. El diagnóstico temprano es importante para un tratamiento adecuado que revierta o desacelere el avance de este síndrome [28].

Bajo esta línea de pensamiento se considera al **Deterioro Cognitivo Leve** (DCL) como una etapa precursora de la demencia, y que es definida como sigue:
"Una alteración adquirida y prolongada de una o varias funciones cognitivas, que no corresponde a un síndrome focal y no cumple criterios suficientes de gravedad para ser calificada como demencia." [49]

Para fines de la definición anterior, se entiende por *síndrome focal* al daño en una estructura nerviosa específica, cuya causa es conocida (como una hemorragia o una embolia) y cuyo inicio sea inmediato y evidente.

El DCL puede detectarse por medio de diversos métodos, que pueden ser complementarios entre sí. La forma de detección más simple es la percepción de fallas en la memoria por parte del individuo o de otro. La percepción subjetiva del deterioro cognitivo *esperado* por el envejecimiento provoca que esta forma de detección sea poco fiable. Una alternativa más formal consiste en la entrevista clínica de un especialista, la aplicación de cuestionarios sobre dificultades en la memoria, o incluso el uso de pruebas neuropsicológicas.

En psicología, los instrumentos de medición comunes son las **pruebas neuropsicológicas**, entendidas como muestras de alguna conducta de interés a las que se asignan puntajes para comparar cuantitativamente a los sujetos [2]. Se considera que a través de estas herramientas es posible declarar objetivamente las deficiencias cognitivas o conductuales de los individuos, así como su severidad y características.

De forma auxiliar para el diagnóstico del DCL, se pueden efectuar análisis genéticos, químicos, de imágenes cerebral, entre otros que estudien el sistema nervioso central. Se espera que dichas técnicas, en combinación con las pruebas neuropsicológicas, permitan diagnosticar más acertadamente el DCL y desentrañar los fenómenos neurobiológicos subyacentes.

Un referente ampliamente usado para el diagnóstico del DCL son los criterios para Alzheimer de la NINCDS–ADRDA, propuestos por el *National Institute of Neurological and Communicative Disorders and Stroke* y la *Alzheimer's Disease and Related Disorders Association* [14]. Dichos criterios proporcionan protocolos para diagnosticar el Alzheimer y algunas enfermedades relacionadas (entre ellas el DCL), así como afecciones que generan síntomas similares. Desafortunadamente, las pruebas neuropsicológicas contempladas por los criterios de la NINCDS–ADRDA todavía no han sido validadas en México, es decir que su efectividad para generar diagnósticos acertados no ha sido verificada para la población mexicana.

Otra prueba neuropsicológica ampliamente extendida es el Mini-Mental State Examination (MMSE), propuesta por Folstein en 1975 [16]. Sin embargo se ha reportado que, en la población mexicana, la prueba MMSE tiene baja sensibilidad para el diagnóstico de DCL en general, y baja especificidad para individuos con escolaridad muy baja o muy alta [39]. Para fines del comentario anterior, se entiende por *sensibilidad* a la probabilidad de obtener verdaderos positivos, y por *especificidad* a la probabilidad de obtener verdaderos negativos.

Una tercera opción, a la cual se ha dado gran peso en el presente trabajo, es la prueba neuropsicológica Neuropsi, desarrollada por Ostrosky y colaboradores en la Universidad Autónoma de México (UNAM) [37]. La prueba Neuropsi ha sido validada para diversos grupos poblacionales en México, y se ha confirmado su utilidad para distinguir individuos con diverso grado de deterioro cognitivo.

En el contexto de la detección del DCL, es muy importante realizar un diagnóstico diferencial con respecto a la **pseudodemencia depresiva**, una afección que puede confundirse con el deterioro cognitivo. De acuerdo al manual DSM-V, pseudodemencia depresiva se define como *"un trastorno del afecto y que produce un aparente deterioro cognitivo"* [32]. Bajo esta línea de pensamiento resulta conveniente decir que, como parte del diseño experimental, se han omitido participantes con síndromes focales, retraso mental, bipolaridad, esquizofrenia, entre otros trastornos de atención y memoria ajenos al deterioro cognitivo. Con base a lo anterior, se omite una discusión más extensa de dicho tipo de afecciones; el lector interesado puede referirse al Manual DSM-V [32].

3.1.1. Probable Deterioro Cognitivo Leve

En el presente trabajo se delimita al DCL por fines de precisión, usando para ello las pruebas neuropsicológicas. Se define operativamente al **Posible Deterioro Cognitivo Leve** (PDCL) como sigue:

"Una disminución significativa de las funciones cognitivas del sujeto con respecto las típicas de su edad y nivel de educación."

Para fines de la definición anterior, el desempeño de las funciones cognoscitivas en un individuo es medido usando la prueba Neuropsi [37]; se considera que hay un déficit cognoscitivo *significativo* si la puntuación obtenida es menor al umbral predefinido para su grupo de edad y nivel de escolaridad. El umbral recomendado para la prueba Neuropsi debe calcularse como la media menos 3 desviaciones estándar de los puntajes típicos para individuos de cada grupo de edad y nivel de escolaridad; estos parámetros fueron estimados para la población mexicana por Ostrosky-Solís y colaboradores [37]. En el cuadro B.3, bajo la etiqueta *Deterioro cognitivo* se recaban los *puntajes de corte* usados para declarar el PDCL.

La palabra 'probable' en el PDCL hace alusión a que no constituye un diagnóstico *irrefutable* del DCL. En este sentido, el PDCL puede interpretarse como una condición *necesaria pero no suficiente* para el DCL.

3.1.2. Pruebas neuropsicológicas utilizadas

Dentro del contexto del presente trabajo, conviene describir las pruebas que fueron usadas para detectar el PDCL en adultos mayores. Según la descripción que se dio del DCL, para efectuar su diagnóstico debe verificarse que el individuo cumpla las siguientes características:

- 1. Que presente un déficit en una o varias funciones cognitivas, pero que éste no cumpla los criterios suficientes para demencia.
- 2. Que los déficits cognoscitivos detectados no correspondan a síndromes focales,
- 3. Que el individuo no presente una afección que, sin estar relacionada con el deterioro cognitivo, genere síntomas similares.

Para explorar y en su caso excluir a los sujetos de la investigación, las condiciones 2 y 3 fueron investigadas mediante entrevistas con los participantes y con los resultados de las pruebas que se mencionarán a continuación.

- Short Anxiety Screening Test (SAST)
 Evaluación corta para detectar trastornos depresivos y ansiosos. [59]
- Geriatric Depression Scale (GDS)
 Evaluación corta para detectar cuadros depresivos en adultos mayores. [68]
- Mini–Mental State Examination (MMSE)
 Evaluación escrita relativamente rápida. Permite detectar el deterioro cognitivo, pero no proporciona *muchos* detalles al respecto [16].
- Evaluación Neuropsicológica (Neuropsi)
 Evaluación extensiva sobre múltiples dominios. [38]

Escala sobre las actividades cotidianas de la vida diaria (KATZ)
 Evaluación de la independencia del individuo para realizar tareas básicas de la vida diaria. [24]

3.2. Estudio clínico del sueño

El sueño en el ser humano se considera como un estado de actividad, con propiedades características, y que influye de manera importante en la vigilia. De manera operativa, puede caracterizarse según la siguientes propiedades:

- 1. Disminución de conciencia y reactividad a estímulos externos.
- 2. Fácilmente reversible, a diferencia de estados patológicos como estupor y coma.
- 3. Inmovilidad y relajación muscular.
- 4. Periodicidad típica circadiana (diaria).
- 5. Los individuos adquieren una postura estereotipada.
- 6. La privación induce alteraciones conductuales y fisiológicas, las cuales se *acumulan* en tanto persista la privación de sueño.

La duración del sueño es determinada en gran parte por la edad; el recién nacido duerme entre 14 y 18 horas, el lactante entre 12 y 14 horas, el niño en etapa escolar entre 11 y 12 horas y en la edad adulta, la mayoría duerme entre 7 y 8 horas.

En 1953 Asierinsky y Kleitman reportaron que existen patrones de actividad cerebral marcadamente diferentes durante el sueño, para lo cual usaron la técnica de electroencefalografía (EEG). Con base a dichos estudios, el sueño se divide tradicionalmente en las etapas N y R, también referidas como NMOR y MOR; dichas etapas se distinguen en cuanto cómo se ve el EEG registrado en dichas etapas, así como los procesos fisiológicos que se llevan a cabo en el cerebro. Por simplicidad expositiva, se describen primeramente las características de las fases de sueño según criterios del EEG, y posteriormente se describe la técnica del EEG y sus protocolos. Las características descritas corresponden, a los criterios establecidos por la *American Society* of Sleep Medicine (AASM) [17]; en el cuadro 3.1 puede encontrarse una exposición más concreta y apegada al Manual de la AASM.

Etapa de sueño		Características del EEG	Movimientos oculares	Tono muscular	
W	Vigilia	Ritmo alfa en $> 50 \%$ de la época en la región occipital	No	Alto	
N1	NMOR 1	Cambio de alfa por AABFM, atenuación del ritmo dominante. Ondas agudas	Lentos	< W	
N2	NMOR 2	Husos de sueño y complejos K en la primera mitad de la época. AABFM	No	<W, $>$ R	
N3	NMOR 3	Ondas lentas $(0.5-2 \text{ Hz}, > 75 \mu\text{V})$ en $> 20\%$ de la época. Husos de sueño	No	$<$ N2, \approx R	
R	MOR	Actividad baja amplitud y frecuencias mixtas. Ondas agudas	Rápidos	Bajo	

Cuadro 3.1: Criterios para la clasificación de etapas de sueño según la AASM

AABFM=Actividad de Amplitud Baja y Frecuencias Mixtas.

Durante la **fase R** el tono muscular disminuye, excepto para los músculos respiratorios y los esfínteres; por *tono muscular* se entiende a la contracción pasiva de los músculos durante el reposo, la cual permite una respuesta voluntaria rápida. En esta fase de sueño las frecuencias cardíaca y respiratoria se vuelven irregulares. El individuo exhibe Movimientos Oculares Rápidos (MOR), razón por la cual la fase R es conocida como **sueño MOR**. En el EEG, aparecen ondas rápidas de bajo voltaje, irregulares, y que recuerdan la actividad durante al estado de alerta. Estos patrones de actividad cerebral no interrumpen el sueño sino que incrementan el umbral para estímulos externos (qué tan fuerte debe ser un estímulo para afectar al individuo), motivo por el cual esta fase también es referida como **sueño paradójico**. Cabe mencionar que durante la fase R se produce la mayoría de las ensoñaciones (referidas coloquialmente como *sueños*), y que la mayoría de los pacientes que despiertan durante esta fase suelen recordar vívidamente el contenido de sus ensoñaciones [50].

La fase N, se caracteriza por movimientos oculares lentos, tono muscular que decrece constantemente, actividad cerebral que recuerda al reposo, y la presencia de husos de sueño y complejos K. Con base en la mayor o menor presencia de estas características, se definen las sub-fases N1, N2, N3. Tradicionalmente se le refiere como **sueño no-MOR** (o NMOR).

3.2.1. Electroencefalografía

La técnica de electroencefalografía consiste en medir la actividad postsináptica (transmisión de impulsos) entre neuronas en la corteza cerebral, lo cual se logra mediante electrodos colocados en el cuero cabelludo. La corteza cerebral es la capa más exterior del cerebro, y está formada por una fina capa de neuronas piramidales (denominadas así por su forma) altamente conectadas entre sí. Típicamente se asocia a la corteza cerebral con las funciones cognitivas superiores [36]. Conviene enfatizar que el término EEG usualmente se usa para referirse a registros hechos mientras el paciente realiza alguna actividad o se encuentra despierto y en reposo; el registro del EEG durante el sueño, adicional al registro de otras señales, es referido como polisomnografía.

Usualmente los registros de EEG muestran una actividad oscilatoria continua y cambiante, su frecuencia se considera entre 0.5 y 100 Hz. Su composición está fuertemente relacionada con el grado de actividad mental, mostrando diferencias claras durante vigilia y sueño, o durante quietud y concentración. Aunque el EEG es irregular la mayor parte del tiempo, suele mostrar patrones relativamente organizados, conocidos como **ondas cerebrales**; de forma tradicional, éstos se dividen en cinco grupos (referidos como **bandas**) según su*frecuencia*:

- Delta, 0.5–3.5 Hz
- Theta, 3.5–7 Hz
- Alfa, 7–12 Hz
- Beta, 12–30 Hz
- Gamma, 30–100 Hz

Conviene destacar que diferentes autores han usado límites ligeramente diferentes para las bandas; de la misma forma algunos autores han incluido o excluido bandas, así como subdivisiones de éstas.

Adicionalmente a las ondas cerebrales, en el EEG pueden encontrarse *eventos* visiblemente diferentes de su entorno, con una duración corta (< 1 s) y formas características. Dos ejemplos importantes son los **husos de sueño** y los **complejos K**, definidos de manera visual y por su contexto fisiológico [17]; ambos tipos de ondas

son típicas de la etapa N2 y son usadas para distinguirlo, aunque no se consideran ritmos ni pertenecen a las *bandas* descritas anteriormente. En la figura 3.1 se representa un arquetipo visual de cada una de las etapas, incluyendo los husos de sueño y complejos K.

Para realizar el registro del EEG en una forma estandarizada y comparable, deben indicarse los lugares donde se colocan los electrodos y la forma en que éstos están conectados. En el contexto del presente trabajo, los electrodos fueron ubicados usado las coordenadas del **Sistema 10–20** [27]. En dicho sistema los sitios se ubican en una *cuadrícula* de distancias relativas (medidas en porcentajes), construida respecto a varios puntos del cráneo cuyas posiciones son aproximadamente *constantes* entre individuos:

- El *inion*, un abultamiento en la región posterior del cráneo.
- El nasión, la unión del hueso frontal y los huesos nasales del cráneo.
- El punto preauricular, arriba del cartílago tragus que protege el canal auditivo.

Aunque es perfectamente posible describir textualmente la construcción de las coordenadas en el sistema 10–20, se consideró que es más sencillo mostrarlos gráficamente en la figura 3.2. En la misma imagen se muestran, de forma esquemática, los lóbulos de la corteza cerebral que dan nombre a las locaciones en el sistema: <u>Frontopolar</u>, <u>Frontal</u>, <u>Temporal</u>, <u>Parietal</u>, <u>O</u>ccipital. Si bien no existe un lóbulo central, los electrodos 'C' se suelen asociar al surco central; de forma similar, los electrodos 'A' corresponden a los lóbulos auriculares (de las orejas), los cuales no presentan una actividad eléctrica importante y son usados como referencia neutra. Los electrodos se etiquetan con números pares en el lado izquierdo, números pares en el derecho y 'Z' o punto 'zero' en el eje central.

Para hablar sobre la forma en que se conectan lo electrodos entre sí, se denota a un par de electrodos como una **derivación** (también referida como *canal*), mientras que el conjunto de derivaciones es un **montaje**. En el contexto del presente trabajo se utilizó un montaje *monopolar* (o también llamado *referencial*) en cual se forman las derivaciones conectando en paralelo a cada electrodo con sus respectivos electrodos auriculares cortocircuitados y se usó como tierra a un electrodo colocado en la parte frontal media.

Figura 3.1: Ejemplos arquetípicos de ondas cerebrales encontradas en registros de EEG durante el sueño. Imagen tomada del libro "*Biological psychology: An introduction to behavioral, cognitive, and clinical neuroscience*" por Rosenzweig y colaboradores [53].

Figura 3.2: Colocación de electrodos según el sistema 10–20. **A.** Los electrodos se colocan en una malla de longitudes relativas (medidas en porcentajes) respecto a tres puntos de referencia: inion, nasion, punto preauricular. **B.** División de la corteza cerebral en lóbulos, mostrando a grosso modo qué regiones son registradas usando el EEG. Los electrodos del sistema son referidos según los lóbulos cerebrales que *representan*: <u>F</u>rontal, <u>F</u>rontopolar, <u>T</u>emporal, <u>P</u>arietal, <u>O</u>ccipital. Adicionalmente se registra cerca del surco <u>C</u>entral, y los lóbulos <u>A</u>uriculares; estos últimos son usados como puntos con actividad eléctrica negligible.

3.2. ESTUDIO CLÍNICO DEL SUEÑO

Es importante mencionar que las neuronas en la corteza cerebral tienen orientaciones muy diversas y que disparan de manera asíncrona, de modo que un periodo de gran actividad cerebral bien puede ser visto en el EEG como una actividad desorganizada y de baja amplitud. En otra perspectiva, el cerebro se encuentra cubierto por las capas meninges, por el líquido encefalorraquídeo, el cráneo y el cuero cabelludo; en suma, los campos eléctricos generados en la corteza cerebral son *víctimas* de una gran difusión espacial. Es por ello que las señales captadas por los electrodos deben ser amplificadas analógicamente antes de ser registradas digitalmente.

Un efecto colateral de amplificar la señal es la inclusión de **ruido**, entendiendo con ello a las señales que son registradas de manera no deseada. Por ejemplo, los músculos faciales generan campos eléctricos con una frecuencia aproximada de 100 Hz; este tipo de ruidos *persistentes* (referido como *ruido de fondo*) son eliminados usando filtros de banda. En contraparte, los ruidos esporádicos de corta duración, típicamente son señalados *a mano* y provocan que el segmento de registro sea invalidado; por ejemplo, el deslizamiento de un electrodo sobre el cuero cabelludo.

Como comentario, cabe mencionar que el término EEG suele usarse independientemente de la cantidad y posición de electrodos usados para el registro: se pueden usar sólo algunas derivaciones del sistema 10–20, se pueden hacer cambios como el uso de la nariz como referencia neutral, o se pueden añadir más electrodos como en el sistema 10–10 [27].

3.2.2. Polisomnografía

La técnica de PSG consiste en el registro simultáneo durante el sueño de múltiples variables *variables fisiológicas* como respiración, ritmo cardíaco, temperatura, entre otros. La decisión sobre las señales que componen la PSG depende del problema específico que será estudiado. Para ayudar en la clasificación de etapas de sueño, en el contexto del presente trabajo se usó una PSG con registros de actividad ocular, tono muscular y actividad cerebral (EEG).

La actividad ocular es registrada usando la electrooculografía (EOG), una técnica que explota el comportamiento del ojo como un dipolo cuyos polos son la retina y la pupila; los movimientos del ojo inducen variaciones en el campo eléctricos generados por los electrodos de registro. El registro del EOG incluye una derivación para cada ojo, LOG y ROG, conectado con el electrodo auricular cortocircuitado. Así como

3.2. ESTUDIO CLÍNICO DEL SUEÑO

Figura 3.3: Colocación de electrodos para el registro de electrooculografía en ambos ojos (LOG, ROG) y electromiografía (EMG). Las líneas punteadas son paralelas al eje medial, y las líneas discontinuas son perpendiculares al mismo. La línea de referencia para EMG inicia en el punto medial en la barbilla.

con el EEG, la ubicación de los electrodos para EOG se indica en la figura 3.3. Cabe mencionar que el registro de EOG debe ser interpretado como el movimiento del ojo, proyectado sobre el eje formado por los electrodos de registro.

El tono muscular es vigilado usando la técnica de electromiografía (EMG), la cual observa la actividad eléctrica producida por las fibras musculares. Su registro contempla una derivación (EMG) con tres electrodos que actúan eléctricamente como tierra, fase y neutro; la ubicación de estos electrodos se indica en la figura 3.3. De forma parecida a esta figura, aunque en los músculos del mentón, en el presente trabajo se colocaron dos electrodos referenciados bipolarmente. En el contexto del presente trabajo, se espera observar la *casi desaparición* del tono muscular para la detección del sueño MOR.

A modo de comentario, en la figura 3.4 se muestra parte de un registro de PSG durante sueño MOR exhibiendo las características descritas previamente.

Figura 3.4: Registro de PSG durante sueño MOR. En el margen izquierdo se indica la derivación representada; aunque la mayoría corresponden al EEG, en la porción inferior se contempla al EOG y EMG. Marca de calibración: vertical, 10 μ V, horizontal, 1 segundo.

3.3. Relación entre deterioro cognitivo y sueño

Durante el envejecimiento ocurren diversos cambios fisiológicos y psicológicos que conllevan a modificaciones en el estilo de vida, y particularmente en la rutina de sueño. Hay una vasta cantidad de estudios que han explorado la posible relación entre trastornos del sueño y marcadores *biológicos* de daño neuronal (como la presencia de proteína β -amiloide, marcador de la enfermedad de Alzheimer) o marcadores de actividad cerebral anómala; la tendencia es considerar que los trastornos del sueño contribuyen en el proceso de deterioro cognitivo, o bien que pueden predecirlo con cierto grado de exactitud [41].

En adultos mayores con DCL durante el sueño MOR se ha reportado una mayor potencia absoluta y relativa en frecuencias lentas para regiones frontales laterales [6] y una menor atonía muscular [7], respecto a individuos sanos.

Estos resultados concuerdan con el argumento de que tradicionalmente se considera que el sueño MOR desempeña un papel importante en la cognición, particularmente en la consolidación de la memoria [10]. Se sabe que los periodos de aprendizaje inducen una mayor duración del sueño MOR y densidad de movimientos oculares rápidos, y también que la privación del sueño MOR se asocia con deficiencias en tareas de memoria [60, 61].

Se ha propuesto que el mecanismo neurológico asociado a la consolidación de la memoria no es exclusivo del sueño MOR, sino que el conjunto de procesos involucrados se *distribuyen* durante las diferentes etapas del sueño; la porción del proceso ocurrida en sueño MOR corresponde a la *asimilación* de información [13].

Anatómicamente, la consolidación de la memoria está relacionada con el sistema colinérgico¹ en la parte anterior del cerebro [5]. Esto es destacable ya que los circuitos colinérgicos son particularmente vulnerables a degradación estructural durante el envejecimiento y sobre todo en presencia de patologías [55].

Por lo tanto, se esperarían diferencias en el grado de estacionariedad entre el sueño MOR y el NMOR, si se sabe que el sueño MOR presenta los característicos movimientos oculares rápidos en contraste con el sueño NMOR en derivaciones relacionadas a los ojos. Además, se exploraron posibles marcadores entre el grupo con PDCL versus el grupo sin PDCL, considerando lo que se mencionó sobre una lentificación de la actividad eléctrica durante el sueño MOR en regiones frontales en los sujetos con PDCL [6], ya que, hasta donde se sabe, no se han buscado marcadores como los que se presentan aquí.

¹Circuitos neuronales que usan la acetilcolina como neurotransmisor principal.

Esta página se dejó intencionalmente en blanco.

capítulo 4

Metodología y resultados

El presente trabajo surge a partir de una colaboración con el Laboratorio de Sueño, Emoción y Cognición, a cargo de la Dra. Alejandra Rosales Lagarde y dependiente del Instituto de Ciencias de la Salud en la UAEH. Esta colaboración permitió el acceso a registros obtenidos en un estudio realizado por la Dra. Rosales Lagarde y la Mtra. Génesis del Rocío Vázquez-Tagle Gallegos entre 2014 y 2017 [64]. En dicha trabajo se estudió el DCL en adultos mayores del estado de Hidalgo, y se consideraron registros de PSG para evaluar parámetros relacionados al sueño.

En este capítulo se describe primeramente la metodología seguida para obtener los registros de PSG. Posteriormente se describe la metodología para analizar los registros de PSG, usando la prueba de Priestley-Subba Rao (PSR).

Estos últimos análisis se llevaron a cabo a tres *niveles*, considerando la segmentación de los registros de PSG en ventanas referidas como **épocas**¹:

- Dentro de cada época.
- Entre las diferentes épocas en un registro.
- Entre los diferentes participantes.

¹El término 'época' es usado, por diferentes autores, para referirse a ventas de tamaños muy diversos, usualmente arbitrarios.

El análisis a nivel de época incluye la clasificación por etapa de sueño (MOR, NMOR) y como estacionarias o no estacionarias usando la prueba de PSR. El uso de épocas como unidades de estudio se justifica por la gran heterogeneidad del sueño nocturno, sumado al *hecho* de que las etapas de sueño son comunes entre humanos; los registros de PSG en cada individuo conforman una población de épocas.

El análisis a nivel de registro surge de considerar la heterogeneidad del sueño, pero usando al registro entero como unidad de estudio. El tomar las épocas junto con su estructura temporal reveló algunos patrones interesantes de actividad.

Para el análisis entre participantes, varias de las características anteriores fueron simplificadas para intentar relacionarlas con otros factores. Debido a las características de la muestra, los resultados obtenidos no pueden extrapolarse directamente a la población en general sino que se presentan como *indicios*.

Bajo el supuesto de estacionariedad local es, en principio, posible que la estimación de varias características se vea afectada por el tamaño de ventana utilizado. Con base en ello, los tres tipos de análisis fueron repetidos usando la clasificación de estacionariedad obtenida para diferentes tamaños de ventana. Para mayor información sobre el efecto esperado por la estacionariedad local, ver sección 2.5.

4.1. Características de los participantes

Los participantes fueron elegidos usando un muestreo *no probabilístico por conveniencia* bajo los siguientes criterios de inclusión:

- Edad entre 60 y 85 años.
- Diestros (mano derecha dominante).
- Sin ansiedad, depresión ni síndromes focales.
- No usar medicamentos o sustancias para dormir.
- Firma de consentimiento informado.
- Terminar el estudio de forma voluntaria en lo que corresponde a la aplicación de pruebas y el registro de la PSG.

	Sexo	Edad	Escol.	Neuropsi	MMSE	SAST	KATZ	GDS
Grupo CTRL								
MJH	MJH F 72 9		9	113	30	18	0	0
JAE	F	78	5	102	28	19	0	5
MGG	F	61	9	114	28	29	1	14
EMT	F	50	22	117	30	15	0	4
Grupo PDCL								
CLO	F	68	5	81	28	22	1	6
RLO	\mathbf{F}	63	9	90	29	20	0	3
m JGZ	Μ	65	11	87	25	20	0	1
AEFP	Μ	73	8	96	29		0	2
\mathbf{PCM}	Μ	71	9	111	28	20	0	10

Cuadro 4.1: Datos generales de los participantes

Un total de 16 adultos mayores cumplieron los criterios de inclusión. Con el fin de detectar el PDCL en los participantes, éstos fueron sometidos a una batería de pruebas neuropsicológicas para determinar su estado cognoscitivo general (Neuropsi, MMSE), detectar cambios en su vida cotidiana (KATZ) y descartar cuadros ansiosos y depresivos (SAST, GDS); para más detalles ver sección 3.1.2. En el cuadro 4.1 se reportan los puntajes obtenidos en dichas pruebas; los cuales deben ser interpretados según los *puntajes de corte* que se incluyen en el apéndice B. Se determinó que 11 de los participantes no padecen depresión o ansiedad, ni presentan afectaciones significativas en la vida diaria; el participante MGG presenta un cuadro depresivo, fue incluido en ausencia de afecciones cognitivas objetivas y porque presentó una arquitectura de sueño normal². Debido a motivos técnicos, sólo 9 participantes fueron considerados para los análisis.

Los 9 participantes fueron divididos en dos grupos, PDCL y CTRL; bajo las condiciones muestrales, el grupo CTRL no puede fungir satisfactoriamente como grupo control, sino sólo como grupo sin PDCL.

 $^{^{2}}$ Cabe señalar que los pacientes con depresión suelen tener una latencia al sueño MOR más corta y en esta paciente fue normal.

4.1.1. Registro del polisomnograma

Para efectuar el registro de la PSG, los participantes acudieron a las instalaciones del Laboratorio de Sueño, Emoción y Cognición en el ICSa. Los participantes recibieron instrucciones de realizar una rutina normal de actividades durante la semana que precedió al estudio, y se les recomendó no ingerir bebidas alcohólicas o energizantes (como café o refresco) durante las 24 horas previas al experimento, y que no durmieran siesta ese día. Bajo estas condiciones experimentales se garantiza que los registros son representativos del sueño nocturno de cada participante.

El registro per se fue efectuado usando un polisomnógrafo Medicid 5 (Neuronic Mexicana). El montaje de la PSG incluyó los siguientes electrodos³:

- 19 electrodos de EEG colocadas según el Sistema Internacional 10–20.
- 2 electrodos de EOG para movimientos oculares.
- 2 electrodos de EMG para medir el tono muscular en los músculos del mentón.

Los electrodos para EEG fueron conectados en paralelo usando como referencias los lóbulos de las orejas cortocircuitadas; la impedancia se mantuvo por debajo de $50 \mu\Omega$. Las señales fueron amplificadas analógicamente usando amplificadores de alta ganancia en cadena, y adicionalmente fueron *pasados por* filtros analógicos pasa bandas: 0.1–100 Hz para EEG, 3–20 Hz para EOG. Los registros fueron digitalizados con una frecuencia de muestreo de 512 puntos por segundo (Hz), y posteriormente almacenados en formato de texto.

Como se mencionó anteriormente, los registros fueron segmentados en 30 segundos, referidos como *épocas*. Cada una de las épocas fue clasificada como MOR o NMOR bajo los estándares de la AASM [17]; la clasificación fue llevada a cabo por dos expertos del ICSA y una neurofisióloga de la UNAM.

En la tabla 4.2 se describe la duración de los registros, así como la cantidad de tiempo del registro clasificado como sueño MOR. La cantidad de tiempo en vigilia registrado es negligible (< 5 minutos por cada participante), de modo que, con una pérdida mínima de generalidad, se puede afirmar que los registros fuera del sueño MOR corresponden a sueño NMOR.

 $^{^3\}mathrm{Para}$ más detalles ver el capítulo anterior, particularmente la sección3.2

	TTS			MOR*		
	Épocas	Min.	-	Épocas	Min.	%
Grupo CTL						
MJH	1032	516		127	63.5	12.31
JAE	904	452		171	85.5	18.92
MGG	1024	512		166	83	16.21
EMT	552	276		47	23.5	8.51
Grupo PDC						
CLO	944	472		132	66	13.98
RLO	840	420		99	49.5	11.79
JGZ	1200	600		34	17	2.83
AEFP	952	476		41	20.5	4.31
\mathbf{PCM}	752	376		59	29.5	7.85

Cuadro 4.2: Datos generales sobre los registros de PSG

*El sueño MOR aparece fragmentado, se reporta la suma de tales tiempos.

TTS= Tiempo Total de sueño. El porcentaje de sueño MOR se calcula respecto al TTS.

4.2. Características muestrales

Previo a los análisis de los registros de PSG, se corroboró si los dos grupos de participantes efectivamente se *comportan* como grupos estadísticamente diferentes, es decir, se prueban las hipótesis

$$(H_0: P(F_{i,\text{MOR}} < F_{i,\text{NMOR}}) = P(F_{i,\text{MOR}} > F_{i,\text{NMOR}})$$
$$(4.1)$$
$$(H_A: P(F_{i,\text{MOR}} < F_{i,\text{NMOR}}) \neq P(F_{i,\text{MOR}} > F_{i,\text{NMOR}})$$

donde la variable $F_{i,\bullet}$ representa las mediciones para la *i*-ésima variable. Con dicho objetivo, se aplicaron pruebas U de Wilcoxon-Mann-Whithney (WMW) para todas las variables consideradas, exceptuando al puntaje de la prueba KATZ, ya que es un parámetro cualitativo; los resultados de estas pruebas se reportan en la tabla 4.3.

Se concluye que las mediciones son parecidas en ambos grupos para todas las variables observadas, excepto para el puntaje en la prueba Neuropsi. Esto era de esperarse ya que el puntaje en Neuropsi fue usado para designar los grupos; paralelamente se sabe que la prueba MMSE no es muy sensible para el DCL [39].

	Grupo CTRL			Grupo PDCL			WMW		
	Media	DE		Media	DE		W	p	
Edad	65.3	12.4		68.0	4.1		9.0	0.905	
Escolaridad	11.3	7.4		8.4	2.2		11.5	0.797	
Neuropsi	111.5	6.6		93.0	11.4		19.0	0.032	
MMSE	29.0	1.2		27.8	1.6		14.0	0.366	
SATS	20.3	6.1		20.5	1.0		4.0	0.301	
GDS	5.8	5.9		4.4	3.6		11.0	0.905	
TTS [min]	439.0	112.5		468.8	84.2		10.0	1.000	
MOR [min]	63.9	28.7		36.5	20.8		16.0	0.190	
MOR [%]	14.0	4.5		8.2	4.8		17.0	0.111	

Cuadro 4.3: Variables independientes entre grupos

WMW=Prueba de Wilcoxon-Mann-Whitney, DE=Desviación Estándar, TTS=Tiempo Total de Sueño.

Se verificó si hay correlaciones entre las variables consideradas, lo cual podría afectar la interpretación de los resultados posteriores. En otras palabras, se probaron las hipótesis

$$\begin{aligned} H_0 : \rho(F_i, F_j) &= 0\\ H_A : \rho(F_i, F_j) &\neq 0 \end{aligned}$$

$$\tag{4.2}$$

donde ρ es el coeficiente de correlación de Spearman y F_i representa las mediciones para la *i*-ésima variable. Se aplicó la prueba de correlación de Spearman a cada par de variables, y los resultados obtenidos se reportan en el cuadro 4.4.

Sólo se encontraron correlaciones significativas entre dos pares de variables: edadescolaridad, y tiempo en MOR *medido* en segundos–(la misma cantidad) medida en *porcentaje*. La primera relación, no muy fuerte, puede explicarse como un *efecto generacional*: la educación superior ha aumentado su cobertura durante las últimas décadas, y entonces los grupos poblacionales más jóvenes tienen en promedio más años de escolaridad. Una segunda hipótesis para esta correlación es la contribución del participante EMT, quien tiene una edad menor y un nivel de educación mayor al resto de los participantes. Para contrastar la segunda hipótesis se calculó nuevamente la prueba de Spearman pero retirando los datos de EMT: se halló una correlación estimada de 0.179 con un p-valor asociado de 0.672, que no permite rechazar el que la correlación sea diferente de cero.

	Escolaridad	Neuropsi	MMSE	SAST	GDS	Sueño [min]	$MOR \; [min]$	MOR [%]
Edad	-0.699	-0.267	-0.079	-0.171	-0.233	0.200	0.183	0.100
Escol.		0.437	0.194	-0.366	-0.254	-0.044	-0.586	-0.525
Neuropsi			0.501	-0.415	0.200	-0.267	0.150	0.200
MMSE				-0.628	-0.378	-0.316	-0.070	0.018
SATS					0.610	0.317	0.293	0.195
GDS						-0.433	0.517	0.467
Sueño [min]							-0.050	-0.067
MOR [min]								0.983

Cuadro 4.4: Coeficiente de correlación de Spearman

Se descarta entonces la hipótesis del efecto generacional, cuando menos para el grupo de participantes considerados, y se acepta que la correlación es debida a valores atípicos. Se concluye que, usando los datos recabados, no se puede obtener información relevante sobre el efecto del nivel de educación ni la edad sobre el PDCL, ni con los marcadores del PSG que se describirán más adelante.

Intuitivamente era de esperarse la correlación entre el tiempo en MOR y el porcentaje de sueño que es MOR. Sin embargo, la hipótesis de que el sueño tenga una *estructura característica* –y por tanto, que las etapas de sueño aparezcan en proporciones similares en varios individuos— es ajena a los supuestos estadísticos. Con base en este resultado, en adelante se usará el porcentaje de MOR como *sustituto* del tiempo real de MOR porque (1) dichas variables están fuertemente correlacionadas, y (2) porque el porcentaje permite comparar intuitivamente características de registros con duraciones muy diferentes.

Estos resultados previos indican que, a excepción del PDCL, no hay factores externos que influyan en las características del PSG –cuando menos no entre los considerados. Si se encuentran cambios en las características del PSG para participantes de los grupos CTRL y PDCL, éstos son debidos al estado cognoscitivo del participante.

4.3. Análisis a nivel de época

Como se mencionó anteriormente, los registros de PSG fueron fragmentados en épocas de 30 segundos para su clasificación por etapa de sueño. Cada una de estas épocas fue sometida a la prueba de PSR (para mayor información, ver la sección 2.4) y con base en ello fue clasificada como *estacionaria* si hipótesis de no-estacionariedad fue rechazada con un nivel de significancia p < 0.05. La prueba PSR fue implementada en el lenguaje de programación R, y para facilitar la reproducibilidad se imitó la implementación incluida en el paquete **fractal** bajo la función **stationarity** [9].

Con cada época clasificada según etapa de sueño (MOR o NMOR) y según su estacionariedad, se procedió primeramente a revisar cómo están relacionadas ambas características. Para ello se planteó la hipótesis de que la cantidad de épocas estacionarias es diferente en MOR y NMOR.

Debido a que la cantidad de épocas en NMOR es considerablemente mayor a las épocas en MOR, y con base en las observaciones de la sección anterior, se usaron proporciones en lugar del total de épocas. Para simplificar la notación, las proporciones de épocas clasificadas como estacionarias en MOR y NMOR serán referidas como p_{MOR} y p_{NMOR} , respectivamente; es decir

$$p_{MOR} = \frac{\# \text{ épocas estacionarias en MOR}}{\# \text{ épocas en MOR}}$$
(4.3)

y similarmente para p_{NMOR} ; cabe mencionar que estas cantidades fueron definidas de forma independiente para cada una de las 22 derivaciones consideradas.

Dado que las clasificaciones según etapa de sueño (MOR/NMOR) y estacionariedad (sí/no) son dicotómicas, se consideran las siguientes hipótesis

$$\begin{aligned}
 H_0: \mathbf{p}_{\text{MOR}} &= \mathbf{p}_{\text{NMOR}} \\
 H_A: \mathbf{p}_{\text{MOR}} \neq \mathbf{p}_{\text{NMOR}}
 \end{aligned}$$
(4.4)

las cuales fueron probadas usando la prueba χ^2 de proporciones, para todas las derivaciones consideradas. Los resultados obtenidos se reportan en el apéndice C, y en la figura 4.2 se muestra de forma esquemática para qué derivaciones se encontraron diferencias significativas (usando épocas de 30 segundos). Entonces, podemos concluir que existen diferencias en algunas derivaciones del EEG, y los marcadores del sueño como son LOG, ROG Y EMG.

Figura 4.1: Representación minimalista de los electrodos considerados en el registro de PSG; para más detalles ver las secciones 3.2.1 y 3.2.2. Esta forma de ordenar las gráficas será usada en gráficos posteriores.

Figura 4.2: Derivaciones para las cuales la proporción de épocas clasificadas como estacionarias de acuerdo a la prueba de Priestley-Subba Rao fue significativamente diferente durante el sueño MOR y NMOR. En la parte superior se representa al grupo CTRL y en la parte inferior al grupo con PDCL. Para esta figura se usaron épocas de 30 segundos de duración. La posición de los círculos representa a las derivaciones, en correspondencia con la figura 4.1.

Efecto de la estacionariedad local

Bajo el supuesto de estacionariedad local, conviene revisar si los resultados descritos anteriormente dependen de –o pueden ser explicados por– una escala de tiempo particular. Para ello, se procedió a repetir la clasificación de estacionariedad pero usando ventanas de diferentes tamaños. Los tamaños de ventana se eligieron de la forma 30×2^n segundos por *compatibilidad*, ya que el protocolo de la AASM sugiere usar épocas de 30 segundos para identificar el sueño MOR. El tamaño de ventana más pequeño fue de ³⁰/32 segundos para poder utilizar la prueba de PSR de forma confiable, mientras que el tamaño más grande fue de 120 segundos tomando en cuenta que ventanas más grandes serían demasiado heterogéneas para considerarse como unidades de estudio fiables.

Los resultados, incluidos en el apéndice C muestran características similares a las descritas para todos los tamaños de ventana. En la figura 4.3 se muestran únicamente las proporciones estimadas de épocas estacionarias para MOR y NMOR (p_{MOR} y p_{NMOR}); observaciones similares se obtuvieron para los 9 participantes. Usando épocas de mayor duración, se encuentra que una proporción menor de éstas son clasificadas como estacionarias; sin embargo, usar épocas de menor duración no garantiza el efecto contrario. Dicho fenómeno *apoya* la hipótesis de estacionariedad local en los registros de PSG en adultos mayores, y confirma que éstos son globalmente no-estacionarios pero localmente estacionarios.

En resumen, no se pudo identificar una conexión clara entre el PDCL y las características de las épocas como unidades autónomas. Debido a ello se consideran otros niveles de organización sobre los registros: los registros como un conjunto de épocas distribuidas en el tiempo con *cierta estructura*, y al individuo como unidad en la variabilidad de dichas estructuras.

Etapa - MOR - NMOR + W

Figura 4.3: Cambio en la proporción de épocas estacionarias respecto al tamaño de ventana usado, durante MOR y NMOR. El análisis se repite en todas las derivaciones consideradas; la posición y color de cada gráfico se corresponden a aquellos de la figura 4.1. W = vigilia, recordando que la cantidad de tiempo de los registros clasificada como vigilia es negligible.

4.4. Análisis a nivel de registro

Con el fin de explorar cómo se relacionan las épocas estacionarias con la *arquitectura del sueño*, se procedió a *graficar* la estacionariedad. Para ello se consideró una cuadrícula, con una fila por cada derivación y una columna por cada época analizada (se registró el mismo número de épocas para cada derivación); sobre la cuadrícula el espacio correspondiente a cada época fue coloreado según la clasificación de la época como estacionaria. Este tipo de gráficos fueron usados anteriormente, en la sección 2.4.1. Se procedió similarmente para ilustrar la clasificación según la etapa de sueño. En la figura 4.4 se ejemplifica este tipo de gráficos, similar a los obtenidos gráficos similares para todos los participantes.

Los gráficos obtenidos mediante este procedimiento muestran algunas regularidades que merecen especial atención: *bloques emergentes* de épocas que comparten clasificación como estacionarias (o como no-estacionarias). Estos bloques identificados visualmente se extienden entre diversas derivaciones; puede verse un ejemplo de ello en la figura 4.4. Debido a la forma en que se efectuó la clasificación de estacionariedad (usando la prueba de PSR) puede garantizarse que estos patrones emergentes no son producidos por la clasificación *per se*. Se hipotetiza que estos *patrones de estacionariedad* corresponden a las diferentes etapas de sueño, o que están ligadas a la complejidad de la actividad cerebral.

Dentro del contexto del PDCL en adultos mayores, estos patrones de estacionariedad no serán definidos formalmente ni estudiados detalladamente; se presentan como un hallazgo incidental y como verificación empírica de las capacidades de la técnica descrita para distinguir características que varían en el tiempo.

Efecto de la estacionariedad local

El procedimiento de graficación se repitió para las clasificaciones de estacionariedad obtenidas usando diferentes tamaños de ventana, con el fin de verificar si la presencia de los bloques podría atribuirse al tamaño de ventana usado. Se encontró que los patrones aparecen con mayor o menor *nitidez* en los gráficos obtenidos usando diferentes tamaños de ventana, tal como se ilustra en la figura 4.4.

Figura 4.4: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, en el margen derecho se indica el tamaño de la ventana en segundos. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

4.5. Análisis a nivel de grupo

Para fines de esta subsección, se ha supuesto que las proporciones de épocas estacionarias durante MOR y NMOR (p_{MOR} y p_{NMOR}) son características intrínsecas de cada individuo. En otras palabras, si se repite el registro de PSG para el mismo individuo y bajo condiciones similares, y se realiza el mismo procedimiento de segmentación y clasificación de épocas, entonces se espera que las cantidades p_{MOR} y p_{NMOR} serán las mismas. Este supuesto se basa en que las fases de sueño son *casi indistinguibles* entre diferentes individuos con características similares, y más aún entre diferentes jornadas de sueño para el mismo individuo.

Con base en los resultados de la subsección anterior, se puede afirmar (intuitivamente) que la metodología descrita *percibe* en parte algunas fases de sueño, las cuales son comunes entre individuos. Sin embargo, aun si tales observaciones fueran verificadas rigurosamente, el supuesto de que p_{MOR} y p_{NMOR} son características individuales debería ser verificado por separado. Debido a las limitaciones del presente trabajo –especialmente el tamaño muestral reducido y la limitación de un registro por participante– el supuesto será usado como tal, y no se verificará debido a la falta de datos. En consecuencia, los resultados en la presente subsección se presentan como *indicios*, con la idea de explorarlos en trabajos futuros.

Para su análisis, las cantidades p_{MOR} y p_{NMOR} , calculadas por separado para todos los participantes y todas las derivaciones consideradas, fueron tratados como características que se distribuyen de forma aproximadamente normal sobre las poblaciones que representan los grupos CTRL y PDCL. De forma particular, **para** estudiar los factores que influyen en estas cantidades se define la variable aleatoria

$$E =$$
proporción de épocas arbitrarias estacionaria (4.5)

para la cual se propone el siguiente modelo general

$$E = \mu + \alpha_i + \beta_j + \gamma_{i,j} + \varepsilon_{i,j} \tag{4.6}$$

con $i \in \{MOR, NMOR\}$ y $j \in \{CTRL, PDCL\}$. Por simplicidad, se asume que

$$\sum_{i} \alpha_{i} = \sum_{j} \beta_{j} = \sum_{i} \sum_{j} \gamma_{i,j} = 0$$
(4.7)

Se efectuó un ANOVA de dos vías para observar si las α 's, β 's y γ 's tienen la misma media, tal como se describe en la sección 1.3.5. Los resultados obtenidos se muestran en el cuadro 4.5.

Se encontró que no hay interacciones significativas entre los factores de etapa y grupo para ninguna derivación. Así mismo se encontró que hay diferencias significativas para las derivaciones Fp2, F7, LOG y ROG que pueden ser explicadas por el *efecto* de la 'etapa de sueño', y de forma similar para las derivaciones LOG y ROG con el efecto de 'grupo'.

Las diferencias para LOG y ROG, debidas al efecto de 'etapa de sueño', puede explicarse perfectamente por la presencia característica de movimientos oculares rápidos en el sueño MOR. Este resultado es consistente con una de las tres características que determinan al sueño MOR: atonía muscular, movimientos oculares rápidos y actividad en el EEG de amplitud baja y frecuencias mixtas. Paralelamente estos resultados sugieren que este procedimiento podría ser usado para identificar de forma objetiva y automatizada al sueño MOR; en el presente trabajo se expone como preliminar, y requiere de un estudio más riguroso para su uso clínico.

Las diferencias en Fp2 y F7 es significativo en la región frontal, la cual típicamente es asociada con la toma de decisiones. Para explorar más a fondo los resultados de la ANOVA, en la figura 4.5 se han graficado (como diagramas de caja) los valores p_{MOR} y p_{NMOR} muestrales; se observa que, intuitivamente, las cantidades p_{MOR} y p_{NMOR} son muy diferentes entre grupos y entre etapas, pero que posiblemente no resultan significativas debido a la gran variabilidad dentro de las categorías. En principio, es posible justificar dicha falla por el tamaño reducido del grupo muestral.

Cuadro 4.5: ANOVA para los efectos Grupo y Etapa de sueño sobre las cantidades p_{MOR} y $p_{NMOR}.$

	CTRL			PDC	Ľ			ANC	OVA					
	NMO	DR	MOI	3	NMC	DR	MOI	3	Grupo		Etapa		G×E]
	М	DE	М	DE	М	DE	М	DE	\mathbf{F}	р	F	р	F	р
Fp2	17.2	4.0	6.3	5.8	10.6	8.4	3.7	7.0	2.08	.171	7.51	.016	0.40	.537
Fp1	17.5	9.0	9.1	11.5	10.8	10.5	4.5	7.7	1.53	.237	2.48	.138	0.05	.829
$\mathbf{F8}$	19.3	7.6	14.7	13.3	12.5	7.8	8.9	14.0	1.43	.252	0.60	.453	0.01	.918
F7	19.0	5.0	7.7	7.6	12.6	9.6	5.5	10.6	1.09	.314	4.81	.046	0.25	.621
F4	20.0	5.5	16.2	14.5	14.4	12.5	15.2	15.1	0.30	.595	0.04	.836	0.14	.716
F3	19.9	4.0	14.4	9.9	15.1	13.8	17.1	23.0	0.02	.890	0.03	.858	0.27	.610
T4	22.4	7.6	21.2	17.1	16.2	7.8	26.2	19.0	0.01	.926	0.57	.461	0.71	.414
T3	27.2	6.6	28.1	14.8	18.7	9.5	24.5	20.7	0.79	.390	0.28	.603	0.13	.726
C4	29.4	7.9	23.2	15.9	16.9	12.4	25.6	18.8	0.53	.481	0.09	.772	1.15	.301
C3	25.5	5.4	24.8	11.5	18.8	12.2	25.0	18.0	0.28	.604	0.27	.614	0.31	.585
T6	31.5	10.5	24.1	15.1	17.0	9.3	25.0	21.0	0.94	.349	0.03	.871	1.20	.292
T5	29.4	16.7	33.7	23.1	22.2	14.9	32.0	17.8	0.27	.612	0.74	.403	0.10	.755
$\mathbf{P4}$	25.8	6.0	20.1	13.4	15.8	10.0	22.7	19.4	0.33	.576	0.04	.843	0.95	.345
$\mathbf{P3}$	25.6	9.7	22.7	13.8	18.7	10.1	28.6	19.0	0.01	.939	0.42	.526	0.93	.350
O2	27.2	7.8	24.3	18.1	18.3	11.2	25.5	21.0	0.26	.615	0.13	.721	0.47	.506
O1	27.8	9.5	29.1	20.9	17.5	11.7	25.3	20.6	0.81	.383	0.40	.539	0.17	.685
\mathbf{FZ}	23.4	3.1	24.2	10.9	16.8	13.9	21.5	17.8	0.55	.469	0.24	.634	0.10	.758
CZ	22.5	6.2	18.7	11.1	16.4	12.0	17.8	12.7	0.46	.510	0.03	.865	0.24	.633
\mathbf{PZ}	22.9	4.9	17.6	10.0	16.0	11.9	23.0	17.7	0.02	.904	0.07	.797	1.06	.321
LOG	50.5	10.3	22.9	13.2	34.3	8.9	9.4	9.6	9.10	.009	28.19	.000	0.08	.786
ROG	54.2	14.9	30.5	17.3	34.2	17.1	14.3	13.3	5.89	.029	8.53	.011	0.07	.800
EMG	15.1	8.2	16.2	9.4	6.8	7.4	13.9	16.6	0.99	.337	0.68	.423	0.31	.588

M=media muestral; DE=Desviación estándar; G×E=interacción Grupo por Etapa

Grupo, Etapa de sueño : 🚔 CTRL, NMOR 🚔 CTRL, MOR 🚔 PDCL, NMOR 🚔 PDCL, MOR

Figura 4.5: Proporciones de épocas estacionarias, durante sueño MOR y NMOR y para todas las derivaciones. Los puntos representan valores *atípicos*, según su definición para diagramas de caja. Los asteriscos indican en qué derivaciones se hallaron *efectos* significativos usando una ANOVA de dos factores: 'etapa de sueño' y 'grupo'; el efecto de 'etapa de sueño' fue significativo para Fp2, F7, LOG y ROG, mientras que el efecto 'grupo' fue significativo para LOG y ROG. Las posiciones de cada gráfico se corresponden con aquellos de la figura 4.1.

Esta página se dejó intencionalmente en blanco.

capítulo 5

Discusión y Conclusiones

Se asume que el cerebro es un sistema complejo, es decir que su actividad puede verse como una secuencia organizada de fragmentos de actividad *simple*. Esta característica en particular es referida como **estacionariedad local**.

En el presente trabajo la estacionariedad local fue manejada como un supuesto, y se hipotetizó que el DCL *afecta* a la actividad cerebral y se hace *visible* en la forma en que se organizan los fragmentos de actividad simple. De forma concreta, se usa la la prueba de estacionariedad débil de Priestley-Subba Rao para decidir si los registros de PSG son simples.

Se definieron y calcularon las cantidades p_{MOR} y p_{NMOR} , que representan la proporción épocas (fragmentos de registro de PSG) clasificados como estacionarios durante MOR y NMOR, respectivamente; en otras palabras:

$$p_{MOR} = \frac{\# \text{ épocas estacionarias en MOR}}{\# \text{ épocas en MOR}}$$
(5.1)

y similarmente para p_{NMOR} . Estas cantidades fueron usadas porque la cantidad de épocas en MOR y NMOR son considerablemente diferentes, y así mismo son diferentes la cantidad de épocas en MOR y NMOR para los diferentes participantes.

El resultado principal de esta tesis es la verificación de la hipótesis $p_{MOR} \neq p_{NMOR}$ a nivel grupal, la cual fue efectuada mediante un ANOVA; se encontraron diferencias

5.1. CONCLUSIONES

significativas en las derivaciones LOG y ROG, y adicionalmente diferencias significativas entre etapas para las derivaciones Fp2, F7, LOG y ROG. Si bien los resultados tienen una validez limitada debido a las características muestrales, son consistentes con la literatura. Cabe mencionar que en [51] se usa un número ligeramente mayor de individuos junto otro método de análisis, obteniéndose resultados similares.

En necesario mencionar que hay una vasta cantidad de estudios que han explorado la posible relación entre trastornos del sueño y marcadores de daño neuronal o de actividad cerebral anómala [41]. En este tipo de trabajos es común el uso de grupos muestrales muy reducidos, debido a los grandes esfuerzos requeridos para el reclutamiento de participantes y de los registros *per se*. Una práctica común en la literatura es la valoración de las llamadas *técnicas objetivas* en contraparte de las *técnicas subjetivas* como auto-percepción por los pacientes, pruebas neuropsicológicas con baja sensibilidad como el MMSE [56].

La denominación de 'técnicas objetivas' engloba, por ejemplo, los registros electrofisiológicos y sus respectivos análisis cuantitativos (en contraparte a los análisis cualitativos). Como consecuencia de lo anterior, se suele considerar que es posible extraer información fiable de grupos pequeños si se usan herramientas de análisis objetivas; como ejemplo está la revisión hecha por Yan Ma [33], donde predominan grupos relativamente pequeños.

5.1. Conclusiones

Los participantes fueron divididos, según su estado cognoscitivo, en los grupos CTRL y PDCL; en cuanto a las variables observadas, se verificó que los grupos tienen propiedades estadísticas similares –excepto por el puntaje de la prueba Neuropsi, el cual fue usado para definir a los grupos. Se verificó que estas mismas variables no están correlacionadas entre sí, ni con características técnicas del registro de PSG como tiempo total de sueño y duración total del sueño MOR.

Se midió la proporción de épocas (fragmentos de registro de PSG) clasificadas como estacionarias en cada etapa de sueño; estas cantidades son referidas como p_{MOR} y p_{NMOR} . La hipótesis $p_{\text{MOR}} \neq p_{\text{NMOR}}$ se probó en todas las derivaciones y para todos los participantes, concluyéndose que existen diferencias para algunas derivaciones. Se verificó cualitativamente que la afirmación $p_{\text{MOR}} \neq p_{\text{NMOR}}$ no está limitada a alguna escala de tiempo particular. Se hipotetiza que la estacionariedad local (fragmentos globalmente no-estacionarios pero localmente estacionarios) es el mecanismo asociado a tales diferencias –sobre todo el cambio entre etapas de sueño.

La hipótesis $p_{\text{MOR}} \neq p_{\text{NMOR}}$ se probó entre sujetos usando una ANOVA con los factores 'etapa de sueño' (MOR, NMOR) y 'grupo' (CTRL, PDCL); se encontró que el primero es significativo para las derivaciones Fp2, F7, LOG, ROG, mientras que el segundo es significativo para las derivaciones LOG, ROG. Estos resultados son consistentes con las características del sueño MOR (movimientos oculares rápidos) y el papel del lóbulo frontal en la toma de decisiones.

5.2. Trabajo futuro

Los resultados obtenidos son *prometedores* y preliminares para declarar marcadores clínicos para el PDCL basados en la metodología descrita. En el contexto de la colaboración con el Laboratorio de Sueño, Emoción y Cognición, la metodología será automatizada para poder analizar el total de registros obtenidos en el estudio por Vázquez Tagle y colaboradores. Con base en los resultados obtenidos con un número mayor de participantes, se decidirá si se da inicio a un nuevo estudio para *validar* la metodología descrita.

De manera general, el uso de marcadores basados en registros de PSG aporta una base objetiva al diagnóstico del deterioro cognitivo, y complementa los resultados más subjetivos de pruebas neuropsicológicas; esta afirmación permanece válida para una gran variedad de señales electrofisiológicas y trastornos mentales. Conviene destacar que las técnicas basadas en el EEG son relativamente poco *invasivas*, de bajo costo y fácil acceso, con relación a la calidad de la información obtenida y en comparación con otras técnicas para la observación del sistema nervioso central. Entonces, generar marcadores diagnósticos tempranos basados en el EEG facilita su acceso para el público en general, en especial para detectar etapas tempranas del deterioro cognitivo.

En otro ámbito, el hallazgo de patrones emergentes de estacionariedad (ver sección 4.4 y figuras 5.1–5.4) sugiere que, en principio, es posible usar la clasificación de estacionariedad en registros de EEG para caracterizar estados de actividad cerebral. Esta posibilidad es interesante, y será explorada en trabajos futuros.

Figura 5.1: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura 5.2: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura 5.3: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Figura 5.4: Distribución en el tiempo de las ventanas clasificadas como estacionarias, considerando diferentes tamaños de ventana. Cada ventana fue representada en una cuadrícula según su derivación (margen izquierdo) y momento (margen inferior) de procedencia; posteriormente fue *coloreada* según su clasificación como estacionaria. Dado que la clasificación de estacionariedad se repitió usando diversos tamaños de ventana, éstos se indican en el margen derecho. En la parte inferior se representan las mismas épocas en su clasificación según etapa de sueño.

Esta página se dejó intencionalmente en blanco.

APÉNDICE A

Propiedades formales del espectro de potencias

Este apéndice representa una *extensión* del capítulo 2; bajo esta línea de pensamiento puede decirse que el objetivo de este apéndice es demostrar las propiedades usadas en el trabajo, y exhibir algunos objetos *conocidos*.

A.1. Espacios de variables aleatorias

Tanto el espectro de potencias como el espectro evolutivo (siendo el segundo una generalización del primero) son generalizaciones de la transformada de Fourier; para definir a la transformada de Fourier se requiere, cuando menos, estructura de espacio de Hilbert. En el contexto de procesos estocásticos, es recomendable la exposición sobre espacios de Hilbert en el libro *"Stationary Stochastic Processes: Theory and Applications"* por Georg Lindgren [31].

Proposición A.1. Sea \mathcal{A} el conjunto de variables aleatorias con media cero y varianza finita. Se define un producto interno entre dos variables aleatorias arbitrarias, $U \ y \ V$, como

$$\langle U, V \rangle := \mathbf{E} \left[U, \overline{V} \right]$$
 (A.1)

Usando la suma y productos usuales de variables aleatorias, junto al producto interno descrito, el espacio \mathcal{A} tiene la estructura de espacio de Hilbert.

Basta con notar algunas propiedades de las variables aleatorias:

- Es posible sumar variables aleatorias, aún si la variable resultante tiene una distribución degenerada. El neutro aditivo es la variable con distribución degenerada D(0).
- Si todas las variables tienen media cero, la covarianza es una función bilineal, es decir que para cualesquiera $X, Y, Z \in \mathcal{A}$ y cualesquiera $a \in \mathbb{R}$

$$\operatorname{Cov}\left(aX+Y,Z\right) = a\operatorname{Cov}\left(X,Z\right) + \operatorname{Cov}\left(Y,Z\right) \tag{A.2}$$

Merece especial atención la métrica inducida en el espacio de las variables aleatorias de media cero y varianza finita, \mathcal{A} , ya que implica un criterio de convergencia para variables aleatorias.

Definición A.1. Un proceso a tiempo continuo $\{X(t)\}_{t\in\mathcal{T}}$ se dice estocásticamente continuo en media cuadrática, en el tiempo $t_0 \in \mathcal{T}$ si

$$\lim_{t \to t_0} \mathbb{E}\left[\left(X(t) - X(t_0) \right)^2 \right] = 0$$
(A.3)

Es también muy interesante notar que los procesos estocásticos pueden interpretarse como *curvas* en \mathcal{A} indexadas por el tiempo. La condición de continuidad estocástica se traduce en que tales curvas sean continuas.

Proposición A.2. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso estocástico a tiempo continuo y R su núcleo de covarianza. Si R es continuo en el conjunto $\{(t,t)\in\mathbb{R}^2 \mid t\in\mathbb{R}\}$ entonces $\{X(t)\}_{t\in\mathcal{T}}$ es estocásticamente continuo en \mathcal{T} .

Demostración. Sea $t_0 \in \mathcal{T}$ arbitrario. Para cualquier $t \in \mathcal{T}$, puede escribirse

$$E\left[\left(X(t) - X(t_0)\right)^2\right] = \operatorname{Var}\left(X(t)\right) + \operatorname{Var}\left(X(t_0)\right) - 2\operatorname{Cov}\left(X(t), X(t_0)\right) \\ = R(t, t) + R(t_0, t_0) - 2R(t, t_0) \\ = \left[R(t, t) - R(t, t_0)\right] + \left[R(t_0, t_0) - R(t, t_0)\right]$$
(A.4)

Figura A.1: Geometría esperada para un proceso estocástico débilmente estacionario y estocásticamente continuo, $\{X(t)\}_{t\in\mathcal{T}}$, *dentro* del conjunto de variables aleatorias con varianza finita, \mathcal{A} . El objetivo de esta ilustración es visualizar algunos *elementos* de $\{X(t)\}_{t\in\mathcal{T}}$ dentro del contexto de \mathcal{A} como un espacio de Hilbert. Por ejemplo $\{X(t)\}_{t\in\mathcal{T}}$ está contenido en una esfera de radio σ_X^2 y centro en una variable aleatoria con distribución degenerada D(0).

Así entonces, la condición para continuidad estocástica puede reescribirse como

$$\lim_{t \to t_0} \mathbb{E}\left[\left(X(t) - X(t_0) \right)^2 \right] = 0 \Leftarrow \lim_{t \to t_0} \left[R(t, t) - R(t, t_0) \right] = 0 \quad ,
\lim_{t \to t_0} \left[R(t_0, t_0) - R(t, t_0) \right] = 0 \quad (A.5)$$

Las últimas condiciones se siguen de que R es continua en $\{(t,t) \in \mathbb{R}^2 \mid t \in \mathbb{R}\}$.

De igual forma es muy notable la interpretación que adquiere la función de autocovarianza como producto interno, ya que admite algunas propiedades interesantes.

Definición A.2. Se dice que una función $f : \mathbb{R} \to \mathbb{R}$ es **positiva definida** si para cualesquiera $x_{1,2}, \dots, x_N \in \mathbb{R}$, $z_1, z_2, \dots, z_N \in \mathbb{R}$ se cumple que

$$\sum_{n=1}^{N} \sum_{m=1}^{N} z_n z_m f(x_m - x_n) \le 0$$
(A.6)

Proposición A.3. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso débilmente estacionario y \mathbb{R}^* su función de autocovarianza. Se cumple que \mathbb{R}^s tar es una función positiva definida.

Demostración. Sean $t_1, t_2, \dots, t_N \in \mathcal{T}, z_1, z_2, \dots, z_N \in \mathbb{R}$ arbitrarios. Se construye la variable aleatoria W como

$$W = \sum_{n=1}^{N} z_n X(t_n) \tag{A.7}$$

La varianza de una variable aleatoria arbitraria es siempre no-negativa, luego entonces

$$0 \leq \operatorname{Var}(W)$$

= $\sum_{m=1}^{N} \sum_{n=1}^{N} z_m z_n \operatorname{Cov}(X(t_m), X(t_n))$
= $\sum_{m=1}^{N} \sum_{n=1}^{N} z_m z_n R^{\star}(t_m - t_n)$ (A.8)

Teorema A.4 (Bochner). Sea $f : \mathbb{R} \to \mathbb{R}$ una función real arbitraria. Una condición suficiente y necesaria para que f sea definida positiva es que exista una función $F : \mathbb{R} \to \mathbb{R}$ monótonamente creciente, continua por la derecha y acotada tal que

$$f(t) = \int_{-\infty}^{\infty} e^{i\omega t} dF(\omega)$$
 (A.9)

Del teorema de Bochner, aplicado a la función de autocovarianza, se sigue la existencia de los espectro de potencias para procesos estocásticos débilmente estacionarios (ver teorema A.5). Dado que los núcleo de covarianza no son, en general, funciones positivas definidas, la existencia del espectro de potencias no está garantizada para cualquier proceso estocástico arbitrario.

Conviene notar que una condición similar se exige para la existencia del espectro evolutivo, cuando se pide que el núcleo de covarianza tenga un representación de la forma

$$R(s,t) = \int_{-\infty}^{\infty} \overline{\phi(\omega;s)} \phi(\omega;t) d\mu(\omega)$$
 (A.10)

A.2. Espectro de potencias y representación espectral

Teorema A.5 (Wiener-Khintchine). Una condición suficiente y necesaria para que R sea una función de autocovarianza para algún proceso estocástico a tiempo continuo $\{X(t)\}_{t\in\mathcal{T}}$ débilmente estacionario y estocásticamente continuo, es que exista una función $H : \mathbb{R} \to \mathbb{R}$ monótonamente creciente y acotada¹ tal que para todo $\tau \in \mathbb{R}$ se cumple que

$$R(\tau) = \int_{-\infty}^{\infty} e^{i\omega\tau} dH(\omega)$$
 (A.11)

Como notación, H será referido como la función de espectro integrado para $\{X(t)\}_{t\in\mathcal{T}}$. Adicionalmente, si H es absolutamente continua, se define a h, la función de densidad espectral como

$$h(\omega)d\omega := dH(\omega) \tag{A.12}$$

Proposición A.6. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso estocástico a tiempo continuo, estocásticamente continuo, y sea R su núcleo de covarianza. Si R admite una representación de la forma

$$R(s,t) = \int_{-\infty}^{\infty} \overline{\phi(\omega;s)} \phi(\omega;t) d\mu(\omega)$$
 (A.13)

entonces $\{X(t)\}_{t\in\mathcal{T}}$ acepta una representación de la forma

$$X(t) = \int_{-\infty}^{\infty} \phi(\omega; t) dZ(\omega)$$
 (A.14)

donde $\{Z(t)\}_{t\in\mathbb{R}}$ es un proceso estocástico tal que

$$\operatorname{Cov}\left(Z(t), Z(s)\right) = \delta(t, z)\mu(\omega) \tag{A.15}$$

 $con \delta$ la función delta de Kronecker.

Demostración. Considerando a \mathcal{A} , el espacio de variables aleatorias descrito en la proposición A.1. Usando el producto interno descrito, para cualesquiera $t, s \in \mathbb{R}$

¹Para lograr la unicidad, se pedirá que lím_{$\omega \to -\infty$} $H(\omega) = 0$.

puede escribirse

$$\langle X(t), X(s) \rangle = \operatorname{Cov} \left(X(t), X(s) \right) = \int_{-\infty}^{\infty} \phi(\omega; t) \overline{\phi(\omega; s)} d\mu(\omega)$$
 (A.16)

Usando la familia de funciones $\{\phi(\bullet; t)\}_{t\in\mathcal{T}}$ y la medida μ , puede construirse un segundo espacio de Hilbert, \mathcal{H}_{ϕ} . A este segundo espacio se le define el producto interno

$$\langle \phi_1, \phi_2 \rangle_H := \int_{-\infty}^{\infty} \phi_1(\omega) \overline{\phi_2(\omega)} dH(\omega)$$
 (A.17)

Posteriormente se define un mapeo $M: \mathcal{H}_{\phi} \to \mathcal{R}$ como

$$M[\phi_t] := X(t) \tag{A.18}$$

el cual se extiende linealmente para cualesquiera coeficientes $c_1, c_2, \dots \in \mathbb{R}$ y tiempos admisibles $t_1, t_2, \dots \in \mathcal{T}$

$$M\left[\sum_{i} c_{i}\phi_{t_{i}}\right] = \sum_{i} c_{i}M\left[\phi_{t_{i}}\right]$$
(A.19)

Trivialmente, M conserva productos internos; basta notar que

$$\langle X(t), X(s) \rangle = \int_{-\infty}^{\infty} \phi_1(\omega) \overline{\phi_2(\omega)} dH(\omega) = \langle \phi_1, \phi_2 \rangle_H$$
 (A.20)

Ahora, para trabajar con las funciones ϕ conviene descomponerlas en una base más *sencilla*, como límite de funciones simples. Para ello, se define una función indicadora

$$I(\omega;\omega_0,\omega_f) := \begin{cases} 1 & , \omega_0 \le \omega < \omega_f \\ 0 & , \text{otro caso} \end{cases}$$
(A.21)

Luego, sea $\{\omega_0, \omega_1, \dots, \omega_N\}$ una partición del intervalo [-n, n], con $n \gg N$. Entonces, en virtud del teorema de convergencia dominada de Lebesgue

$$\phi(\omega;t) = \lim_{n \to \infty} \sum_{i=1}^{N} I(\omega;\omega_{i-1},\omega_i) \left[\inf_{\omega \in [\omega_{i-1},\omega_i]} \phi(\omega_i;t) \right]$$
(A.22)

Usando tal representación para las funciones ϕ 's, se define a Z como

$$Z(\omega_f) - Z(\omega_0) = M\left[I(\omega; \omega_f, \omega_0)\right]$$
(A.23)

Luego entonces, aplicando M a ambos lados de la expresión A.22 se obtiene

$$M\left[\phi_{t}(\omega)\right] = M\left[\lim_{n \to \infty} \sum_{i=1}^{N} I(\omega; \omega_{i-1}, \omega_{i}) \left[\inf_{\omega \in [\omega_{i-1}, \omega_{i}]} \phi(\omega_{i}; t)\right]\right]$$
$$= \lim_{n \to \infty} \sum_{i=1}^{N} M\left[I(\omega; \omega_{i-1}, \omega_{i})\right] \left[\inf_{\omega \in [\omega_{i-1}, \omega_{i}]} \phi(\omega_{i}; t)\right]$$
$$= \lim_{n \to \infty} \sum_{i=1}^{N} \left(Z(\omega_{i}) - Z(\omega_{i-1})\right) \left[\inf_{\omega \in [\omega_{i-1}, \omega_{i}]} \phi(\omega_{i}; t)\right]$$
$$= \int_{-\infty}^{\infty} \phi_{t}(\omega) dZ(\omega)$$
(A.24)

El resultado que se busca que da establecido porque $M[\phi_t] = X(t)$

$$X(t) = \int_{-\infty}^{\infty} \phi_t(\omega) dZ(\omega)$$
 (A.25)

Bajo el contexto de espacios de Hilbert, es importante notar el proceso $\{Z(t)\}_{t\in\mathbb{R}}$ es ortogonal, es decir que está compuesto por variables aleatorias no-correlacionadas.

A.3. Filtros lineales

Definición A.3. El espacio de funciones L^2 se define como

$$L^{2} := \left\{ f : \mathbb{R} \to \mathbb{R} \; \middle| \; \int_{-\infty}^{\infty} \left[f(t) \right]^{2} dt < \infty \right\}$$
(A.26)

Definición A.4. Se dice que un operador $\mathcal{L}_g : L^2 \to L^2$ es un filtro lineal si puede escribirse de la forma

$$\mathcal{L}_g[f] = \int_{-\infty}^{\infty} g(u)f(t-u)du \tag{A.27}$$

para alguna función $g \in L^2$ que es referida como **función de respuesta**. Se define

también a Γ , su función de transferencia, como

$$\Gamma(\omega) := \int_{-\infty}^{\infty} g(u) e^{i\omega u} du$$
(A.28)

Los filtros lineales serán usados para construir estimadores consistentes para el espectro de potencias, para lo cual conviene describir formalmente los procesos estocásticos *filtrados* y el efecto de los filtros sobre su espectro evolutivo.

Si se consideran integrales en el sentido de Itô, se pueden *usar* filtros lineales sobre procesos estocásticos; tomando un filtro lineal $\mathcal{L}_{\omega_0,g}$ y un proceso estocástico oscilatorio $\{X(t)\}_{t\in\mathbb{R}}$ se construye el proceso $\{Y(t)\}_{t\in\mathbb{R}}$ como

$$Y(t) = \mathcal{L}_{\omega_0,g}[X](t) = \int_{-\infty}^{\infty} g(u)e^{i\omega_0(t-u)}X(t-u)du$$
(A.29)

La función de transferencia del filtro es multiplicada por el factor $e^{i\omega_0}$ para simplificar la referencia posterior.

En virtud de la proposición A.6, puede escribirse

$$Y(t) = \int_{-\infty}^{\infty} \Gamma^{\star}(\omega; t, \omega + \omega_0) A(\omega + \omega_0; t) e^{i\omega t} dZ(\omega + \omega_0)$$
(A.30)

donde Γ^* es la **función de transferencia generalizada** para g, ω_0 con respecto a la familia **F**, la cual es definida como

$$\Gamma^{\star}(\omega; t, \lambda) := \int_{-\infty}^{\infty} g(u) \frac{A(\lambda; t-u)}{A(\lambda; t)} e^{i\omega u} du$$
(A.31)

Para entender cómo se pueden construir estimadores consistentes para el espectro evolutivo usando las expresiones anteriores, conviene mostrar el caso particular en el que $\{X(t)\}_{t\in\mathbb{R}}$ es un proceso débilmente estacionario. Si así fuese, existe una función $\overline{A}: \mathbb{R} \to \mathbb{C}$ tal que $A(\omega; t) = \overline{A}(\omega)$, y en consecuencia la expresión A.30 se reduce a

$$Y(t) = \int_{-\infty}^{\infty} \Gamma(\omega) \overline{A}(\omega + \omega_0) e^{i\omega t} dZ(\omega + \omega_0)$$
(A.32)

donde Γ ha ocupado el lugar de Γ^* . Se deduce que h_X y h_Y , los respectivos espectros

evolutivos de $\{X(t)\}_{t\in\mathbb{R}}$ y $\{Y(t)\}_{t\in\mathbb{R}}$, satisfacen

$$h_Y(\omega) = \left| \Gamma(\omega) \right|^2 h_Y(\omega + \omega_0) \tag{A.33}$$

de donde se deduce que el espectro evolutivo puede calcularse, sin introducir grandes cambios, usando de un filtro lineal que *estabilice* la varianza del estimador; este último tema será discutido en la sección A.4.

Cabe destacar que la expresión A.33 fue construida para procesos débilmente estacionarios; aunque no se cumple en general, bajo algunos supuestos generales se puede usar como aproximación con un margen de error arbitrario. El caso más destacable ocurre cuando A, como función de ω , varía *muy lentamente* en comparación de g, y entonces $\Gamma^* \approx \Gamma$. La idea de que una función 'varía lentamente respecto a otra' será formalizada en la siguiente sección, lo cual lleva a construir los tan mencionados estimadores del espectro evolutivo.

A.3.1. Procesos semi-estacionarios

Definición A.5. Una familia de funciones $\mathbf{F} = \{\phi : \mathbb{R} \times \mathcal{T} \to \mathbb{C}\}$ se dice semiestacionaria si, para todo $t \in \mathcal{T}$, se cumple que

$$\int_{-\infty}^{\infty} |\omega| \left| dK_t(\omega) \right| < \infty \tag{A.34}$$

donde $\phi(\omega;t) = \int_{-\infty}^{\infty} e^{i\omega t} dK_t(\omega)$. Si así fuere, se define el **ancho de banda carac**terístico de **F** como

$$B_{\mathbf{F}} := \left[\sup_{\omega} \int_{-\infty}^{\infty} |\omega| \left| dK(\omega) \right| \right]^{-1}$$
(A.35)

Por simplicidad de referencia, en lo siguiente se dirá que \mathcal{L} está normalizada si cumple que

$$2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)| d\omega = 1$$
 (A.36)

Definición A.6. Se dice que una función $u : \mathbb{R} \to \mathbb{C}$ es **pseudo-\delta de orden** ε con respecto a la función $v : \mathbb{R} \to \mathbb{C}$ si, para cualquier $k \in \mathbb{R}$ existe un $\varepsilon \ll 1$ tal que

$$\left| \int_{-\infty}^{\infty} u(x)v(x+k)dx - v(k) \int_{-\infty}^{\infty} u(x) \right| < \varepsilon$$
 (A.37)

Teorema A.7. Sea **F** una familia semi-estacionaria con ancho de banda característico $B_{\mathbf{F}}$, y sea g una función normalizada como en A.36 y cuyo ancho de banda es B_g . Entonces, para cualesquiera $t, \omega \in \mathbb{R}$ se cumple que $e^{i\omega t} dK(\omega)$ es una función pseudo- δ de orden $B_g/B_{\mathbf{F}}$ con respecto a Γ

Demostración. Suponiendo que Γ sea una vez derivable, su expansión de Taylor alrededor de k es

$$\int_{-\infty}^{\infty} e^{i\theta t} \Gamma(\theta+k) dK(\omega) = \Gamma(k) \int_{-\infty}^{\infty} e^{i\theta t} dK(\omega) + \int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k+\nu) dK(\omega) \quad (A.38)$$

para algún $\nu \in (0, \theta)$. Respecto al segundo sumando, puede observarse que

$$\int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k+\nu) dK(\omega) \leq \left| \int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k+\nu) dK(\omega) \right|$$

$$\leq \int_{-\infty}^{\infty} |\theta| \left| \Gamma'(k+\nu) \right| \left| dK(\omega) \right|$$

$$\leq \int_{-\infty}^{\infty} |\theta| \left[\sup_{\omega} |\Gamma'(\omega)| \right] \left| dK(\omega) \right|$$

$$\leq \left[\sup_{\omega} |\Gamma'(\omega)| \right] \left[\sup_{\omega} \int_{-\infty}^{\infty} |\theta| \left| dK(\omega) \right| \right]$$

(A.39)

Usando la conexión entre g y Γ

$$\Gamma'(\omega) = \frac{d}{d\omega} \left(\int_{-\infty}^{\infty} e^{i\omega u} g(u) du \right)$$
$$= \int_{-\infty}^{\infty} \left(\frac{d}{d\omega} e^{i\omega u} g(u) \right) du$$
$$= i \int_{-\infty}^{\infty} u e^{i\omega u} g(u) du$$
(A.40)

Luego entonces

$$\int_{-\infty}^{\infty} e^{i\theta t} \theta \Gamma'(k+\nu) dK(\omega) \leq \left[\sup_{\omega} \left| \Gamma'(\omega) \right| \right] \left[\sup_{\omega} \int_{-\infty}^{\infty} |\theta| \left| dK(\omega) \right| \right]$$
$$\leq \left[\sup_{\omega} \left| \int_{-\infty}^{\infty} iu e^{i\omega u} g(u) du \right| \right] B_{\mathbf{F}}^{-1}$$

$$\leq B_{\mathbf{F}}^{-1} \left[\sup_{\omega} \int_{-\infty}^{\infty} |u| \left| g(u) \right| du \right]$$
$$\leq B_{\mathbf{F}}^{-1} B_{g} \tag{A.41}$$

Es muy notable que el teorema anterior implica que pueden efectuarse algunas aproximaciones con A y Γ , pero que estas se cumplen de mejor forma en cuando B_g sea más pequeño –también cuando B_X es más grande, pero B_g es más importante con mira al diseño de estimadores. Es así que se formaliza la idea de que g varía lentamente, a través de su ancho de banda.

Teorema A.8. Sea \mathbf{F} una familia semi-estacionaria con ancho de banda característico $B_{\mathbf{F}}$, sea $\varepsilon > 0$ arbitrario, y sea g un filtro normalizado como en A.36 y cuya función de transferencia generalizada con respecto a \mathbf{F} es Γ^* . Si g es elegida de tal modo que $B_g/B_{\mathbf{F}} < \varepsilon$, entonces para cualesquiera t, ω se cumple que

$$\left|A(\lambda;t)\right|\left|\Gamma^{\star}(\omega;t,\lambda) - \Gamma(\omega)\right| < \varepsilon \tag{A.42}$$

Demostración. Por la mera definición de Γ^{\star} (expresión A.31) se sabe que

$$A(\lambda;t)\Gamma^{\star}(\omega;t,\lambda) = \int_{-\infty}^{\infty} g(u)A(\lambda;t-u)e^{-i\omega u}du \qquad (A.43)$$

Si se sustituye a A en términos de dK_{λ} (ver la definición de función oscilatoria)

$$A(\lambda;t)\Gamma^{\star}(\omega;t,\lambda) = \int_{-\infty}^{\infty} g(u)A(\lambda;t-u)e^{-i\omega u}du$$

$$= \int_{-\infty}^{\infty} g(u) \left[\int_{-\infty}^{\infty} e^{i\theta(t-u)}dK_{\lambda}(\theta)\right]e^{-i\omega u}du$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(u)e^{i\theta t}e^{-i(\omega+\theta)u}dK_{\lambda}(\theta)du$$

$$= \int_{-\infty}^{\infty} e^{i\theta t}\left[\int_{-\infty}^{\infty} g(u)e^{-i(\omega+\theta)u}du\right]dK_{\lambda}(\theta)$$

$$= \int_{-\infty}^{\infty} e^{i\theta t}\Gamma(\omega+\theta)dK_{\lambda}(\theta)$$

Usando el lema A.7 junto al hecho que $B_g/B_F < \varepsilon$, se puede escribir que

$$\varepsilon > \left| \int_{-\infty}^{\infty} e^{i\theta t} \Gamma(\omega + \theta) dK_{\lambda}(\theta) - \Gamma(\omega) \int_{-\infty}^{\infty} e^{i\theta t} dK_{\lambda}(\theta) \right|$$

$$= \left| \int_{-\infty}^{\infty} e^{i\theta t} \left[\int_{-\infty}^{\infty} g(u) e^{i(\omega + \theta)u} du \right] dK_{\lambda}(\theta) - \Gamma(\omega) A(\lambda; t) \right|$$

$$= \left| \int_{-\infty}^{\infty} g(u) e^{i\omega u} \left[\int_{-\infty}^{\infty} e^{i(t+u)\theta} dK_{\lambda}(\theta) \right] du - \Gamma(\omega) A(\lambda; t) \right|$$

$$= \left| \int_{-\infty}^{\infty} g(u) e^{i\omega u} A(\lambda; t - u) du - \Gamma(\omega) A(\lambda; t) \right|$$

$$= \left| A(\lambda; t) \Gamma^{\star}(\omega; t, \lambda) - \Gamma(\omega) A(\lambda; t) \right|$$
(A.45)

De donde se sigue el resultado.

Teorema A.9. Sea $\{X(t)\}_{t\in\mathcal{T}}$ un proceso semi-estacionario con ancho de banda característico B_X , sea g un filtro normalizado como en A.36 y cuyo ancho de banda es B_g y cuya función de respuesta es Γ . Sea $\{Y(t)\}_{t\in\mathcal{T}}$ un proceso definido como A.30. Sea \mathbf{F}^* una familia semi-estacionaria cuyo ancho de banda característico es B_X o es muy parecido a B_X (lo cual es posible por cómo se definió B_X). Se cumple que

$$\mathbf{E}\left[\left|Y(t)\right|^{2}\right] = \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} dH^{*}(\omega;t) + \mathcal{O}\left(\varepsilon\right)$$
(A.46)

donde H^* es el espectro integrado respecto a la familia \mathbf{F}^* y $\mathcal{O}(\varepsilon)$ es un término que puede hacerse arbitrariamente pequeño si B_g es pequeño respecto a B_X .

Demostración. Usando la expresión A.30 para este caso particular, puede escribirse

$$Y(t) = \int_{-\infty}^{\infty} \Gamma^{\star *}(\omega; t, \omega + \omega_0) A(\omega + \omega_0; t) e^{i\omega t} dZ(\omega + \omega_0)$$
(A.47)

donde Γ^{**} , A^* y Z^* están definidos respecto a la familia \mathbf{F}^* . Nótese que, debido a que los dZ's son ortogonales

$$\mathbf{E}\left[\left|Y(t)\right|^{2}\right] = \int_{-\infty}^{\infty} \left|A^{*}(\omega + \omega_{0}; t)\right|^{2} \left|\Gamma^{**}(\omega; t, \omega + \omega_{0})\right|^{2} d\mu^{*}(\omega + \omega_{0})$$
(A.48)

Si se elige a g de modo que ${}^{B_g\!}/\!{}^{B_X}<\varepsilon,$ en virtud del teorema A.8 puede escribirse

$$\Gamma^{\star\star}(\omega; t, \omega + \omega_0) = \Gamma(\omega) + R(\omega, \omega_0; t)$$
(A.49)

con $|R(\omega, \omega_0; t)| |A^*(\omega + \omega_0; t)| < \varepsilon$. Luego entonces

$$E\left[\left|Y(t)\right|^{2}\right] = \int_{-\infty}^{\infty} \left|A^{*}(\omega+\omega_{0};t)\right|^{2} \left|\Gamma^{**}(\omega;t,\omega+\omega_{0})\right|^{2} d\mu^{*}(\omega+\omega_{0})$$

$$= \int_{-\infty}^{\infty} \left|A^{*}(\omega+\omega_{0};t)\right|^{2} \left|\Gamma(\omega)+R(\omega,\omega_{0};t)\right|^{2} d\mu^{*}(\omega+\omega_{0})$$

$$= \int_{-\infty}^{\infty} \left|A^{*}(\omega+\omega_{0};t)\right|^{2} \left|\Gamma(\omega)\right|^{2} d\mu^{*}(\omega+\omega_{0}) + I_{1} + I_{2} + I_{3}$$
(A.50)

donde

$$I_1 = \int_{-\infty}^{\infty} \left| A^*(\omega + \omega_0; t) \right|^2 \overline{\Gamma(\omega)} R(\omega, \omega_0; t) \, d\mu^*(\omega + \omega_0) \tag{A.51}$$

$$I_2 = \int_{-\infty}^{\infty} \left| A^*(\omega + \omega_0; t) \right|^2 \Gamma(\omega) \overline{R(\omega, \omega_0; t)} \, d\mu^*(\omega + \omega_0) \tag{A.52}$$

$$I_{3} = \int_{-\infty}^{\infty} |A^{*}(\omega + \omega_{0}; t)|^{2} |R(\omega, \omega_{0}; t)|^{2} d\mu^{*}(\omega + \omega_{0})$$
(A.53)

Claramente, para ${\cal I}_3$ puede verse que

$$\int_{-\infty}^{\infty} \left| A^*(\omega + \omega_0; t) \right|^2 \left| R(\omega, \omega_0; t) \right|^2 \, d\mu^*(\omega + \omega_0) < \varepsilon^2 \int_{-\infty}^{\infty} \, d\mu^*(\omega + \omega_0) = \mathcal{O}\left(\varepsilon^2\right)$$
(A.54)

Respecto a I_1 , nótese que

$$\int_{-\infty}^{\infty} \left| A^*(\omega + \omega_0; t) \right|^2 \overline{\Gamma(\omega)} R(\omega, \omega_0; t) \, d\mu^*(\omega + \omega_0) < \varepsilon \int_{-\infty}^{\infty} \left| A^*(\omega + \omega_0; t) \right| \overline{\Gamma(\omega)} \, d\mu^*(\omega + \omega_0)$$
(A.55)

Una cota similar puede hallarse para el tercer sumando. Falta demostrar que la cota permanece finita cuando $B_g \to 0$, lo cual debería lograrse definiendo el conjunto

$$\Omega = \left\{ \omega \in \mathbb{R} \mid \left| \Gamma(\omega) \right| \left| A^*(\omega; t) \right| \le 1 \right\}$$
(A.56)

y luego, claramente

$$\int_{-\infty}^{\infty} \left| A^*(\omega;t) \right| \left| \Gamma(\omega) \right| d\mu^*(\omega) = \int_{\Omega} \mu^*(\omega) + \int_{\Omega^C} \left| A^*(\omega;t) \right| \left| \Gamma(\omega) \right| d\mu^*(\omega)$$
(A.57)

el primer sumando es claramente finito y no depende de g, mientras que el segundo debería ser finito ya que Γ está normalizada.

A.4. Propiedades del estimador de doble ventana

Para esta sección se considera un proceso a tiempo continuo $\{X(t)\}_{t\in\mathbb{R}}$ y una muestra del mismo de longitud T (o equivalentemente un proceso $\{X(t)\}_{t\in[t,\mathcal{T}]}$), suficientemente larga. El objetivo en esta sección es construir un estimador para el espectro evolutivo $dH(\omega; t)$. Por simplicidad, se supondrá que la medida μ es absolutamente continua respecto a la medida de Lebesgue, y entonces puede escribirse

$$h(\omega, t) := dH(\omega; t) \tag{A.58}$$

Para efectuar la estimación del espectro se hará uso del teorema A.8, para lo cual se necesita un filtro g normalizado según A.36 y cuyo ancho de banda, B_g , satisface

$$B_g \ll B_X \ll T \tag{A.59}$$

Bajo estas condiciones se construye U aplicando
aXun filtro lineal cuya función de respuesta e
sg

$$U(\omega;t) = \int_{t-T}^{t} g(u)e^{-i\omega(t-u)}X(t-u)du$$
(A.60)

Bajo la condición A.59, la integral que define a U puede extenderse a todo \mathbb{R} sin cambiar mucho su valor (excepto cerca de 0 y T), e incluso se llega a ser exacta si ges 0 fuera de un intervalo pequeño alrededor de 0. Entonces, en virtud del teorema A.9 aplica de manera aproximada, y entonces se cumple que

$$\mathbf{E}\left[\left|U(\omega;t)\right|^{2}\right] = \int_{-\infty}^{\infty} \left|\Gamma(\theta)\right|^{2} h(\omega+\theta,t) \, d\theta + \mathcal{O}\left({}^{B_{g}}\!/_{B_{X}}\right) \tag{A.61}$$

El teorema de Isserlis es una identidad relativamente poco conocida sobre los cuartos momentos de una distribución multinormal, el cual es usado para calcular la covarianza de los estimadores del espectro de potencias.

Teorema A.10 (Isserlis). Sea $[X_1, X_2, X_3, X_4]$ un vector aleatorio siguiendo una distribución multinormal con media cero y matriz de covarianza finita. Se cumple que

$$E[X_1X_2X_3X_4] = E[X_1X_2]E[X_3X_4] + E[X_1X_3]E[X_2X_4] + E[X_1X_4]E[X_2X_3]$$
(A.62)

Proposición A.11. Dadas las condiciones, y si $\{X(t)\}_{t\in\mathcal{T}}$ es un proceso normal que admite un espectro evolutivo uniformemente continuo, se tiene que

$$\operatorname{Var}\left(\left|U(\omega;t)\right|^{2}\right) = \left[\int_{-\infty}^{\infty} \left|\Gamma(\theta)\right|^{2} h(\theta+\omega,t)d\theta\right]^{2} + \mathcal{O}\left({}^{B_{g}}\!/_{B_{X}}\right)$$
(A.63)

Demostración. Por conveniencia se obtendrá una expresión aproximada para la covarianza de U, a partir de la cual se deducirá su varianza. Para ello, por definición puede escribirse para $t, s \in \mathcal{T}$ y $\omega, \lambda \in \mathbb{R}$

$$\operatorname{Cov}\left(\left|U(\omega;t)\right|^{2},\left|U(\lambda;s)\right|^{2}\right) = \operatorname{E}\left[\left|U(\omega;t)\right|^{2}\left|U(\lambda;s)\right|^{2}\right] - \operatorname{E}\left[\left|U(\omega;t)\right|^{2}\right] \operatorname{E}\left[\left|U(\lambda;s)\right|^{2}\right]$$
(A.64)

$$\mathbb{E}\left[\left|U(\omega;t)\right|^{2}\left|U(\lambda;s)\right|^{2}\right] = \iiint_{\mathbb{R}^{4}} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda}$$
$$\times \mathbb{E}\left[X(t-u)X(t-v)X(s-w)X(s-z)\right] du dv dw dz \quad (A.65)$$

Si para cada t X(t) sigue una distribución normal, entonces en virtud del teorema A.10 puede escribirse

$$E [X(t-u)X(t-v)X(t-w)X(t-z)] = R(t-u,t-v)R(s-w,s-z) + R(t-u,s-z)R(t-v,s-w)$$
(A.66)
+ R(t-u,s-w)R(t-v,s-z)

Reemplazando sobre la expresión anterior, puede escribirse

$$\mathbf{E}\left[\left|U(\omega;t)\right|^{2}\left|U(\lambda;s)\right|^{2}\right] = \mathbf{E}\left[\left|U(\omega;t)\right|^{2}\right]\mathbf{E}\left[\left|U(\lambda;s)\right|^{2}\right] + S_{1} + S_{2}$$
(A.67)

donde

$$S_{1} = \iiint_{\mathbb{R}^{4}} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda} \\ \times R(t-u,s-z)R(t-v,s-w)\,du\,dv\,dw\,dz \quad (A.68)$$

Se define a S_2 de manera similar, intercambiando w y z. Estas expresiones, de apariencia innecesariamente complicada, pueden interpretarse como las *interferencias* de la covarianza entre los puntos (ω, t) y (λ, s). Para ello, nótese que

$$\operatorname{Cov}\left(\left|U(\omega;t)\right|^{2},\left|U(\lambda;s)\right|^{2}\right) = S_{1} + S_{2} + \mathcal{O}\left({}^{B_{g}}\!/_{B_{X}}\right)$$
(A.69)

Cabe mencionar que es conveniente que las cantidades S_1 y S_2 sean pequeñas.

Sea ha elegido a g de forma que $B_g \ll B_X$ con el objetivo de que U tenga un sesgo pequeño, en virtud del teorema A.9. Este teorema puede ser usado nuevamente si S_1 y S_2 son reescritas en cierta forma *adecuada*, para lo cual la autocovarianza debe ser vista como

$$R(p,q) = \int_{-\infty}^{\infty} e^{i\omega(p-q)} A(\omega;p) \overline{A(\omega;q)} \, d\mu(\omega)$$
(A.70)

Así pues, reemplazando esta expresión sobre A.68 se obtiene

$$\begin{split} S_{1} &= \iiint_{\mathbb{R}^{4}} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda} \\ &\times R(t-u,s-z)R(t-v,s-w)\,du\,dv\,dw\,dz \\ &= \iiint_{\mathbb{R}^{4}} g(u)g(v)g(w)g(z)e^{iu\omega}e^{iv\omega}e^{iw\lambda}e^{iz\lambda} \\ &\times \left(\iint_{\mathbb{R}^{2}} \left[e^{-i\theta(s-z-t+u)}A(\theta;t-u)\overline{A(\theta;s-z)}\right] \\ & \left[e^{-i\phi(s-w-t+u)}A(\phi;t-v)\overline{A(\theta;s-w)}\right]d\theta\,d\phi\right)\,du\,dv\,dw\,dz \\ &= \iint_{\mathbb{R}^{2}} \Gamma^{\star}(\theta+\omega;t,\theta)\overline{\Gamma^{\star}(\phi+\omega;t,\phi)}\Gamma^{\star}(\phi+\lambda;s,\phi)\overline{\Gamma^{\star}(\theta+\lambda;s,\theta)} \\ &\times \left[A(\theta;t)\overline{A(\phi;t)}A(\phi;s)\overline{A(\theta;t)}\right]d\theta\,d\phi \end{split}$$

$$= \left[\int_{-\infty}^{\infty} \overline{\Gamma^{\star}(\phi + \omega; t, \phi)} \Gamma^{\star}(\phi + \lambda; s, \phi) \overline{A(\phi; t)} A(\phi; s) d\phi \right] \\ \times \left[\int_{\mathbb{R}^2} \Gamma^{\star}(\theta + \omega; t, \theta) \overline{\Gamma^{\star}(\theta + \lambda; s, \theta)} A(\theta; t) \overline{A(\theta; t)} d\theta \right]$$
(A.71)

Usando el teorema A.8, se puede decir que $|A| |\Gamma^{\star} - \Gamma| \leq B_g/B_X$. Así entonces

$$|S_{1}| = \left| \int_{-\infty}^{\infty} \overline{\Gamma^{\star}(\phi + \omega; t, \phi)} \Gamma^{\star}(\phi + \lambda; s, \phi) \overline{A(\phi; t)} A(\phi; s) d\phi \right|$$

$$\times \left| \int_{\mathbb{R}^{2}} \Gamma^{\star}(\theta + \omega; t, \theta) \overline{\Gamma^{\star}(\theta + \lambda; s, \theta)} A(\theta; t) \overline{A(\theta; t)} d\theta \right|$$

$$\leq \left[\int_{-\infty}^{\infty} \left| \Gamma^{\star}(\phi + \omega; t, \phi) \right| \left| \Gamma^{\star}(\phi + \lambda; s, \phi) \right| \left| A(\phi; t) A(\phi; s) \right| d\phi \right]$$

$$\times \left[\int_{\mathbb{R}^{2}} \left| \Gamma^{\star}(\theta + \omega; t, \theta) \right| \left| \Gamma^{\star}(\theta + \lambda; s, \theta) \right| \left| A(\theta; t) A(\theta; t) \right| d\theta \right]$$

$$\leq \left[\int_{-\infty}^{\infty} \left| \Gamma(\phi + \omega) \right| \left| \Gamma(\phi + \lambda) \right| \left| A(\phi; t) A(\phi; s) \right| d\phi \right]^{2} + \mathcal{O} \left(B_{g}/B_{X} \right)$$

La misma cota puede hallarse para S_2 . En lo inmediato, conviene analizar el caso $\omega = \lambda$ y t = s, de donde se obtiene

$$\operatorname{Var}\left(\left|U(\omega;t)\right|^{2}\right) = \operatorname{Cov}\left(\left|U(\omega;t)\right|^{2}, \left|U(\omega;t)\right|^{2}\right) = S_{1} + S_{2} + \mathcal{O}\left({}^{B_{g}}\!/_{B_{X}}\right) \quad (A.73)$$

En este caso particular, la cota obtenida puede reducirse a

$$|S_{1}| \leq \left[\int_{-\infty}^{\infty} \left|\Gamma(\phi+\omega)\right|^{2} \left|A(\phi;t)\right|^{2} d\phi\right]^{2} + \mathcal{O}\left({}^{B_{g}}\!/_{B_{X}}\right)$$

$$= \left[\int_{-\infty}^{\infty} \left|\Gamma(\phi+\omega)\right|^{2} h(\phi,t) d\phi\right]^{2} + \mathcal{O}\left({}^{B_{g}}\!/_{B_{X}}\right)$$
(A.74)

y similarmente para S_2 .

En el teorema anterior puede interpretarse que $\int_{-\infty}^{\infty} |\Gamma(\phi + \omega)|^2 h(\phi, t) d\phi$ es una versión suavizada de h. Así como se usó una ventana para construir a U como una versión mejorada del periodograma, U puede modificarse usando una segunda función de ventana w_{τ} . Por estética y comodidad, las condiciones sobre w_{τ} serán presentadas

junto a las propiedades de la ventana g; todas ellas en la siguiente definición. Es así como se construye la definición del estimador de doble ventana.

Definición A.7. El estimador de doble ventana es un estimador para h definido como

$$\widehat{h}(\omega,t) = \int_{T-t}^{t} w_{\tau}(u) \left| U(\omega,t-u) \right|^2 du \qquad (A.75)$$

donde la función g satisface

• $B_g \ll B_X \ll T$

•
$$g(t) \rightarrow 0 \ cuando \ |t| \rightarrow \infty$$

•
$$2\pi \int_{-\infty}^{\infty} |g(u)|^2 du = \int_{-\infty}^{\infty} |\Gamma(\omega)|^2 d\omega = 1$$

 $con \ \Gamma(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} g(t) d\lambda.$ Así mismo, la función w_{τ} satisface

• $w_{\tau}(t) \geq 0$ para cualesquiera t, τ

•
$$w_{\tau}(t) \rightarrow 0 \ cuando \ |t| \rightarrow \infty, \ para \ todo \ \tau$$

•
$$\int_{-\infty}^{\infty} w_{\tau}(t) dt = 1 \text{ para todo } \tau$$

•
$$\int_{-\infty}^{\infty} \left(w_{\tau}(t) \right)^2 dt < \infty \text{ para todo } \tau$$

•
$$\exists C \in \mathbb{R} \text{ tal que } \lim_{\tau \to \infty} \tau \int_{-\infty}^{\infty} |W_{\tau}(\lambda)|^2 d\lambda = C$$

donde $W_{\tau}(\lambda) = \int_{-\infty}^{\infty} e^{-i\lambda t} w_{\tau}(t) d\lambda.$

El supuesto sobre que w_{τ} decaiga rápidamente lejos de 0 permite reemplazar el intervalo de integración que define a \hat{h} por \mathbb{R} (excepto cerca de 0).

Proposición A.12. El estimador de doble ventana satisface

$$\operatorname{E}\left[\widehat{h}(\omega,t)\right] = \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^2 \overline{h}(\omega,t) d\omega du + \mathcal{O}\left({}^{B_g}\!/_{B_X}\right)$$
(A.76)

donde

$$\bar{h}(\omega,t) = \int_{-\infty}^{\infty} w_{\tau}(u)h(\omega,t-u)du$$
(A.77)

Demostración. De manera relativamente sencilla puede verificarse que

$$\begin{split} \mathbf{E}\left[\widehat{h}(\omega,t)\right] &= \mathbf{E}\left[\int_{-\infty}^{\infty} w_{\tau}(u) \left|U(t-u)\right|^{2} du\right] \\ &= \int_{T-t}^{t} w_{\tau}(u) \mathbf{E}\left[\left|U(t-u)\right|^{2}\right] du \\ &= \iint_{\mathbb{R}^{2}} w_{\tau}(u) \left|\Gamma(\omega)\right|^{2} h(\omega,t-u) d\omega du \\ &+ \mathcal{O}\left(B_{g}/B_{X}\right) \int_{-\infty}^{\infty} w_{\tau}(u) du \\ &= \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} \left[\int_{-\infty}^{\infty} w_{\tau}(u) h(\omega,t-u) du\right] d\omega du \\ &+ \mathcal{O}\left(B_{g}/B_{X}\right) \\ &= \int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{2} \overline{h}(\omega,t) d\omega du + \mathcal{O}\left(B_{g}/B_{X}\right) \end{split}$$

A diferencia de U, el estimador de doble ventana no es consistente salvo en caso que \overline{h} sea parecido a h; como \overline{h} es una versión suavizada, que el estimador sea sesgado depende de que $B_{w_{\tau}}$ sea pequeño en comparación a B_X .

Proposición A.13. El estimador de doble ventana satisface

$$\operatorname{Var}\left(V(t)\right) \approx \widetilde{h}^{2}(\omega_{0}, t) \left[\int_{-\infty}^{\infty} \left|W_{\tau}(\omega)\right|^{2} d\omega\right] \left[\int_{-\infty}^{\infty} \left|\Gamma(\omega)\right|^{4}\right] \left(1 + \delta(0, \omega_{0})\right) \quad (A.79)$$

donde

$$\widetilde{h}^2 = \frac{\int_{-\infty}^{\infty} h^2(\omega_0, t) \left(w_\tau(u)\right)^2}{\int_{-\infty}^{\infty} \left(w_\tau(u)\right) du}$$
(A.80)

Demostración. Como en el caso del estimador U, será conveniente calcular la covarianza de \hat{h} y posteriormente deducir la varianza. Se escribe para $t, s \in \mathcal{T}$ y $\omega, \lambda \in \mathbb{R}$

$$\operatorname{Cov}\left(\widehat{h}(\omega,t),\widehat{h}(\lambda,s)\right) = \operatorname{E}\left[\widehat{h}(\omega,t)\widehat{h}(\lambda,s)\right] - \operatorname{E}\left[\widehat{h}(\omega,t)\right] \operatorname{E}\left[\widehat{h}(\lambda,s)\right]$$
(A.81)

Hecho el trabajo previo, es claro que

$$\operatorname{Cov}\left(\widehat{h}(\omega,t),\widehat{h}(\lambda,s)\right) = \iint_{\mathbb{R}^2} w_{\tau}(u)w_{\tau}(v)\operatorname{Cov}\left(\left|U(\omega;t-u)\right|^2,\left|U(\lambda;s-v)\right|^2\right)dudv$$
$$= \iint_{\mathbb{R}^2} w_{\tau}(u)w_{\tau}(v)\left[S_1+S_2\right]dudv + \mathcal{O}\left({}^{B_g/B_X}\right)$$
$$= T_1 + T_2$$
(A.82)

usando, por comodidad

$$T_1 = \iint_{\mathbb{R}^2} w_\tau(u) w_\tau(v) \left[S_1\right] du dv \tag{A.83}$$

y similarmente para T_2 ; S_1 es como en la expresión A.71, evaluado en los puntos $(t-u,\omega)y(s-v,\lambda)$,

$$S_{1} = \left[\int_{-\infty}^{\infty} \overline{\Gamma_{*}(\phi + \omega; t - u, \phi)} \Gamma_{*}(\phi + \lambda; s - v, \phi) \overline{A(\phi; t - u)} A(\phi; s - v) d\phi \right]$$

$$\times \left[\int_{-\infty}^{\infty} \Gamma_{*}(\theta + \omega; t - u, \theta) \overline{\Gamma_{*}(\theta + \lambda; s - v, \theta)} A(\theta; t - u) \overline{A(\theta; s - v)} d\theta \right]$$
(A.84)

con Γ_* es la función de transferencia generalizada; S_2 se define de manera similar. Se usará el teorema A.8 para acotar la covarianza, comenzando por el primer sumando

$$T_{1} = \iint_{\mathbb{R}^{2}} w_{\tau}(u) w_{\tau}(v) [S_{1}] du dv$$

$$\leq \iint_{\mathbb{R}^{2}} w_{\tau}(u) w_{\tau}(v) |S_{1}| du dv$$

$$\leq \iint_{\mathbb{R}^{2}} w_{\tau}(u) w_{\tau}(v)$$

$$\times \left[\int_{-\infty}^{\infty} \left| \Gamma(\phi + \omega) \right| \left| \Gamma(\phi + \lambda) \right| \left| A(\phi; t - u) A(\phi; s - v) \right| d\phi \right]^{2} du dv + \mathcal{O} \left({}^{B_{g}}/B_{x} \right) \right]$$

$$\leq \iint_{\mathbb{R}^{2}} \left| \Gamma(\phi + \omega) \right| \left| \Gamma(\phi + \lambda) \right| \left| \Gamma(\theta + \omega) \right| \left| \Gamma(\theta + \lambda) \right|$$

$$\times \left[\iint_{\mathbb{R}^{2}} w_{\tau}(u) w_{\tau}(v) \left| A(\phi; t - u) A(\phi; s - v) \right| du dv \right] d\phi d\theta + \mathcal{O} \left({}^{B_{g}}/B_{x} \right) \right]$$
(A.85)

A.5. Un resultado sobre el logaritmo

Estas sección es más bien pequeña y dedicada a una aproximación muy puntual: sobre el valor esperado y varianza de la variable aleatoria g(X) en términos de la función g y las mismas cantidades para la variable aleatoria X.

Proposición A.14. Sea g una función cuando menos dos veces derivable en $\mathcal{D} \subseteq \mathbb{R}$, y sea X una variable aleatoria real tal que $P(X \notin \mathcal{D}) = 0$. Pueden usarse las siguientes aproximaciones

$$\mathbf{E}\left[g(X)\right] \approx g\left(\mathbf{E}\left[X\right]\right) \tag{A.86}$$

$$\operatorname{Var}(g(X)) \approx \operatorname{Var}(X) \left[g'(\operatorname{E}[X])\right]^2$$
 (A.87)

Demostración. Se construye el polinomio de Taylor de grado 2 para g alrededor de E[X]; esta función se evalúa en X

$$g(X) = g(E[X]) + (X - E[X])g'(E[X]) + \frac{(X - E[X])^2}{2}g''(\xi)$$
(A.88)

La aproximación consiste en considerar que $\frac{1}{2} \left(X - \mathbf{E}[X] \right)^2 g''(\xi) \approx 0.$

$$g(X) \approx g\left(\mathrm{E}\left[X\right]\right) + \left(X - \mathrm{E}\left[X\right]\right)g'\left(\mathrm{E}\left[X\right]\right) \tag{A.89}$$

Si se toma el valor esperado de ambos lados

$$\mathbf{E}\left[g(X)\right] \approx \mathbf{E}\left[g\left(\mathbf{E}\left[X\right]\right)\right] + \mathbf{E}\left[\left(X - \mathbf{E}\left[X\right]\right)\right]g'\left(\mathbf{E}\left[X\right]\right) = g\left(\mathbf{E}\left[X\right]\right)$$
(A.90)

Lo cual confirma la primera parte del resultado. Para verificar la segunda parte del mismo, se elevan ambos lados al cuadrado

$$\left[g(X)\right]^2 \approx \left[g\left(\mathbf{E}\left[X\right]\right)\right]^2 + 2g\left(\mathbf{E}\left[X\right]\right)\left(X - \mathbf{E}\left[X\right]\right)g'\left(\mathbf{E}\left[X\right]\right) + \left(X - \mathbf{E}\left[X\right]\right)^2\left[g'\left(\mathbf{E}\left[X\right]\right]\right)^2$$
(A.91)

113

Posteriormente se toma el valor esperado de ambos lados

$$E\left[\left[g(X)\right]^{2}\right] \approx E\left[\left[g\left(E\left[X\right]\right)\right]^{2}\right] + 2g\left(E\left[X\right]\right) E\left[X - E\left[X\right]\right]g'\left(E\left[X\right]\right) + E\left[\left(X - E\left[X\right]\right)^{2}\right]\left[g'\left(E\left[X\right]\right]\right)^{2} - \left[g\left(E\left[X\right]\right)\right]^{2} + \operatorname{Var}\left(X\right)\left[g'\left(E\left[X\right]\right]\right)^{2}\right] \right]$$
(A.92)

entonces

$$\operatorname{Var}\left(g(X)\right) = \operatorname{E}\left[\left[g(X)\right]^{2}\right] - \left[g\left(\operatorname{E}\left[X\right]\right)\right]^{2} \approx \operatorname{Var}\left(X\right)\left[g'\left(\operatorname{E}\left[X\right]\right]\right)^{2}$$
(A.93)

de donde se obtiene la segunda parte del resultado.

APÉNDICE B

Puntajes para pruebas neuropsicológicas

En psicología los instrumentos de medición comunes son las pruebas neuropsicológicas, entendidas como muestras de alguna conducta de interés a las que se asignan puntajes para comparar cuantitativamente a los sujetos [2]. Para los fines del presente trabajo, fueron usadas varias pruebas neuropsicológicas con el fin de identificar el PDCL (posible deterioro cognitivo leve) en adultos mayores, además de otras afecciones relacionadas al diagnóstico del PDCL. Concretamente, fueron usadas las siguientes pruebas:

- Short Anxiety Screening Test (SAST).
- Geriatric Depression Scale (GDS).
- Mini–Mental State Examination (MMSE).
- Evaluación Neuropsicológica (Neuropsi).
- Escala sobre las actividades cotidianas de la vida diaria (KATZ).

Para más información, ver sección 3.1. A continuación se presentan únicamente los *puntajes de corte*, puntajes para los cuales la evidencia aportada por las pruebas es indicativa de alguna característica. Este material fue retirado del texto principal para facilitar su lectura.

Prueba	Puntaje	Indicación
SAST	> 24 22 - 24 < 22	Positivo para ansiedad No es conclusivo Negativo para ansiedad
GDS	$egin{array}{c} 0-4 \ 5-8 \ 9-11 \ 12-15 \end{array}$	Normal Depresión leve Depresión moderada Depresión severa

Cuadro B.1: Puntajes de corte para las pruebas SAST y GDS

Fuente: Yesavage [68], Sinoff [59]

Cuadro B.2: Puntuación para la prueba KATZ

Ac	ctividad	Descripción
1	Baño	Se baña sólo, o con ayuda para lavarse
		una parte del cuerpo.
2	Vestido	Se viste totalmente sin ayuda.
3	Retrete	Sin ayuda.
4	Movilidad	Entra y sale de la cama.
5	Continencia	Control de esfínteres.
6	Alimentación	Lleva la comida del plato a la boca.
Fu	ente: Katz [24].	Se puntúa la dependencia para cada actividad.

		Sano		Deter	ioro cognitiv	0
Edad	Escolaridad	Alto	Normal	Leve	Moderado	Severo
31 - 50	Nula	95	68	54	41	28
	1 - 4	105	81	69	58	46
	5-9	118	106	101	90	79
	10 - 24	113	102	97	88	78
51 - 65	Nula	91	59	44	28	13
	1 - 4	98	77	67	57	47
	5-9	111	98	91	79	67
	10 - 24	102	93	88	80	72
66 - 85	Nula	76	48	34	20	6
	1 - 4	90	61	46	32	18
	5-9	97	80	72	56	39
	10 - 24	92	78	72	59	46

Cuadro B.3: Puntajes de corte para la prueba Neuropsi

Fuente: Ardila y Ostrosky [2]

Edad	Nivel de estudios	Máximo	Deterioro
45 - 49	Elemental	23	18
	Primario	26	20
	Medio	28	22
	Superior	29	23
50 - 54	Elemental	23	18
	Primario	27	21
	Medio	28	22
	Superior	29	23
55-59	Elemental	22	17
	Primario	26	20
	Medio	28	22
	Superior	29	23
60 - 64	Elemental	23	18
	Primario	26	20
	Medio	28	22
	Superior	29	23
65 - 69	Elemental	22	17
	Primario	26	20
	Medio	28	22
	Superior	29	23
70 - 74	Elemental	22	17
	Primario	25	20
	Medio	27	21
	Superior	28	22
75 - 79	Elemental	21	16
	Primario	25	20
	Medio	27	21
	Superior	28	22
80 - 84	Elemental	20	16
	Primario	25	20
	Medio	25	20
	Superior	27	21

Cuadro B.4: Puntajes de corte para la prueba MMSE

Fuente: Folstein [11]

APÉNDICE C

Cuadros y figuras adicionales

En este apéndice se muestran mayores detalles sobre los resultados obtenidos durante los análisis descritos en el capítulo 4. Este material fue excluido del texto principal con el fin de agilizar su lectura y enfatizar la interpretación de los resultados en el contexto del PDCL, más que la forma en que fueron calculados.

C.1. Total de épocas estacionarias

En esta subsección se reporta el total de segmentos de PSG clasificados como estacionarios usando la prueba de PSR. La clasificación se efectuó de manera independiente para todas las derivaciones, y la misma clasificación se repitió usando diferentes tamaños de ventana; se reportan todos los valores obtenidos.

Adicionalmente se reportan los resultados de aplicar la prueba χ^2 de Pearson para proporciones, para verificar si las proporciones de épocas estacionarias durante MOR y NMOR (p_{MOR} y p_{NMOR}) son diferentes.

Cuadro C.1: Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de

(1/2)
MJH
participante
sueño;

1710 209 1696 901	
	* * * * * * * * * * * * * * * * * * *
и и и и и и и и и и и и и и и и и и и	3 551 3 551 4 755 3 806 4 796 4 798 8 827
4090	4930 5075 4970 5212 5190 5194 5194 5362
- - * - *	* *
1229	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
10580 10580 10580	331 494 866 856 7709 815 815
	10 10 10 10 10 10 10 10 10 10 10 10 10 1
-	10 **** **** 10 **** 10 *** 10 **
2451 2762 2679 2609	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

jo;	
iueí	
les	
as c	
ap	
e et	
ntre	
s ei	
one	
rcić	
ode	
prc	
sus	
les	
ón (
ació	
oar;	
Iuc	
7 CC	
a, J	
tan	
ven	
de	
ño	
ma.	
ta.	
gún	
seg	
ias	
naı	
cio	
$\operatorname{set}_{\mathcal{E}}$	\frown
as (2/2
200	÷
۰ <u>ط</u>	ЦЛ
	te N
0	ant
ıdr	iciț
Jua	art
\cup	Ч

N+W R p N+W R p N+W R p N+W R p Fp2 531 67 133 12 31 2 3 1 Fp1 521 58 135 11 34 4 3 0 F7 670 84 7 203 37 56 10 16 1 F3 681 118 ** 206 37 56 10 16 1 F3 662 131 ** 206 37 56 10 16 1 T3 765 131 * 244 49 * 72 14 17 5 2 T4 756 132 ** 244 49 17 16 17 2 T3 741 132 ** 244 13 14 17 5 2 T6	N+W R p N+W R p N+W R p N+W R Fp2 531 67 139 12 31 2 31 2 31 1 Fp1 521 58 135 11 34 4 33 1 F7 670 84 7 209 23 56 10 11 3 4 33 1 34 4 33 1 34 4 35 11 33 11 34 4 33 11 34 4 33 11 34 4 33 11 34 4 34 11 10 35 12 131 4 34 11 17 5 2 14 17 5 2 14 17 5 2 14 17 5 2 14 17 5 2 14 17 5 2		E = 15	S S		E = 30	s		$\mathbf{E}=60$) s		E = 12	$^{\rm S}$ 0 $^{\rm S}$	
Fp2531671391231231Fp1521581351134430F623891872248792F4640124****19632565113F3681118*209235610161F3681118*206375610161F365121***203344811103T4662121***203344811103T3755131*225296116172C4726128***225296116172T613***22331887313T613***222315911142P4727113***2223315911142P3756123***2113875011142P4727113***2113875011142P3756123**2113877313P4727113***21138508117203 <tr< th=""><th>Fp2531671391231231Fp1521581351134430F7670841872248792F4640124****196325651113F3681118*2063756101661F3681118*2063756101661F3681118*2063756101661T4662121***203344811175T3765131*22529671617203T6754138***22635611617203T6754138***222315911142P4727113***2242387413133P3756123***231348611142P4727113***231348817203P4727113***2313374131142P3756123***231348611141412P4727113**231348711<</th><th></th><th>N+W</th><th>R</th><th>d</th><th>N+M</th><th>н</th><th>d</th><th>N+W</th><th>Ы</th><th>d</th><th>N+W</th><th>Ы</th><th>d</th></tr<>	Fp2531671391231231Fp1521581351134430F7670841872248792F4640124****196325651113F3681118*2063756101661F3681118*2063756101661F3681118*2063756101661T4662121***203344811175T3765131*22529671617203T6754138***22635611617203T6754138***222315911142P4727113***2242387413133P3756123***231348611142P4727113***231348817203P4727113***2313374131142P3756123***231348611141412P4727113**231348711<		N+W	R	d	N+M	н	d	N+W	Ы	d	N+W	Ы	d
Fp1 521 58 135 11 34 4 3 0 F7 670 84 22 48 7 9 2 F4 640 124 **** 196 32 56 10 16 1 F3 681 118 * 209 23 56 10 16 1 F3 681 118 * 206 37 56 10 16 1 T3 765 131 * 204 49 * 72 14 17 5 C4 726 128 ** 225 29 61 16 17 2 C4 726 128 ** 226 35 61 16 17 2 C3 741 132 *** 223 34 8 17 2 2 C4 727 138 *** <td< td=""><td>Fp1521581351134430F76708420923565113F367084209375610161F3681118$***$196325812131T4662121$***$206375610161T3765131$*$206375610161T4662121$***$203344811103T3765131$*$205296116175C4756123$***$226296116172C3741132$***$226316116172T6754138$***$226317616172T5818143$***$226317616172T677133$***$222317616172P4727113$***$211387413142P3756123$***$211387413142P4727113$***$211387413142P3756121$***$21138741310<</td><td>Fp2</td><td>531</td><td>67</td><td></td><td>139</td><td>12</td><td></td><td>31</td><td>2</td><td></td><td>0</td><td></td><td></td></td<>	Fp1521581351134430F76708420923565113F367084209375610161F3681118 $***$ 196325812131T4662121 $***$ 206375610161T3765131 $*$ 206375610161T4662121 $***$ 203344811103T3765131 $*$ 205296116175C4756123 $***$ 226296116172C3741132 $***$ 226316116172T6754138 $***$ 226317616172T5818143 $***$ 226317616172T677133 $***$ 222317616172P4727113 $***$ 211387413142P3756123 $***$ 211387413142P4727113 $***$ 211387413142P3756121 $***$ 21138741310<	Fp2	531	67		139	12		31	2		0		
F8 623 89 187 22 48 7 9 2 F7 670 84 209 23 56 5 11 3 F3 681 118 * 209 37 56 10 16 1 F3 681 118 * 206 37 56 10 16 1 T4 662 121 *** 203 34 48 11 10 3 T3 765 131 * 225 29 61 16 17 5 C4 754 132 *** 226 31 16 17 2 C5 131 * 225 31 48 7 16 17 2 T6 754 133 *** 239 48 7 16 17 2 T6 754 13 75 16 7	F8 623 89 187 22 48 7 9 2 F7 670 84 209 32 56 5 11 3 F3 681 118 * 206 37 56 10 16 1 T4 662 121 *** 206 37 56 10 16 1 T4 662 131 * 245 49 * 72 14 17 5 2 C4 726 131 * 225 29 62 9 17 2 2 2 C4 726 133 ** 225 29 61 16 17 2 2 2 2 2 17 2 2 2 2 10 17 2 2 2 14 17 2 2 2 14 12 14 2 12 2	Fp1	521	58		135	11		34	4		3	0	
F76708420923565113F4640124****196325812113F3681118*206375610161T4662121***203344811103T3765131*24549*7214175C4726132***225296116175C3741132***226356116175C4726138***224387616175T5818143***223315911142P4727113***23948*5613175P3756123**23948*5613142P4727113***23948*5613172P375612322231346310102P4727113***2313876131413P3756123*211387613142P4727113**2113856131010P31231331360	F7 670 84 209 23 56 5 11 3 F3 681 118 $*$ 206 37 56 10 16 11 T4 662 121 $***$ 203 34 48 11 10 3 T3 765 131 $*$ 203 34 49 $*$ 72 14 17 5 T3 765 131 $*$ 225 29 662 9 17 5 2 C4 726 132 $***$ 225 29 612 14 17 2 C3 741 132 $***$ 225 29 61 16 17 2 C4 726 138 $***$ 225 31 48 11 17 2 C3 741 132 $****$ 222 31 48 11 17 20 T6 727 113 $****$ 223 31 8 74 13 13 3 P4 727 113 $****$ 211 38 74 12 76 11 20 P3 756 123 $***$ 211 38 74 13 11 20 P3 756 123 313 34 8 74 13 11 14 2 P3 756 123 313 32 21 45 74 13 114 2 <	\mathbf{F}_{8}	623	89		187	22		48	2		6	0	
F4640124****196325812131F3681118*206375610161T4662121***203344811103T3765131*24549*7214175C4726128**225296116172T6731**225296116172T6754138****240407616172T6754138****220317616172T6818143***223317616172P4727113**222317616172P3756123**241407616172P4727113**221387413133O2833139*21134609124F2732129**21134669123O1860151*21134669123F2733119861198613161010F27331138741314153 <td>F4$640$$124$****$196$$32$$58$$12$$13$$1$T3$681$$118$*$206$$37$$56$$10$$16$$1$T4$662$$121$***$203$$34$$48$$11$$10$$3$T3$765$$131$*$245$$49$*$72$$14$$17$$5$C4$726$$128$**$225$$29$$62$$117$$22$$20$$4$T6$754$$138$****$226$$35$$61$$16$$17$$2$T6$754$$138$****$226$$35$$61$$16$$17$$2$T6$754$$138$****$239$$48$$*$$54$$12$$20$$4$T5$818$$143$****$239$$48$$*$$74$$13$$13$$20$P4$727$$113$$222$$31$$59$$11$$14$$2$P3$756$$123$$*$$242$$38$$74$$13$$10$$10$P4$727$$113$$211$$34$$56$$13$$10$$10$$20$P3$756$$123$$*$$214$$37$$10$$10$$21$$20$$3$P4$727$$133$$34$$57$$13$$10$$10$$21$$20$$31$$21$P4$13$<!--</td--><td>F7</td><td>670</td><td>84</td><td></td><td>209</td><td>23</td><td></td><td>56</td><td>Ŋ</td><td></td><td>11</td><td>က</td><td></td></td>	F4 640 124 **** 196 32 58 12 13 1 T3 681 118 * 206 37 56 10 16 1 T4 662 121 *** 203 34 48 11 10 3 T3 765 131 * 245 49 * 72 14 17 5 C4 726 128 ** 225 29 62 117 22 20 4 T6 754 138 **** 226 35 61 16 17 2 T6 754 138 **** 226 35 61 16 17 2 T6 754 138 **** 239 48 $*$ 54 12 20 4 T5 818 143 **** 239 48 $*$ 74 13 13 20 P4 727 113 222 31 59 11 14 2 P3 756 123 $*$ 242 38 74 13 10 10 P4 727 113 211 34 56 13 10 10 20 P3 756 123 $*$ 214 37 10 10 21 20 3 P4 727 133 34 57 13 10 10 21 20 31 21 P4 13 </td <td>F7</td> <td>670</td> <td>84</td> <td></td> <td>209</td> <td>23</td> <td></td> <td>56</td> <td>Ŋ</td> <td></td> <td>11</td> <td>က</td> <td></td>	F7	670	84		209	23		56	Ŋ		11	က	
F3681118*206375610161T4662121***203344811103T3765131*24549*7214175C4726128**225296116172C3741132***226356116172C4754138***240407616204T5818143***23048*541252P4727113***23048*541252P3756123222315911142P3756123242387413133O2833139*241385613101C2710121*211385613101C2710121*211385613101C37331413718883399F2768119887413161023C373314133741371810102C413***2313131609123<	F3681118*206375610161T4662121***203344811103T3765131*24549*7214175C4726128**225296116172C5754138***226356116172T6754138***226356116172T6754138***23948*54127014T5818143***23948*5412701020P47271132223159111422P3756123*242387413133O1860151**2113856131010FZ732129*211385613101C2710121*2113856131012FZ732108121*2113856131012FZ732108121*21138561310122FZ7413313131609922<	F4	640	124	* * * *	196	32		58	12		13	Ξ	
T4 662 121 *** 203 34 48 11 10 3 T3 765 131 * 245 49 * 72 14 17 5 C4 726 128 *** 225 29 61 16 17 2 C3 741 132 *** 225 29 61 16 17 2 T6 754 138 *** 229 48 * 54 12 20 4 T5 818 143 *** 239 48 * 54 12 20 4 P4 727 113 2222 31 59 11 14 2 P3 756 123 *** 242 38 74 13 13 3 O1 860 151 *** 211 34 17 20 3 C5 733 139 * 211 34 13 10 10 10 2	T4 662 121 *** 203 34 48 11 10 3 T3 765 131 * 245 49 * 72 14 17 5 C4 726 128 *** 225 29 61 16 17 2 C3 741 132 *** 226 35 61 16 17 2 T6 754 138 *** 220 35 61 16 20 4 T5 818 143 *** 239 48 * 54 12 5 2 P4 727 113 222 31 59 11 14 2 P3 756 123 * 244 50 * 13 13 3 O1 860 151 ** 211 38 74 13 10 1 20 3 3 3 3 3 3 3 3 3 3 3 3<	F3	681	118	*	206	37		56	10		16	Η	
T3 765 131 * 245 49 * 72 14 17 5 C4 726 128 ** 225 29 61 16 17 2 C3 741 132 *** 226 35 61 16 17 2 T6 754 138 **** 220 35 61 16 17 2 T6 754 13 *** 239 48 * 54 12 2 2 P4 727 113 *** 242 38 74 13 14 2 P3 756 123 * 242 38 74 13 14 2 P3 756 131 ** 211 38 73 10 10 2 P4 733 139 * 211 38 73 10 10 2	T3 765 131 * 245 49 * 72 14 17 5 C4 726 128 ** 225 29 61 16 17 2 T6 754 138 **** 226 35 61 16 17 2 T6 754 138 **** 226 35 61 16 17 2 T5 818 143 *** 228 31 59 11 14 2 P4 727 113 222 31 59 11 14 2 P3 756 123 242 38 74 13 13 3 01 860 151 *** 211 38 74 13 10 1 CZ 710 121 * 211 38 56 13 10 10 2 FZ 732 129 ** 211 38 56 13 10 10 2 FZ 732 129 ** 211 38 56 13 10 10 2 FZ 732 129 ** 313 31 60 9 112 3 CZ 710 121 * 211 38 56 13 10 10 2 FZ 732 129 ** 313 31 60 9 12 3 CZ 710 121 * 211 38 56 13 10 10 2 FZ 732 129 ** 313 31 60 9 12 3 CZ 710 121 * 211 38 56 13 10 10 2 FZ 732 129 ** 731 31 60 9 12 3 CZ 710 121 * 211 38 56 13 10 10 2 FZ 732 129 ** 731 31 60 9 12 3 CZ 710 121 * 211 38 56 13 10 10 2 FZ 732 129 ** 731 31 60 9 12 3 CZ 710 121 * 211 38 718 63 10 10 2 FZ 732 10 00 9 12 33 10 10 20 34 5 FZ 732 10 00 10 114 *** 342 37 10 105 16 34 5 FMG 564 94 192 31 105 16 34 5 FMG 564 94 192 31 705 16 34 5 FMG 564 94 193 105 17 436 80 0 225 33 FE = tanañ de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignilia; R=MOR; p, significancia de la pando de ventana; N+W=NMOR y vignificancia	T4	662	121	* * *	203	34		48	11		10	က	
C4 726 128 ** 225 29 62 9 15 2 C3 741 132 *** 226 35 61 16 17 2 T6 754 138 *** 240 40 76 16 17 2 T5 818 143 *** 239 48 * 54 12 20 4 P4 727 113 2222 31 59 11 14 2 P3 756 123 2242 38 74 13 13 3 O1 860 151 *** 251 45 73 10 10 2 FZ 732 129 * 211 38 56 13 10 10 2 FZ 732 129 * 211 38 56 13 10 12 3 C2 710 121 * 211 34 67 10 10 12 3 </td <td>C4726128**22529629152C3741132***226356116172T6754138****240407616204T5818143***23948*541252P4727113***23948*541252P3756123222315911142O1860151***24850*8117203O2833139*24850*81172033O1860151***21138741310102CZ710121*21138561310102CZ710121*211385613101023CZ710121*2113460912332CZ710121*211385613101233CZ710121*2113460912335533455334553345534553<td>T3</td><td>765</td><td>131</td><td>*</td><td>245</td><td>49</td><td>*</td><td>72</td><td>14</td><td></td><td>17</td><td>Ŋ</td><td></td></td>	C4726128**22529629152C3741132***226356116172T6754138****240407616204T5818143***23948*541252P4727113***23948*541252P3756123222315911142O1860151***24850*8117203O2833139*24850*81172033O1860151***21138741310102CZ710121*21138561310102CZ710121*211385613101023CZ710121*2113460912332CZ710121*211385613101233CZ710121*2113460912335533455334553345534553 <td>T3</td> <td>765</td> <td>131</td> <td>*</td> <td>245</td> <td>49</td> <td>*</td> <td>72</td> <td>14</td> <td></td> <td>17</td> <td>Ŋ</td> <td></td>	T3	765	131	*	245	49	*	72	14		17	Ŋ	
C3 741 132 *** 226 35 61 16 17 2 T6 754 138 **** 240 40 76 16 20 4 T5 818 143 *** 239 48 * 54 12 5 2 P4 727 113 222 31 59 11 14 2 P3 756 123 242 38 74 13 13 3 O2 833 139 * 248 50 * 81 17 20 3 O1 860 151 ** 248 50 * 81 17 20 3 O2 833 139 * 248 50 * 81 17 20 3 O3 830 121 38 73 10 10 10 10 1 C2 710 121 8 21 34 137 18 12 3	C3741132***226356116172T6754138****240407616204T5818143****23948*5412552P4727113***23948*5412552P3756123*242387413142O1860151***24850*8117203O1860151***211385613101C2710121*211385613101C2710121*21134609123C2710121*2113413718399P2768119**31360912345C31045114***3423710516345C4192315414192315414192C31015114***34237105127345345C4191254997192315414192C3104192315414192315414 </td <td>C4</td> <td>726</td> <td>128</td> <td>* *</td> <td>225</td> <td>29</td> <td></td> <td>62</td> <td>6</td> <td></td> <td>15</td> <td>0</td> <td></td>	C4	726	128	* *	225	29		62	6		15	0	
T6 754 138 **** 240 40 76 16 20 4 T5 818 143 *** 239 48 * 54 12 5 2 P4 727 113 222 31 59 11 14 2 P3 756 123 2242 38 74 13 13 3 O2 833 139 * 248 50 * 81 17 20 3 O1 860 151 *** 251 45 73 10 10 20 3 C2 732 129 ** 211 38 56 13 10 1 2 C2 710 121 * 211 34 63 11 15 4 P2 768 119 231 31 137 18 137 18 13 10 12 34 5 5 13 54 14 13 54 14	TG 754 138****240407616204T5818143***23948*5412522P4727113.222315911142P3756123.24850*8117133O2833139*24850*8117203O1860151***251457310102FZ732129**211385613101FZ732129**211346311154FZ7310121*211346311154CZ710121*211346311154FZ7681192313160912399PZ7681015114***3734413718399ROG1015114***37334541419231FMG564941923154141922345533FMG56494192315414195375414192Fotal18112531541419231 <td>C3</td> <td>741</td> <td>132</td> <td>* * *</td> <td>226</td> <td>35</td> <td></td> <td>61</td> <td>16</td> <td></td> <td>17</td> <td>0</td> <td></td>	C3	741	132	* * *	226	35		61	16		17	0	
T5 818 143 *** 239 48 * 54 12 5 2 2 2 13 2 22 31 59 11 14 2 P4 727 113 222 31 59 11 14 2 P3 756 123 242 38 74 13 13 3 3 O2 833 139 * 248 50 * 81 17 20 3 O1 860 151 *** 251 45 73 10 10 2 FZ 732 129 ** 211 34 63 11 15 4 CZ 710 121 * 211 34 63 11 15 4 PZ 768 119 231 31 60 9 12 3 PZ 768 119 231 31 60 9 12 3 PZ 768 119 231 31 60 9 12 3 FZ 768 119 231 31 60 9 12 3 PZ 768 119 231 31 60 9 12 3 FZ 768 119 231 31 60 9 12 3 FZ 768 119 231 31 60 9 12 3 PZ 768 119 231 31 60 9 12 3 FZ 768 119 231 31 60 9 12 3 FZ 768 119 231 31 60 9 12 3 FZ 768 119 231 31 60 9 12 7 3 FZ 768 119 231 31 60 9 12 7 3 FZ 768 119 131 *** 373 44 137 18 39 3 FZ 768 119 131 *** 373 45 105 16 33 5 FMG 1015 114 *** 342 37 105 16 33 7 FMG 1015 114 *** 342 37 105 16 33 3 FMG 1015 114 *** 342 37 105 16 33 3 FMG 96 wortana; N+W=NMOR y vigilia; R=MOR; p, significancia 4e	T5 818 143 *** 239 48 * 54 12 5 2 P4 727 113 222 31 59 11 14 2 P3 756 123 242 38 74 13 13 3 O2 833 139 * 248 50 * 81 17 20 3 O1 860 151 *** 251 45 73 10 10 2 FZ 732 129 ** 211 38 56 13 10 10 2 FZ 710 121 * 211 34 63 11 15 4 CZ 710 121 * 211 34 63 11 15 4 FZ 732 199 ** 373 44 137 18 39 9 ROG 1015 114 *** 342 37 105 16 34 5 FOG 1015 114 *** 342 37 105 16 34 5 FMG 564 94 192 31 54 14 19 2 ROG 1015 114 *** 342 37 105 16 34 5 FMG 564 94 192 31 54 14 19 2 FMG 181 254 905 127 436 80 0 225 33 FMG 181 254 905 127 436 80 0 225 33 FE-tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de	T6	754	138	* * * *	240	40		76	16		20	4	
P4727113222315911142P375612324850*7413133O2833139*24850*8117203O1860151**251457310102FZ732129**211385613101CZ710121*23131609123CZ710121*23131609123CZ710121*37441371833CZ703114***373441371833CG1045118***373441371833LOG1015114***373441371833LOG1015114***37334541933LOG1015114***373345419192FMG56494192315416192FMG56494192315414192FMG18112424244354192F1811242612743680025533F<	P4727113222315911142P3756123242387413133O2833139*24850*8117203O1860151***251457310102FZ732129**211385613101CZ710121*211346311154CZ710121*21134609123CZ710121*21134609123CZ710121*3110516345PZ76811923131609123LOG1045118***3734413718399ROG1015114***3423710516345EMG56494192315414192FMG564941923154192533Fotal181125490512743680022533Local18112542020512743680022533Lotal18112542020512743680022533<	$\mathbf{T5}$	818	143	* * *	239	48	*	54	12		ъ	0	
P3756123242387413133O2833139 $*$ 24850 $*$ 8117203O1860151 $***$ 251457310102FZ732129 $**$ 211385613101CZ710121 $*$ 211346311154CZ710121 $*$ 211346311153DG1045118 $***$ 3734413718333LOG1015114 $***$ 3423710516345EMG56494192315419192FMG1811254905127436800225533F=tamaño de ventama;N+W=NMOR y vigilia;R=MOR; p, significancia de4	P3756123242387413133O2833139*24850*8117203O1860151***251457310102FZ732129**21138561310102CZ710121*211346311154PZ76811923131609123LOG1045118***3734413718399ROG1015114***3734413718399ROG1015114***3733154192ROG56494192315414192Total181125490512743680022533E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de	P4	727	113		222	31		59	11		14	0	
O2833139*24850*8117203O1860151***251457310102FZ732129**211385613101CZ710121*211346311154PZ76811923131609123PZ76811923131609123PZ768118***3734413718399PZ768114***3423710516345ROG1015114***3423710516345ROG56494192315419192FMG564941923154192Total181125418743680022533F=tamañode ventana;N+W=NMOR y vigilia; R=MOR; p, significancia de11111	O2833139*24850*8117203O1 860 151 $***$ 251 45 73 10102FZ 732 129 $**$ 211 38 56 13101FZ 732 129 $**$ 211 34 63 1115 4 CZ 710 121 $*$ 211 34 63 1115 3 PZ 768 119 231 31 60 9 122 3 LOG 1045 118 $***$ 373 44 137 18 39 9 ROG 1015 114 $***$ 342 37 105 16 34 5 ROG 564 94 192 31 54 14 119 2 FMG 564 94 905 127 436 80 0 225 33 Fotal 1811 254 905 127 436 80 0 225 33 Featmano de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de	P3	756	123		242	38		74	13		13	က	
O1860151***251457310102FZ732129**211385613101CZ710121*211346311154PZ76811923131609123LOG1045118***3734413718399ROG1015114***3423710516345EMG56494192315414192Total18112541923154192Total18112690512743680022533Fatamão de ventans;N+W=NMOR y vigilia; R=MOR; p, significancia de1111	O1 860 151 *** 251 45 73 10 10 2 FZ 732 129 ** 211 38 56 13 10 1 CZ 710 121 * 211 34 63 11 15 4 PZ 768 119 231 31 60 9 12 3 LOG 1045 118 *** 373 44 137 18 39 9 ROG 1015 114 *** 342 37 105 16 34 5 EMG 564 94 192 31 54 14 19 2 Total 1811 254 905 127 436 80 0 225 33 Featamaño de ventana; N+W=NMOR y vigilia; R=MOR; p. significancia de viginia; R=MOR; p. significancia de ventana; N+W=NMOR y vigilia; R=MOR; p. sign	O2	833	139	*	248	50	*	81	17		20	က	
FZ732129**211385613101CZ710121*211346311154PZ7681192313131609123LOG1045118***3734413718399ROG1015114***3423710516345EMG56494192315419192Total181125490512743680022533F=tamão de ventana;N+W=NMOR y vigilia; R=MOR; p, significancia de1111	FZ732129**211385613101CZ710121*211346311154PZ768119231316091223LOG1045118***3734413718399LOG1015114***3423710516345ROG1015114***3423710516345EMG56494192315414192Total181125490512743680022533F=tamaño de ventana;N+W=NMOR y vigilia;R=MOR; p, significancia de	01	860	151	* * *	251	45		73	10		10	0	
CZ710121*211346311154PZ7681192313131609123LOG1045118***3734413718399ROG1015114***3423710516345EMG56494192315414192 Total 181125490512743680022533E=tamañode ventana;N+W=NMOR y vigilia;R=MOR;p, significancia de1	CZ710121*211346311154PZ76811923131316091223LOG1045118***3734413718399ROG1015114***3423710516345EMG564941923154141192Total181125490512743680022533Fermaño de ventana;N+W=NMOR y vigilia;R=MOR; p, significancia de102022533	$\mathbf{F}\mathbf{Z}$	732	129	* *	211	38		56	13		10	Η	
PZ7681192313131609123LOG1045118***3734413718399ROG1015114***3423710516345EMG56494192315414192 Total 181125490512743680022533E=tamañode ventana;N+W=NMOR y vigilia;R=MOR;p, significancia de1	PZ 768 119 231 31 60 9 12 3 LOG 1045 118 *** 373 44 137 18 39 9 LOG 1015 114 *** 342 37 105 16 34 5 ROG 1015 114 *** 342 37 105 16 34 5 EMG 564 94 192 31 54 14 19 2 Total 1811 254 905 127 436 80 0 225 33 F=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de 1 2 2 2 2 2 2 33 2 2 33 34 5 33 34 5 34 5 34 5 34 5 34 5 34 5 34 5 34 5 34 5 34 5 34 5 34 5 34 5 3	$\mathbf{C}\mathbf{Z}$	710	121	*	211	34		63	11		15	4	
LOG 1045 118 *** 373 44 137 18 39 9 ROG 1015 114 *** 342 37 105 16 34 5 EMG 564 94 192 31 54 14 19 2 Total 1811 254 905 127 436 80 0 225 33 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p , significancia de	LOG 1045 118 $***$ 373 44 137 18 39 9 ROG 1015 114 $***$ 342 37 105 16 34 5 EMG 564 94 192 31 54 14 19 2 Total 1811 254 14 19 2 Total 1811 254 905 127 436 80 0 225 33 F=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la sumble x^2 de Doucon outro les menorizants de ventancia d	ΡZ	768	119		231	31		60	6		12	က	
ROG1015114***3423710516345EMG56494192315414192Total181125490512743680022533E=tamaño de ventana; $N+W=NMOR y$ vigilia; $R=MOR; p,$ significancia de	ROG 1015 114 $***$ 342 37 105 16 34 5 EMG 564 94 192 31 54 14 19 2 Total 1811 254 905 127 436 80 0 225 33 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p , significancia de la delacación de ventancia	LOG	1045	118	* * *	373	44		137	18		39	6	
EMG 564 94 192 31 54 14 19 2 Total 1811 254 905 127 436 80 0 225 33 E =tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de	EMG 564 94 192 31 54 14 19 2 Total 1811 254 905 127 436 80 0 225 33 \mathbf{F} =tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la antech attra la monora attra la antech attra la attra la antech attra la attra attra la attra la attra la attra la attra la attra	ROG	1015	114	* * *	342	37		105	16		34	ŋ	
Total181125490512743680022533 $E=tamaño$ de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de	Total181125490512743680022533 $E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia dela mucho \lambda^2 do Doucon outro las monoraciones do montanas actacionarias ou$	EMG	564	94		192	31		54	14		19	0	
E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de	E =tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la mucho λ^2 do Doucon outro los monomios do montanos octorionarios on	Total	1811	254		905	127		436	80	0	225	33	
	Is britche $1/2$ de Doerson outre les proportanes de troptanes detrementes ou	 日, 	tamaño (de ven	itana; N	HW=NM	OR y	vigil	ia; R=M	OR;	p, sig	gnificancia	a de	

Cuadro C.3: Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JAE (1/2)

	E = 0.5	9375 s		E = 1.6	875 s		E = 3.7	⁷ 5 s		E = 7.5	S S	
	N+W	Я	d	N+W	R	d	N+W	Я	d	N+W	Ч	d
Fp2	14507	4093	* * * *	7993	1821		3721	706	***	1303	192	* ** *
$\operatorname{Fp1}$	14347	4030	* * *	7442	1742		3310	695	* * *	1120	193	***
F8	14793	3322	*	8005	1959	* * *	3566	932	*** *	1155	322	* * *
F7	14992	3985	* ** *	8525	1850	* * * *	4065	785	* * *	1539	232	***
F4	14058	4133	* * *	8343	1899		3940	772	* * *	1392	227	***
F3	14529	4344	* ** *	8358	2026	* *	4011	875	*	1523	326	
T4	15261	4044	* * *	8889	1908	* * *	4134	768	* * *	1492	227	***
T3	14658	4145	*** *	8701	2109	* * *	4065	945		1447	323	
C4	13674	3913	****	8764	1996		4343	937	* * *	1614	308	***
C3	14129	3998	* * *	9059	2105		4431	946	* * *	1666	336	* * *
T6	15741	4147	*** **	9437	2189		4544	903	* * *	1726	266	***
$\mathbf{T5}$	13785	3086	*	6334	994	*** **	1968	97	*** *	582	4	*** *
P4	14443	3902	* * *	9373	2162		4610	986	* * *	1750	340	* * *
P3	15044	4011	****	9208	2018	*** **	4131	763	*** *	1383	208	*** *
O2	13915	3499	* * *	9107	2000	* * *	4439	787	* * *	1653	261	***
01	14540	3799	* * * *	9201	2099		4449	774	* * *	1580	239	* * * *
\mathbf{FZ}	15750	3093	* * *	9103	1969	* * *	4321	980		1618	369	
$\mathbf{C}\mathbf{Z}$	11678	3203	* * *	8483	1916		4324	606	* * *	1594	318	* * *
ΡZ	13278	3705	* * *	9006	2084		4470	955	* * *	1694	330	* ** *
LOG	10156	3057	* * *	6869	1665	*	3924	856	*	1981	348	* ** *
ROG	10691	3127	* * *	7337	1799	* * *	4214	892	* * *	2096	387	* * *
EMG	17994	1947	* * * *	8299	776	* * *	3362	268	* * *	1126	100	* * * *
Total	23583	5472		11791	2736		5895	1368		2947	684	
E=tan	año de	ventané	$\mathfrak{a}; \mathrm{N} + \mathrm{W}_{\Xi}$	=NMOR	y vigili	a; R=M	OR; p , sig	gnificar	ncia de l	a prueba	$\chi^2 \mathrm{de}$	Pear-
son en	tre las _I	propore	iones de	ventanas	s estaci	onarias	en N+W	y R: Č	$^{*}=0.05,$	$^{**}=0.01,$	 * * *	0.005,
)== ****	0.001											

	E = 15	s		E = 30	ß		E = 60	s		E = 12	s 01	
	N+W	R	d	N+M	Ч	d	N+W	Я	d	N+W	Я	d
Fp2	375	29	* * *	91	4	* * *	13	0		2	0	
Fp1	280	27	* * *	43	7	*	6	0			0	
F8	292	71		64	14		13	က		0	0	
F7	504	36	* * *	131	Ŋ	* ** *	35	0	*	3	Η	
F4	387	45	* * *	88	2	*	20	0		ဂ	0	
F3	486	84	*	119	13	*	29	2		2	0	
T4	415	48	* * *	93	2	* *	18	0			0	
T3	448	80	*	132	12	* * *	38	9		2	0	
C4	561	83	* * *	151	11	* * *	44	Ξ	*	9	Η	
C3	551	93	* * *	152	18	*	42	2	*	4	2	
T6	533	63	* * *	147	10	* ** *	38	Η	*	2	0	
$\mathbf{T5}$	140	2	* * *	55	0	* * *	17	0		0	Η	
P4	551	87	* * *	160	∞	* ** *	34	0	*	J.	0	
P3	396	39	* * *	109	ю	* ** *	38	4		2	2	
O2	518	58	* * *	119	12	*	30	လ		ъ	Η	
01	472	40	* * *	110	13	*	31	လ		4	Т	
FZ	512	117		140	32		33	2		4	0	
CZ	529	91	*	111	14		30	Ŋ		2	0	
ΡZ	500	88	*	125	12	*	23	က		2	0	
LOG	859	110	* * *	313	22	* * *	102	လ	* * *	17	1	*
ROG	913	142	* * *	334	29	* * *	88	4	* * *	13	Ŋ	
EMG	260	37	*	36	ŋ		2	Ξ		0	0	
Total	1473	342		736	171		365	88		201	25	
	E=tama	ño de	ventan <i>ɛ</i>	$\mathbf{n}; \mathbf{N} + \mathbf{W} = \mathbf{v}$	NMO	R y vigi	lia; R=M	OR;	p, signif	ficancia de	Ð	
	a. nrueh	Ά. V ²	de Pears	on entre	las nr	oporcio	nes de ver	าเลเทละ	s estaci	onarias er	_	
	ta praco	ب ب ب						OTTOAT			4	
1	N+W y	н. 	=0.05, **	=0.01, **	J.U=*)05, ***.	*=0.001					

Cuadro C.4: Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JAE (2/2) **Cuadro C.5:** Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante MGG (1/2)

	E = 0.5	9375 s		E = 1.8	875 s		E = 3.7	5 s		E = 7.5	S S		
	N+W	R	d	N+W	R	d	N+W	R	d	N+W	R	d	
Fp2	17468	3349		9647	1329	* * *	4789	477	* * *	1860	105	* * * *	
Fp1	18103	3206	*** **	9605	1322	*** **	4848	459	** **	1931	66	* * *	
F8	18312	3500		9964	1396	*** **	4720	483	** **	1794	114	* * *	
F7	19079	3635		10101	1511	*** **	4983	561	** **	1918	150	* * *	
F4	17576	3784	*** *	9832	1670	* ** *	4918	694	* * * *	1952	209	* * *	
F3	16864	3669	***	9486	1865		4859	887	*	1892	341		
$\mathrm{T4}$	18998	4037	*** *	10424	1836	* ** *	4828	734	** **	1964	250	* * *	
T3	19841	4439	****	10457	2144	*** **	5048	1003		2013	427	*	
C4	17911	4024	****	10511	2036		5360	939	** **	2318	367	* * *	
C3	17949	4036	*** *	10240	2102	* ** *	5329	962	* * *	2248	400		
T6	18922	4132	*** *	10985	2049	*	5398	200	** **	2361	355	* * *	
$\mathbf{T5}$	19424	4383	***	10963	2237	*** **	5593	1105		2463	475		
P4	17529	4023	*** *	10926	2096		5527	961	* * * *	2360	381	* * *	
P3	17439	4114	***	10757	2161	*** **	5592	1014	* * *	2368	419	*	
O2	15931	3801	*** *	10453	2013		5319	954	* * * *	2278	351	* * *	
01	15395	3933	***	10166	2043	* * *	5300	975	*	2212	405		
FZ	15899	3496	* * *	9307	1856	*	4980	858	* * * *	2063	321	* * *	
CZ	15967	3479	* * *	9763	1930		5237	935	* * * *	2261	372	* * *	
ΡZ	15911	3830	* * *	10377	2062	*	5427	976	* * * *	2237	359	* * *	
LOG	11207	2626	***	7443	1240	*** **	4887	616	** **	2523	257	* * *	
ROG	13404	2993	*** *	8920	1513	* ** *	5376	758	** **	2755	326	* * *	
EMG	14694	1424	*** *	7664	811	*** *	3585	392	** **	1549	196	* * *	
Total	27669	5312		13834	2656		6917	1328		3458	664		
E=tam	año de	ventaná	a; $N+W=$	=NMOR	y vigili	a; R=M	OR; p , sig	gnificar	ncia de la	a prueba	$\chi^2 \mathrm{de}$	Pear-	
son en	tre las _f	roporc	iones de	ventanas	estaci	onarias	en N+W	y R: ,	=0.05,	$^{**}=0.01,$	 * * *	0.005,	
)=****).001	I						\$					
N+W R p N+W R p N+W R Fp1 633 13 **** 182 1 **** 59 0 **** 14 5 Fp1 672 12 **** 184 2 **** 60 0 **** 17 5 F7 669 31 **** 190 6 **** 53 0 **** 13 4 F3 651 97 * 206 17 **** 53 0 **** 36 7 F3 651 97 * 206 17 **** 57 5 **** 36 7		E = 15	S S		E = 30	s		E = 60	s		E = 12	s 03	
---	----------------------	----------	-------------	------------------	-----------	-------------------	------------------	-----------	------	------------------	------------	------	--------
Fp2 633 13 **** 182 1 **** 184 2 **** 59 0 **** 14 5 Fp1 672 12 **** 214 2 **** 13 4 F7 669 31 **** 197 2 **** 53 0 *** 3 4 F3 651 97 * 206 17 **** 57 5 *** 3 4 F3 651 97 * 206 17 **** 10 5 *** 36 7 T4 792 69 **** 317 31 **** 110 5 **** 36 7 T3 761 148 **** 317 31 **** 113 **** 16 4 T3 761 148 *** 110 5 **** 22 7 12		N+W	ЫЧ	d	N+W	Я		N+W	Я	d	N+W	Ч	d
Fp1 672 12 **** 214 2 **** 184 2 **** 184 2 **** 12 6 F7 669 31 **** 184 2 **** 53 0 **** 12 5 F4 663 40 **** 190 6 **** 57 5 **** 13 4 F3 651 97 * 206 17 **** 57 5 12 2 T4 792 69 **** 206 17 **** 104 3 **** 36 7 C4 944 139 **** 206 17 **** 104 3 **** 36 7 C4 94 139 **** 37 31 **** 104 3 **** 44 10 C4 98 127 **** 236 3 ****	Fp2	633	13	* * * *	182		* * *	59	0	* * *	14	ഹ	
F8 617 18 **** 184 2 **** 53 0 *** 17 5 F7 669 31 **** 197 2 **** 53 0 *** 3 4 F3 651 97 * 206 17 **** 57 5 *** 13 4 F3 651 97 * 206 17 **** 57 5 ** 36 5 T4 792 69 **** 216 14 ** 86 17 ** 36 5 7 T3 761 148 * 206 17 ** 104 3 **<	$\operatorname{Fp1}$	672	12	* * *	214	2	* ** *	68	0	* * * *	12	9	*
F7 669 31 **** 197 2 **** 53 0 *** 3 4 F3 651 97 * 206 17 **** 57 5 *** 13 4 F3 651 97 * 206 17 **** 57 5 12 2 T4 792 69 **** 206 17 **** 10 5 *** 36 5 T3 761 148 264 47 86 17 2 *** 36 5 T3 761 148 264 47 86 17 2 22 7 C4 944 106 15 **** 317 31 **** 110 5 ***<	F_8	617	18	* ** *	184	2	*** **	60	0	* * *	17	Ŋ	
F4 663 40 **** 190 6 **** 57 5 **** 13 4 F3 651 97 * 206 17 **** 57 5 12 2 T4 792 69 **** 270 19 **** 57 5 122 2 C4 944 139 **** 317 31 **** 110 5 **** 25 7 C3 875 145 286 38 * 99 5 *** 26 7 C3 875 145 38 * 99 5 *** 26 7 C4 906 115 **** 208 3 *** 112 3 *** 26 4 10 10 57 12 12 12 12 12 12 12 12 12 12 13 10 10<	F7	669	31	* * *	197	2	* ** *	53	0	* * *	ဂ	4	*
F3 651 97 * 206 17 **** 57 5 12 2 2 T4 792 69 **** 270 19 **** 104 3 **** 36 5 T3 761 148 264 47 86 17 222 7 C4 944 139 **** 317 31 **** 100 5 **** 26 7 C3 875 145 286 38 * 99 5 *** 26 7 T6 986 127 **** 379 31 **** 110 5 **** 26 7 T6 986 157 **** 379 31 **** 113 10 57 12 28 3 T6 906 115 **** 209 4 10 10 5 **** 28 4	F4	663	40	* ** *	190	9	*** **	70	2	* * *	13	4	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F3	651	67	*	206	17	* ** *	57	Ŋ		12	2	
T3 761 148 264 47 86 17 22 7 C4 944 139 **** 317 31 **** 110 5 **** 25 7 C3 875 145 286 38 * 99 5 **** 25 7 T5 986 127 **** 379 31 **** 143 14 ** 44 10 T5 906 115 **** 397 80 17 3 **** 143 14 *** 44 10 T6 906 115 **** 298 25 **** 112 3 **** 28 3 P3 951 152 * 329 40 **** 105 7 **** 28 4 10 7 **** 28 3 3 3 3 3 3 3 3	T4	792	69	* * *	270	19	* ** *	104	က	* * * *	36	Ŋ	
C4 944 130 **** 317 31 **** 110 5 **** 25 7 C3 875 145 286 38 * 99 5 **** 16 4 T6 986 127 **** 379 31 **** 143 14 ** 44 10 T5 1053 201 379 31 **** 112 3 *** 44 10 P3 906 115 **** 298 25 **** 112 3 *** 28 3 P3 91 152 * 329 40 *** 118 9 *** 29 4 O2 833 120 **** 219 20 4 10 6 4 10 6 4 10 6 4 10 6 4 10 6 7 ** 22 12 12 14 10 6 7 ** 21 4 10 16<	T3	761	148		264	47		86	17		22	2	
C3 875 145 286 38 * 99 5 *** 16 4 T6 986 127 **** 379 31 **** 143 14 ** 44 10 T5 1053 201 397 80 15 **** 397 80 57 12 P4 906 115 **** 298 25 **** 112 3 **** 28 3 P3 951 152 * 329 40 **** 112 3 **** 28 3 O1 830 122 **** 209 30 **** 20 4 10 6 7 **** 28 7 4 10 6 7 **** 29 4 10 6 7 **** 29 4 10 6 7 **** 10 6 7 **** 10	C4	944	139	* ** *	317	31	* ** *	110	ŋ	* * * *	25	2	
T6986127****37931****14314**4410T5105320139780159235712P4906115****29825****1123****283P3951152*32940***1123****283P3951152*32940***1123****284O2833120****28017****1057***224FZ74598****21920***50496FZ74598****21920***7***224FZ74598****21920***7***224FZ833115****24319***7162334FZ833115****53517****2195****219214FOG124487****53117****21957214FOG124487****53334757214FOG1314121****53334577100FMG6333***53334 <td>C3</td> <td>875</td> <td>145</td> <td></td> <td>286</td> <td>38</td> <td>*</td> <td>66</td> <td>Ŋ</td> <td>* * *</td> <td>16</td> <td>4</td> <td></td>	C3	875	145		286	38	*	66	Ŋ	* * *	16	4	
T5 1053 201 397 80 159 23 57 12 P4 906 115 **** 298 25 **** 112 3 **** 28 3 P3 951 152 * 329 40 *** 112 3 **** 29 4 O2 833 120 **** 280 17 **** 105 7 **** 29 4 O1 830 122 *** 269 30 *** 50 4 10 6 22 4 CZ 839 118 **** 219 20 *** 50 4 * 10 6 22 4 CZ 833 115 **** 243 19 **** 71 6 21 4 PZ 833 114 121 **** 535 17 **** 219 5 *** 68 12 ROG 1314 121 *** 219	T6	986	127	* ** *	379	31	*** **	143	14	* *	44	10	
P4906115****29825****1123****283P3951152*32940***1189***294O2833120****28017****1057****224C2833120****26930***504106FZ74598****21920***504106C2839118****21920***716214C2833115****24319***716214C3833115****53517****2083***219204C4121****53517****2083****2195****6812KOG1314121****58134****2195****6814FMG62383****193345271000Total17293333****10334537100FMG62383****19334****2195****100Fotal17293334527102302302302312Fa	T5	1053	201		397	80		159	23		57	12	
P3951152*32940***1189***294O2833120****28017****1057***227O1830122***26930***8210224FZ74598****21920***504106CZ833115****26017****744*15FZ74598****21920****744*153CZ833115****26017****744*153PZ833115****26017****744*153LOG124487****53517****2083****6812KOG1314121****58134***2195****6814FMG62383****19334527100Total172933*8**193345271023023Fatmaño de ventana;N+W=NMOR y vigilia; R=MOR; p, significancia de10101010Fatmaño de ventana;N+W=NMOR y vigilia; R=MOR; p, significancia se10101010Fatmaño de ventana;N+W=NMOR y vigilia; R=MOR; p, significa	P4	906	115	* * *	298	25	* ** *	112	က	* * * *	28	က	
02 833 120 **** 280 17 **** 105 7 *** 22 7 01 830 122 *** 269 30 *** 50 4 22 4 FZ 745 98 **** 219 20 *** 50 4 10 6 CZ 833 115 **** 219 20 *** 74 4 * 15 3 CZ 833 115 **** 260 17 **** 74 4 * 10 6 CZ 833 115 **** 243 19 **** 71 6 21 4 LOG 1244 87 **** 533 17 **** 208 3 **** 68 12 KOG 1314 121 **** 581 34 **** 219 5 **** 68 14 FMG 623 83 **** 219 5 * 10	P3	951	152	*	329	40	* * *	118	6	* * *	29	4	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O2	833	120	* * *	280	17	* * * *	105	2	* * *	22	2	
FZ 745 98 **** 219 20 *** 50 4 10 6 CZ 839 118 **** 260 17 **** 74 4 * 15 3 PZ 833 115 *** 243 19 *** 71 6 21 4 LOG 1244 87 *** 535 17 *** 208 3 *** 68 12 ROG 1314 121 *** 581 34 *** 219 5 *** 68 14 EMG 623 83 *** 193 34 52 7 10 0 Total 1729 332 864 166 425 90 230 27 F=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	01	830	122	* * *	269	30	* * *	82	10		22	4	
CZ 839 118 **** 260 17 **** 74 4 * 15 3 PZ 833 115 **** 243 19 **** 71 6 21 4 LOG 1244 87 *** 535 17 *** 208 3 **** 68 12 ROG 1314 121 **** 581 34 **** 219 5 **** 68 14 EMG 623 83 *** 193 34 52 7 10 0 Total 1729 332 864 166 425 90 230 27 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	\mathbf{FZ}	745	98	* * *	219	20	* * *	50	4		10	9	* *
PZ 833 115 **** 243 19 **** 71 6 21 4 LOG 1244 87 **** 535 17 **** 208 3 **** 68 12 ROG 1314 121 **** 581 34 **** 219 5 **** 68 14 EMG 623 83 *** 193 34 52 7 10 0 Total 1729 332 864 166 425 90 230 27 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	CZ	839	118	* * *	260	17	* * * *	74	4	*	15	က	
LOG 1244 87 **** 535 17 **** 208 3 **** 68 12 ROG 1314 121 **** 581 34 **** 219 5 **** 68 14 EMG 623 83 *** 193 34 52 7 10 0 Total 1729 332 864 166 425 90 230 27 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	ΡZ	833	115	* * *	243	19	* ** *	71	9		21	4	
ROG1314121****58134****2195****6814EMG62383***19334527100Total17293328641664259023027E=tamaño de ventana;N+W=NMOR y vigilia;R=MOR;p, significancia dela prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	LOG	1244	87	* * *	535	17	* * * *	208	က	* * * *	68	12	
EMG62383***19334527100Total17293328641664259023027E=tamaño de ventana;N+W=NMOR y vigilia;R=MOR; p , significancia dela prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	ROG	1314	121	* * *	581	34	* ** *	219	Ŋ	* * * *	68	14	
Total 1729 332 864 166 425 90 230 27 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	EMG	623	83	* * *	193	34		52	1		10	0	
E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	Total	1729	332		864	166		425	00		230	27	
la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en		E=tam;	año de	e ventan:	a; $N+W=$	=NMC)R y vig	ilia; R=N	IOR;	p, signi	ficancia d	le	
		la pruel	ba χ^2	de Pear	son entre	las pi	roporcio	nes de ve	ntan	as estaci	ionarias e	u	
		N+W v	, *	=0.05 *;	*=0.01 *:	- - - **	005 ***	*0.001					

Cuadro C.6: Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante MGG (2/2) **Cuadro C.7:** Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante EMT (1/2)

	E = 0.9	9375 s		E = 1.8	875 s		E = 3.7	75 s		E = 7.5	s	
	N+W	Я	d	N+W	Я	d	N+W	н	d	N+W	Ч	d
Fp2	2066	1022	* * *	5300	497		2660	232		1046	91	
Fp1	11327	1079		5800	512		2824	249		1152	100	
F8	11237	1223	** **	6026	609	** **	2914	299	* * *	1156	127	*
F7	9250	831		4370	333	** **	1843	125	*** *	686	46	*
F4	9364	1124	* * * *	5386	601	** **	2677	312	* * *	1054	143	* ** *
F3	9019	791		4753	358	***	2186	139	* * * *	835	49	*** **
T4	9980	1109	* * * *	5856	623	** **	3058	325	* * *	1241	150	* ** *
T3	11214	1242	* * * *	6068	622	** **	2935	307	* * * *	1203	145	* ** *
C4	11399	1217	* * * *	6298	631	***	3136	308		1278	134	*
C3	9992	1064	* * * *	5991	592	* *	3158	304		1292	138	*
T6	10723	1175	* * * *	6340	632	***	3173	305		1306	134	
$\mathbf{T5}$	11933	1228	*** **	6638	661	***	3388	333	*	1442	149	*
P4	9854	1123	* * * *	6075	627	** **	3136	320	* * *	1280	152	* ** *
P3	9921	1126	** **	5959	627	*** *	3088	330	*** *	1264	148	***
O2	8671	1007	* * * *	5871	575	*	3183	291		1411	139	
01	10137	1193	* * * *	6408	647	** **	3385	330	*	1446	155	* * *
\mathbf{FZ}	9317	1012	* * * *	5741	009	** **	3072	314	* * *	1291	156	***
CZ	8893	1002	* * * *	5582	594	** **	3029	321	* * *	1260	152	* ** *
\mathbf{PZ}	9278	1078	** **	5864	634	***	3074	329	*** *	1215	145	* ***
LOG	6619	640		4368	357	* * *	2739	188	***	1405	89	*** *
ROG	8338	812		5366	446	* * *	3234	247	* * *	1640	125	*** **
EMG	11837	418	** **	5634	238	** **	2375	124	* * * *	817	47	* ** *
Total	16287	1504		8143	752		4071	376		2035	188	
$E=tam\epsilon$	tño de ve	entana;	N+W=	NMOR y	vigili	a; R=M	OR; p , si	gnifice	mcia de	la prueba	$\chi^2 d\epsilon$	Pear-
son enti	te las pr	oporcic	ones de v	rentanas	estaci	onarias e	en N+W	y R:	*=0.05,	**=0.01	* * 	=0.005,
****=0.	001											

etapas de		
entre		
oporciones		
us pr		ļ
de s		
paración		
com		
ventana, y		ŗ
o de		
amaño		
el t ε		
s según		
onaria	(2)	1
stacio	$\left(2\right)$	ļ
cas e	EMJ	
Époc	ante	
с ж	ticip.	
lro (; par	
Cuad	sueño	

N+W R p N+W R p N+W R p N+W R N+W R N+W R N+W R N+W R N+W R N+W R P_1 313 26 101 6 20 0 4 2 3 R 419 39 54 123 15 36 7 7 7 3 3 4 1 7 7 3 3 4 1 7 7 1 1 2 3 4 1 4 1 7 7 3 3 4 1 4 1 1 7 1 1 2 3 4 1		E = 15	S		E = 30	S		E = 60	s (E = 1	20 s	
p233326101620042p1419391241229212*721515634171712*439754***12315367733439754***123153961012345459***11920*35381443162***11818215910123443153*118182355910123555762***1181813716345557621923559101223555762192355414274441357****113172842740353****11317284342740354***131172842774152*1012342740354***131172342740354**281614<		N+W	R	d	N+W	R	d	N+W	\mathbf{R}_{-1}	6	N+W	R	d
p1419391241229212*721515634171712*439754***12315367733439754***1231539610132721885523141345459***11920*35381450353*11818233633*343653*11818233633*450353*1181823544235505153*11317284716255053*113172841427441317284142255053541311728426545413117284227536131172842274152*1012342753613117284227611	p_2	333	26		101	9		20	0	4	2		
8 421 49 135 15 3 4 17 1 7 1 1 397 54 *** 123 15 39 6 10 1 3 272 18 85 5 23 1 4 1 1 431 62 **** 119 20 * 35 3 8 1 3 454 59 *** 119 20 * 35 3 8 1 3 49 7 16 4 3 49 7 16 4 4 503 53 * 118 18 35 3 6 3 3 * 4 41 503 53 * 118 18 35 3 6 3 3 * 5 511 53 * 118 18 35 3 6 5 3 * 4 413 57 82 192 23 55 9 10 22 3 40 7 16 2 5 511 53 * 113 17 28 4 7 1 4 413 57 *** 113 17 28 4 7 1 533 68 * 199 26 * 59 8 14 2 7 44 13 57 *** 113 17 28 4 7 1 533 68 * 190 26 * 59 8 14 2 7 44 13 57 *** 109 14 25 4 14 2 7 44 13 57 ** 109 14 25 4 14 2 7 44 13 57 82 16 33 4 7 6 1 7 0G 676 41 *** 287 16 * 88 6 27 5 0 6 337 26 13 20 317 26 13 7 0G 790 66 337 26 136 9 52 7 0 0 10 17 94 50 81 7 0 1 017 94 50 81 8 17 2 2 1 0 0 101 88 86 6 27 66 1 8 17 2 2 10 1 017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 500, ***=0.001, ***=0.001, ***=0.001, ***=0.001	p1	419	39		124	12		29	2	1	2	*	
7 215 15	ø	421	49		135	15		36	2	2	3		
4 397 54 *** 123 15 39 6 10 1 3 272 18 85 5 23 1 4 1 3 272 18 85 5 23 1 4 1 3 454 59 *** 119 20 * 35 3 8 1 4 503 52 * 118 18 21 59 10 12 3 * 5 557 62 * 118 18 18 35 3 6 3 3 * 5 557 62 * 113 17 28 4 7 1 2 3 402 58 * 131 17 28 4 7 6 1 2 411 52 * 131 17 28 4 2 2 1 2 2 411 52 4 14 2 2 </td <td>2</td> <td>215</td> <td>15</td> <td></td> <td>63</td> <td>4</td> <td></td> <td>17</td> <td>H</td> <td>2</td> <td></td> <td></td> <td></td>	2	215	15		63	4		17	H	2			
3 272 18 85 5 23 1 4 1 4 431 62 **** 119 20 * 35 3 8 1 3 454 59 *** 168 18 49 7 16 4 5 51 53 * 118 18 21 59 10 12 3 5 557 62 192 23 55 9 10 22 4 413 57 **** 113 17 28 4 7 1 3 402 58 **** 113 17 28 4 7 1 1 538 68 * 190 26 * 59 8 14 2 5 60 52 167 19 26 * 59 8 14 2 7 44 1 52 * 109 14 25 4 14 2 7 41 52 * 109 14 25 4 14 2 7 41 52 * 109 14 25 4 14 2 7 41 52 * 109 14 25 4 14 2 7 41 52 * 109 14 25 4 14 2 7 41 52 * 109 14 25 4 14 2 7 41 52 * 109 14 25 4 14 2 7 6 1 1 7 7 6 1 1 7 0G 67 41 *** 28 6 27 5 1 00 14 25 16 8 17 0 5 7 0G 67 41 *** 28 16 8 17 2 2 1 7 0G 67 41 *** 28 16 8 17 2 2 1 7 0G 67 41 *** 28 16 8 17 2 2 1 7 0G 67 41 *** 28 16 8 17 2 2 1 7 0G 67 41 *** 28 16 8 17 2 2 1 7 0G 67 41 *** 28 16 8 17 2 2 1 7 0G 790 66 337 26 136 9 52 7 7 0A 1017 94 50 47 0 250 27 128 10 8 17 2 2 2 1 0 tal 1017 94 508 47 0 250 27 128 10 8 17 8 0 65 07 0 61 8 17 2 2 1 1 0tal 1017 94 508 47 0 250 27 128 10 8 17 8 -006, **=0.01, ***=0.005, ***=0.001 8 8 8 0 000 000 000 000 000 000 000 000	4	397	54	* * *	123	15		39	9	10	Η		
4 431 62 **** 119 20 * 35 3 8 1 3 454 59 *** 168 18 21 59 10 12 3 * 4 503 52 * 118 18 21 59 10 12 3 * 5 511 53 * 118 18 18 35 3 6 3 * 5 557 62 113 17 28 4 7 1 2 4 413 57 **** 113 17 28 4 7 1 2 3 402 58 ** 190 26 3 4 2 2 1 583 68 * 190 26 3 4 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 2	3	272	18		85	Ŋ		23	щ	4	1		
3 454 59 *** 168 18 49 7 16 4 3 503 52 180 21 59 10 12 3 6 511 53 * 118 18 35 3 6 3 * * 6 511 53 * 118 18 35 3 16 3 * * 7 557 62 192 23 55 9 10 2 4 413 57 **** 113 17 28 4 7 1 3 402 58 **** 115 16 32 4 3 1 7 402 58 *** 115 16 32 4 14 2 7 403 54 8 14 2 7 409 54 131 17 28 4 14 2 7 409 54 131 17 34 7 6 1 583 68 * 100 14 25 7 469 54 131 17 34 7 6 1 583 68 * 100 14 25 7 411 52 * 106 13 29 3 4 7 6 11 7 2 411 52 * 106 13 29 3 4 7 0G 676 41 **** 287 16 * 88 6 27 5 7 0G 676 41 **** 287 16 * 88 6 27 5 7 0G 790 66 337 26 136 9 52 7 7 0G 720 61 8 17 2 2 1 7 0Ad 1017 94 508 47 0 250 27 128 10 8 17 2 2 1 0 11 518 1017 94 508 47 0 250 27 128 10 8 17 2 6 11 7 17 2 2 1 8 17 2 2 1 1 17 2 2 1 8 17 2 2 1 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 250 27 128 10 1 1017 94 508 47 0 506 578 47 005 588 68 50 57 758 10 1 1017 94 508 47 0 506 578 588 68 50 57 728 10 1 1017 94 508 47 0 505 888 68 50 77 128 10 1 1017 94 508 47 0 506 57 128 10 1 1017 94 508 47 0 500 57 510 518 588 50 57 518 10 1 1017 94 508 47 0 500 57 518 508 50 500 57 50 518 500 500 500 500 500 500 500 500 500 50	4	431	62	* ** *	119	20	*	35	c,	∞	1		
44 503 52 180 21 59 10 12 3 33 436 53 $*$ 118 18 35 3 6 3 $*$ 6 511 53 182 19 55 9 10 2 3 $*$ 4 413 57 $****$ 113 17 28 4 7 1 33 402 58 $****$ 113 17 28 4 7 1 33 402 58 $****$ 113 17 28 4 7 1 22 560 52 167 19 55 4 14 2 22 560 54 131 17 28 4 7 6 1 22 409 54 131 17 34 7 6 1 22 411 52 $*$ 109 14 25 4 14 2 22 411 52 $*$ 109 14 25 4 14 2 22 411 52 $*$ 109 14 25 4 14 2 22 411 52 $*$ 109 14 25 4 2 22 411 52 $*$ 109 14 2 2 22 411 52 $*$ 29 337 26 10 2 20 66 <td>5</td> <td>454</td> <td>59</td> <td>* * *</td> <td>168</td> <td>18</td> <td></td> <td>49</td> <td>2</td> <td>16</td> <td>4</td> <td></td> <td></td>	5	454	59	* * *	168	18		49	2	16	4		
3 436 53 * 118 18 35 3 6 3 * 6 511 53 182 19 54 8 16 3 * 4 413 57 **** 113 17 28 4 7 1 3 402 58 **** 115 16 32 4 3 1 3 402 58 ** 190 26 32 4 3 1 3 402 58 * 190 26 32 4 14 2 11 53 68 * 190 26 34 7 6 1 2 2 411 52 * 106 14 25 4 9 1 2 411 52 * 106 14 25 7 6 1 2 2 411 52 * 106 13 26 17 2 2 2	14	503	52		180	21		59	10	12	33		
6 511 53 182 19 54 8 16 3 4 413 57 62 192 23 55 9 10 2 3 402 58 **** 113 17 28 4 7 1 3 402 58 **** 115 16 32 4 3 1 01 583 68 * 190 26 55 4 14 2 1 583 68 * 190 26 8 14 2 2 460 54 131 17 34 7 6 1 2 411 52 * 100 14 25 4 2 2 411 52 * 106 13 25 4 2 7 2 411 52 * 106 13 25 4 2 7 2 411 52 * 106 13 25<	33	436	53	*	118	18		35	c,	9	3	*	
7 557 62 192 23 55 9 10 2 4 413 57 **** 113 17 28 4 7 1 3 402 58 **** 115 16 32 4 3 1 2 560 52 **** 115 16 32 4 3 1 2 560 52 **** 113 17 28 4 14 2 01 583 68 * 190 26 * 59 8 14 2 1 583 68 * 109 14 25 4 2 17 54 * 106 13 17 34 7 6 1 17 52 * 106 13 29 37 26 27 5 16 730 66 13 17 2 2 1 17 52 4 0 52	9	511	53		182	19		54	∞	16	3		
4 413 57 **** 113 17 28 4 7 1 3 402 58 **** 115 16 32 4 3 1 2 560 52 167 19 55 4 14 2 1 583 68 * 190 26 * 59 8 14 2 2 420 54 ** 109 14 25 4 9 1 2 411 52 * 106 13 29 3 4 2 0 676 41 *** 287 16 * 88 6 27 5 0 676 790 66 337 26 136 9 52 7 MG 227 2 61 8 17 2 2 1 0 tal 1017 94 56 13 6 1 70 26 790 70 61 8 17 2 2 1 0 tal 1017 94 508 47 0 250 77 128 10 0 tal 1017 94 508 47 0 250 27 128 10 F=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01, ***=0.001	លី	557	62		192	23		55	6	10	2		
3 402 58 **** 115 16 32 4 3 1 2 560 52 167 19 55 4 14 2 1 583 68 * 190 26 * 59 8 14 2 2 469 54 131 17 34 7 6 1 2 411 52 * 109 14 25 4 9 1 2 411 52 * 106 13 29 3 4 2 0 66 337 26 136 9 52 7 0 790 66 337 26 136 9 52 7 MG 227 22 61 8 17 2 2 1 0 tal 1017 94 508 47 0 250 27 128 10 MG 227 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05. **=0.01. ***=0.001. ***=0.001.	4	413	57	* ** *	113	17		28	4	2	1		
2 560 52 167 19 55 4 14 2 1 583 68 * 190 26 * 59 8 14 2 2 469 54 131 17 34 7 6 1 2 411 52 * 109 14 25 4 9 1 2 411 52 * 106 13 29 3 4 2 0 676 41 *** 287 16 * 88 6 27 5 0 670 790 66 337 26 136 9 52 7 MG 227 22 61 8 17 2 2 1 MG 227 22 61 8 17 2 2 1 0 tal 1017 94 508 47 0 250 27 128 10 $=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba \chi^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01, ***=0.005, ****=0.001$	ŝ	402	58	* ** *	115	16		32	4	လ			
1 583 68 * 190 26 * 59 8 14 2 2 469 54 131 17 34 7 6 1 2 420 54 ** 109 14 25 4 9 1 2 411 52 * 106 13 29 3 4 2 0G 676 41 **** 287 16 * 88 6 27 5 0G 790 66 337 26 136 9 17 2 2 MG 227 22 61 8 17 2 2 1 otal 1017 94 508 47 0 250 27 128 10 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p vigilia; R=MOR; p viginificancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01. ***=0.005, ***=0.001)2	560	52		167	19		55	4	14	2		
Z469541311734761Z42054**1091425491Z41152*1061329342OG67641****28716*886275OG79066337261369527MG2272261817221Otal1017945084702502712810E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01. ***=0.001.	11	583	68	*	190	26	*	59	∞	14	2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Z	469	54		131	17		34	2	9	Η		
Z 411 52 * 106 13 29 3 4 2 OG 676 41 **** 287 16 * 88 6 27 5 OG 790 66 337 26 136 9 52 7 MG 227 22 61 8 17 2 2 1 otal 1017 94 508 47 0 250 27 128 10 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01, ***=0.005, ****=0.001	Z	420	54	* *	109	14		25	4	6	Η		
OG 676 41 **** 287 16 * 88 6 27 5 OG 790 66 337 26 136 9 52 7 MG 227 22 61 8 17 2 2 1 otal 1017 94 508 47 0 250 27 128 10 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01, ***=0.005, ****=0.001	Z	411	52	*	106	13		29	က	4	2		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	OG	676	41	* ** *	287	16	*	88	9	27	ю		
$ \begin{array}{l lllllllllllllllllllllllllllllllllll$	t0G	790	66		337	26		136	6	52	2		
otal 1017 94 508 47 0 250 27 128 10 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01. ***=0.005, ****=0.001	MG	227	22		61	∞		17	2	2	Η		
E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01. ***=0.005, ***=0.001	otal	1017	94		508	47	0	250	27	128	3 10		
la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en N+W v R: *=0.05, **=0.01, ***=0.005, ***=0.001	日 日	tamaño	de v	entana;	N+W=N	MOF	k v	igilia; R=	=MOR:	p, sig	gnificancia	a de	
$N+W \vee R$: *=0.05, **=0.01, ***=0.005, ***=0.001	la I	prueba χ	$^{2} de$	Pearsor	n entre la	s pro	porc	iones de	ventan	as est	acionarias	s en	
	$^+$ N	-W y R:	**	05, **=	0.01, ***=	=0.0(***=0.00	,				

Cuadro C.9: Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante CLO (1/2)

	d	* * *	* * * *		*** *		* *	* * *	* * *	* * *	* ** *		*** *			***		* * *			* * * *	* ** *	***		Pear-
5 s	Ч	62	60	151	91	189	268	195	302	239	321	189	258	220	266	217	188	308	242	228	96	140	273	528	$v^2 d\epsilon$
E = 7.5	N+W	1048	956	923	1132	1142	1401	937	1364	1215	1411	1074	1260	1271	1643	1035	1233	1404	1436	1482	1472	1311	794	3250	a nrueha
	d	* * * *	* * * *	*	* * * *		* * * *	* * *	* * * *	*	* * * *		* *		*	*	* * *	* * * *		* * *	* * * *	* * *	* * * *		. ap eior
75 s	Я	265	232	417	275	530	686	511	706	615	750	531	625	638	680	542	546	717	029	625	227	297	662	1056	rnificar
E = 3.7	N+W	3319	2900	2813	3204	3481	3789	2716	3709	3512	3792	3154	3513	3772	4449	3062	3718	3834	3983	4242	2846	2211	2861	6501	IOD. "
	d	* * *	* * * *	*** *	*** *	** **			* *	*	** **				*** *	* * * *	*** **	* * *		* * * *	** **	* *	*** **		0. D_N
875 s	н	751	645	1112	720	1215	1393	1270	1359	1353	1495	1321	1281	1424	1412	1202	1232	1462	1423	1366	444	430	1503	2112	ilinin n
E = 1.8	$\rm N+W$	8651	7791	7737	7955	8313	8494	7792	7904	7914	7845	8077	7701	8977	9283	8225	8306	8455	8681	9110	4192	3045	8211	13002	DIMIN
	d	* * *	* * *	* * *	* * * *		* * * *			* * * *		. NI - 147													
)375 s	Я	1892	1629	2343	1727	2381	2679	2680	2834	2784	2758	2852	2987	3007	3029	2938	2602	2631	2663	2729	678	481	3308	4224	.ontono
E = 0.6	N+W	17357	15920	15130	15694	14774	14965	15644	15835	14687	13715	15214	16147	15131	16256	15902	13673	14825	14449	14720	4506	2731	19223	26004	55 0 0 0 0
		Fp2	Fp1	F8	F7	F4	F3	T4	T3	C4	C3	16	$\mathbf{T5}$	P4	P3	02	01	FZ	CZ	\mathbf{PZ}	LOG	ROG	EMG	Total	日 一 七 二 七 二 七

***=0.001

N N N		2		2 	2			2		1	
¢ F	+M $+$	Я	d	N+W	В	d	N+W	Я	d	N+W	\mathbb{R}^{-p}
F pZ	301	22	* * * *	69		*	16	0		3	0
Fp1	249	19	* * *	63	0	* * *	18	0		2	0
F8	263	38		69	9		24	Η		4	0
F7	342	32	* * *	87	4	*	25	0		4	0
F4	338	53		89	10		20	Η		4	0
F3	416	79		94	14		18	0		က	0
T4	308	59		94	4		27	Η		2	0
T3	491	133	* * *	155	34		38	13		10	0
C4	359	68		93	11		30	Η		2	0
C3	454	115	* * *	107	20		24	0		ъ	0
T6	341	49		84	9		26	0		6	0
T5	444	102	* * *	148	20		42	2		10	0
P4	330	58		20	2		20	Η		6	0
P3	537	78		121	12		33	2		က	0
O2	288	55		61	9		16	0		က	0
01	312	40		68	IJ		15	0		2	0
FZ	446	00		106	17		29	Η		က	0
CZ	417	64		102	10		29	Η		2	0
ΡZ	378	55		86	10		14	Η		4	0
LOG	624	31	* * *	214	9	* * * *	61	0	* * *	16	0
ROG	589	55	** **	176	11	* * *	66	က	*	19	1
EMG	174	92	* * *	41	29	* * * *	2	4		0	0
Total 1	625	264		812	132		402	70		215	21
E=t	amañ	o de 1	ventana;	N+W=N	IMOF	t y vigil	ia; R=MC	OR; 1	o, signi:	ficancia d	e
la p	rueba	$\chi^2 d_1$	e Pearso	on entre lé	as pro	porcion	es de vent	tanas	s estaci	onarias e	n
Υ+N Υ	W v B	 *.	0.5 **=	=0 01 ***	°		=0.001				

Cuadro C.10: Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante CLO (2/2) **Cuadro C.11:** Épocas estacionarias según el tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante RLO(1/2)

	E = 0.6	3375 s		E = 1.8	375 s		E = 3.7	75 s		E = 7.5	S	
	$\rm N+M$	R	d	N+W	R	d	N+W	R	d	N+W	R	d
Fp2	14496	2338	** **	8048	1123	*	3951	544		1515	225	*
Fp1	14532	2304	* * * *	8182	1146	*	4110	549		1693	238	
$\mathbf{F8}$	15475	2491	***	8224	1220	* * *	3748	605	* * *	1331	253	* ** *
F7	15459	2351	***	8462	1187	* * *	4083	579	*	1622	248	* *
F4	14238	2400	*** **	8317	1214	* * *	4294	653	** **	1756	292	* ** *
F3	14011	2374	*** **	8380	1290	*** *	4395	675	** **	1889	319	* ** *
T4	16055	2480	*** **	8614	1296	* ** *	4120	640	** **	1613	315	* * * *
T3	16686	2539	***	8807	1328	* ** *	4037	645	** **	1574	297	* ** *
C4	14199	2361	***	8507	1270	*** *	4465	672	*** *	1913	308	* ** *
C3	14241	2339	*** **	8547	1294	* ** *	4481	660	** **	1883	309	* * * *
16	15273	2408	*** **	8380	1276	*** *	3746	611	*** *	1519	281	* ** *
$\mathbf{T5}$	15350	2504	*** **	8709	1291	*** *	4286	659	*** *	1751	298	* ** *
P4	13969	2291	*** **	8631	1277	* * *	4337	644	** **	1750	288	* ** *
P3	14937	2368	***	8873	1297	*** *	4456	646	** **	1837	305	* ** *
O2	13686	2227	* * * *	8540	1286	* * *	4228	642	* * * *	1737	292	* * * *
01	13952	2260	* * * *	8513	1234	* * *	4182	593	*	1633	292	* ** *
\mathbf{FZ}	13600	2294	***	8184	1248	*** *	4441	674	** **	1925	319	* ** *
CZ	12993	2136	*** **	8017	1207	* * *	4278	639	** **	1846	301	* ** *
ΡZ	13530	2255	* * * *	8663	1309	* * *	4556	664	* * * *	1913	307	* * * *
LOG	10095	1515	* * * *	6978	894		4211	451	* * * *	1991	202	* ** *
ROG	10899	1540	* * *	7280	919		4021	462	* * * *	1929	208	* ** *
EMG	19511	1848	***	9193	060	****	3893	505		1485	239	* * * *
Total	23904	3165		11952	1584		5976	792		2988	396	
E=tam	año de v	entana	: N+W=	NMOR J	r vigilia	a; R=M	OR; p, sig	nifica	ncia de l	a prueba	$\chi^2 de$	Pear-
son ent	re las pi	roporci	ones de	ventanas	estacic) marias e	W+N ue	y R:	*=0.05,	$*^{=0.01}$	 ** **	0.005,

 $^{***=0.001}$

N+W R p $Fp2$ 530 74 $Fp1$ 605 79 $F3$ 470 95 $****$ $F4$ 670 122 $****$ $F3$ 758 141 $****$ $F3$ 758 141 $****$ $T4$ 568 132 $****$ $T3$ 629 138 $****$ $T3$ 629 138 $****$ $T6$ 584 127 $****$ $T6$ 584 127 $****$ $T6$ 584 127 $****$ $P4$ 656 116 $****$ $P3$ 698 130 $****$ $P3$ 698 130 $****$	N+W 181 218 2177 211 2211 2211 2266 211 2268 231 2339 1	R <i>p</i> [16] [18] [18] [18] [18] [19] [10] [10] [10] [10] [10] [10] [11] [11	N+W 75 75 79 86 79 121 94 115 117 117 117 118 118	R 4 4 4 10 8 7 7 4 4 10 115 115 115 113 113 113 113 113 113 113	d	N+W 20 116 118 118 27 30 33 35 33 33	R 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Fp253074Fp160579F847095****F4670122F3758141****T4568132****T3629138****C4755117C3755117T6584127****T6584127****P4656116****P3698130****P4650116****P3698130****P3698130****P3698130****P4501115****P3698130****P4501116****P3698130****P4501115	181 218 177 211 211 256 211 211 258 211 258 231 233 1	16 18 24 33 39 57 *** 53 **** 53 **** 11 11 11 53 ***	75 86 79 98 121 94 115 115 117 117 118 118	$\begin{array}{c} 4 \\ 7 \\ 8 \\ 15 \\ 17 \\ 17 \\ 117 \\ 113 \\ 13 \\ 13 \\ 13 \end{array}$		20 16 18 18 27 25 33 33 33	о т н с с с с т н г с с т н с с с с т н г с
Fp160579F847095****F755795*F4670122****F3758141****T4568132****T3629138****C4750132****C3755117****T6584127****P4656137****P3698130****P3698130****	218 177 211 256 256 211 258 211 258 258 258 231 233 233 231	18 33 33 33 33 33 33 33 33 33 33 33 33 34 35 35 36 37 38 39 39 30 31 32 33 33 34 35 36 37 38 39 39 39 39 30 31 31 32 33 34 35 36 37 38 39 39 39 39 39 30 31 31 32 32	86 75 79 98 121 94 115 117 117 118 118	$\begin{array}{c} 7 \\ 8 \\ 115 \\ 115 \\ 113 \\ 113 \\ 113 \\ 113 \\ 121$		16 16 18 18 27 30 35 35 33	n n n n n n n t n n
F847095****F755795*F3758141****T4568132****T3629138****C4750132****C3755117****T6584127****T6584127****P4656116****P3698130****P3698130****	177 211 256 256 211 211 211 258 266 231 233 233 233	33 224 355 *** 558 **** 538 **** 111 111 111	75 79 98 94 115 115 117 117 118 118	8 10 15 17 17 17 21 13 13 9		16 18 30 35 33 33	
F755795*F4670122****F3758141****T4568132****T3629138****C4750132****C3755117****T6584127****T6584127****P4656116****P3698130****O2677128****	211 256 256 211 286 211 258 258 266 231 233 231	24 39 55 55 58 **** 53 **** 53 **** 53 **** 53 **** 53 **** 53 **** 53 53 **** 53 53 **** 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55	79 98 94 115 115 117 117 118 118	$\begin{array}{c} 10 \\ 7 \\ 15 \\ 17 \\ 17 \\ 21 \\ 15 \\ 13 \\ 9 \end{array}$		18 27 30 35 35 33	თი თი თი ფი თი თი თ
F4670122****F3758141****T4568132****T3629138****C4750132****C3755117****T6584127****T6584127****P4656116****P3698130****O2677128****F01116****	256 2 286 1 211 1 211 1 258 1 266 1 287 2 231 2 339 1	39 57 55 55 55 58 58 **** 53 **** 51 11 11 11	98 121 94 115 117 117 117 118 118	7 15 17 21 15 13 9		27 30 35 35 39	ი ი ი 4 ი ი ი ი ი 4 ი ი
F3758141****T4568132****T3629138****C4750132****C3755117****T6584127****T5706137****P4656116****P3698130*****O2677128****	286 1 211 2 258 1 258 1 266 1 287 2 231 2 339 1	57 *** 55 55 55 **** 58 **** 53 **** 19 **** 51 ***	121 94 115 117 117 117 118 118	$ \begin{array}{c} 15\\ 17\\ 21\\ 15\\ 13\\ 9\end{array} $		30 25 35 37 39	იი. იი. იი. იი. იი. იი. იი. იი. იი. იი.
T4 568 132 **** T3 629 138 **** C4 750 132 **** C3 755 117 **** T6 584 127 **** T6 584 127 **** P4 656 116 **** P3 698 130 **** O2 677 128 **** O1 501 116 ****	211 258 258 256 1287 2587 231 2339 1	55 58 58 53 53 54 54 51 54 54 54 54 54 54 54 54 54 54	94 115 117 117 117 118 118	$17 \\ 21 \\ 15 \\ 13 \\ 9 \\ 9$		25 35 37 39	ი ი 4 ი ი
T3 629 138 **** C4 750 132 **** C3 755 117 **** T6 584 127 **** T5 706 137 **** P4 656 116 **** P3 698 130 **** O2 677 128 **** O1 501 116 ****	258 1 266 1 287 2 331 2 339 1	58 **** 53 *** 19 11 51	115 117 117 117 118 118	$\begin{array}{c} 21\\ 15\\ 13\\ 9\end{array}$		35 37 39	Ω 4 C G
C4750132****C3755117****T6584127****T5706137****P4656116****P3698130****O2677128****C171.6****	266 287 - 231 - 339	53 *** 19 11 51	117 117 118 118 164	$\begin{array}{c} 11\\ 13\\ 9\end{array}$		37 39	400
C3 755 117 T6 584 127 **** T5 706 137 **** P4 656 116 **** P3 698 130 **** O2 677 128 ****	287 231 339 8	49 41 51	117 118 164	$\begin{array}{c} 13\\ 9\end{array}$		39	0 0
T6 584 127 **** T5 706 137 **** P4 656 116 **** P3 698 130 **** O2 677 128 **** O1 501 116 ****	231 ² 339 1	41 51	$118 \\ 164$	6		;	ŝ
T5 706 137 **** P4 656 116 **** P3 698 130 **** O2 677 128 **** O1 501 116 ****	339	51	164			46)
P4 656 116 **** P3 698 130 **** O2 677 128 **** O1 501 116 ****				20		59	ស
P3 698 130 **** O2 677 128 **** O1 501 116 ****	239^{-4}	11	107	13		34	4
O2 677 128 **** O1 501 116 ****	254	25 ****	122	13		37	4
O1 E01 116 ****	264	* 09	117	12		32	3
OT 180 TO	248	46 *	124	12		36	က
FZ 788 136 ****	291^{-4}	18	122	10		38	4
CZ 711 107	252	36	100	ŋ	*	36	4
PZ 747 120 *	258^{-1}	16	113	13		35	4
LOG 845 76 ****	345	**** 21	131	9	* * *	42	ល
ROG 856 75 ****	335	25 ***	143	4	* * *	48	က
EMG 505 107 ****	148	39 ****	48	4		9	0
Total 1494 198	747	66	371	52		193	18
E=tamaño de ventana;	N+W=NN	10R y vi	gilia; R=M	OR; 1	p, signi	ficancia o	le
la prueba χ^{z} de Pearson	on entre las	proporci	ones de vei	ntanas	s estaci	ionarias e	n

Cuadro C.12: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante RLO (2/2) **Cuadro C.13:** Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JGZ (1/2)

	E = 0.6)375 s		E = 1.8	875 s		E = 3.7	75 s		E = 7.5	s	
	N+W	Я	d	N+W	Я	d	N+W	Я	d	N+W	Я	d
Fp2	22473	405	* * * *	11187	144	* * *	4544	28	* * *	1476	ъ	* ** **
Fp1	24354	516	*** *	12138	207	** **	5128	57	** **	1607	19	* * * *
F_8	25292	618	***	12276	211	*** **	5030	63	***	1623	13	*** **
F7	26345	654	*** *	12931	258	** **	5665	00	* * * *	1842	21	* * * *
F4	24272	735	* * *	11966	340		5072	156		1728	59	
F3	24912	848	* * * *	13264	433	*** *	6015	192	*	2061	78	* * *
T4	26346	803	*** *	13146	356		5574	124	* * * *	1933	41	*
T3	28557	822		14248	373	*	6156	157		2252	56	
C4	25019	774	***	13174	404	* * *	5960	183		2119	76	* *
C3	25606	826	*** *	13414	413	** **	6016	205	** **	2127	85	* * * *
T6	26967	784		13737	370		5998	156		2051	48	
$\mathbf{T5}$	27302	814	* * *	13630	407	*	5777	177		1960	68	*
P4	25865	815	*** *	13757	397		6056	173		2066	69	
P3	26275	841	***	13948	424	* * *	6221	204	***	2234	80	* *
O2	26688	814	* * *	14283	416		6345	181		2271	64	
01	25686	785	* * *	14384	388		6616	188		2401	77	
FZ	24179	771	* * *	13192	406	* * *	6186	192	*	2229	84	* * * *
CZ	23969	696		13019	387		6021	184		2197	74	*
ΡZ	24627	780	* * *	13491	398		6127	182		2093	65	
LOG	19899	467	***	11246	237	*** **	6037	107	* * * *	2741	39	* * * *
ROG	20365	445	*** *	11923	235	** **	6076	114	* * * *	2740	42	* * * *
EMG	26396	535	* * * *	11252	179	** **	4224	38	* * * *	1327	10	* * * *
Total	37598	1056		18799	528		9399	264		4699	132	
E=tama	tño de ve	entana;	N+W=	NMOR y	r vigili	a; R=M	OR; p , si_i	gnifice	ancia de	la prueba	$\chi^2 \mathrm{d}$	e Pear-
son enti ****0	te las pr	oporcic	nes de '	ventanas	estaci	onarias	en N+W	y R:	*=0.05,	$^{**}=0.01,$	" * * * *	=0.005,
.∩≡	TUU											

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N+WR p N+WRFp23560 $***$ 640Fp13761 $***$ 680F84541 $***$ 1050F75134 $***$ 1090F44558 $***$ 1090F3554221143F455181385F3554221143F455181385F356027 $***$ 1116C3568131291F6568131291	d	$\begin{array}{ c c c c } N + W & 1 \\ 115 & 115 \\ 116 & 119 \\ 117 & 128 \\ 228 & 220 \\ 228$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N+W 1 6 6 6 10 10 10 10 8 8	
	Fp2 356 0 *** 64 0 Fp1 376 1 *** 68 0 F8 454 1 *** 68 0 F7 513 4 *** 105 0 F4 455 8 87 2 F4 455 8 87 2 F3 554 22 114 3 F3 551 8 138 5 F3 560 27 *** 111 6 C3 560 27 *** 114 6 C3 568 13 129 1		$\begin{array}{c} 12\\15\\19\\22\\26\\40\\21\\21\\21\\26\\21\\21\\26\\22\\21\\26\\22\\21\\26\\22\\21\\26\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\22\\$	0011001100	1 2 7 2 4 6 7 2 1 10 10 8 8 10 8 8 10 8 10 8 10 8 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TP1 376 1 *** 68 0 15 0 2 0 77 513 4 1 **** 105 0 19 1 5 0 74 455 8 *** 109 0 22 1 6 0 73 554 22 114 3 2 0 4 0 73 554 22 114 3 2 0 4 0 73 554 22 114 3 2 0 3 0 73 560 27 *** 111 6 2 10 0 73 560 27 *** 114 6 2 10 0 73 560 14 115 1 44 1 10 0 73 554 18 1155 4 115 1 10 10 <td>Fp1 376 1 *** 68 0 F8 454 1 **** 68 0 F7 513 4 *** 105 0 F4 455 8 *** 109 0 F4 455 8 *** 109 0 F4 455 8 *** 109 0 F3 554 22 114 3 3 F3 551 8 138 5 5 F4 551 8 138 5 5 F3 570 14 156 7 7 C4 562 27 *** 111 6 7 C3 560 27 *** 114 6 7 F6 568 13 129 1 1 1</td> <td></td> <td>$\begin{array}{c} 15\\19\\22\\36\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\22\\28\\28\\28\\28\\28\\28\\28\\28\\28\\28\\28\\$</td> <td>0 1 1 0 0 1 1 0 0</td> <td>2 6 6 10 10 8 8</td> <td>0 0 0 0 0 0 0 0 0 0</td>	Fp1 376 1 *** 68 0 F8 454 1 **** 68 0 F7 513 4 *** 105 0 F4 455 8 *** 109 0 F4 455 8 *** 109 0 F4 455 8 *** 109 0 F3 554 22 114 3 3 F3 551 8 138 5 5 F4 551 8 138 5 5 F3 570 14 156 7 7 C4 562 27 *** 111 6 7 C3 560 27 *** 114 6 7 F6 568 13 129 1 1 1		$\begin{array}{c} 15\\19\\22\\36\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\21\\28\\22\\28\\28\\28\\28\\28\\28\\28\\28\\28\\28\\28\\$	0 1 1 0 0 1 1 0 0	2 6 6 10 10 8 8	0 0 0 0 0 0 0 0 0 0
7 11 **** 105 0 19 1 5 0 7 513 4 *** 109 0 22 1 6 0 7 513 4 *** 109 0 22 1 6 0 73 551 22 114 3 260 0 40 1 10 0 73 551 8 138 5 36 1 10 0 74 556 13 1114 6 22 11 10 0 74 556 13 1144 6 22 11 10 0 75 554 18 1114 6 22 14 1 0 75 554 18 1115 1 210 0 0 752	F8 454 1 **** 105 0 F7 513 4 *** 109 0 F4 455 8 *** 109 0 F4 455 8 *** 109 0 F3 554 22 114 3 F3 551 8 138 5 F4 551 8 138 5 F3 670 14 156 7 C3 560 27 *** 111 6 C3 568 13 129 1 1		$\begin{array}{c} 19\\22\\26\\40\\21\\21\\21\end{array}$		5 6 10 10 8 8	0 0 0 0 0 0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	77 513 4 *** 109 0 74 455 8 87 2 73 554 22 114 3 73 551 8 138 5 74 551 8 138 5 73 670 14 156 7 74 562 27 *** 111 6 73 560 27 *** 114 6 76 568 13 129 1 6		22 20 26 36 40 41 41 21	1 0 0 1 1 0 0	6 4 10 10 10 8 8	0 0 0 0 0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74 455 8 87 2 73 554 22 114 3 74 551 8 138 5 73 670 14 156 7 74 562 27 *** 111 6 73 560 27 *** 111 6 73 568 13 129 1		20 26 36 21 41 76	0 0 1 1 0 0	4 3 10 10 10 8	0 0 0 0 0 0 0
33 554 22 114 3 26 0 3 0 17 551 8 138 5 36 1 10 0 13 570 14 156 7 40 1 10 0 24 562 27 $***$ 111 6 23 0 0 10 568 13 1129 1 41 1 0 0 10 568 13 129 1 41 1 1 0 0 11 5554 18 1128 1 41 1 1 8 0 233 582 19 1147 2 34 0 10 0 232 511 18 1147 2 34 0 10 0 232 510	73 554 22 114 3 F4 551 8 138 5 5 F3 670 14 156 7 C4 562 27 *** 111 6 C3 560 27 *** 111 6 C3 560 27 *** 114 6 F6 568 13 129 1		26 36 28 21 41 21 26	0 1 1 0 0	3 10 10 10 8 8	0 0 0 0 0 0
	F4 551 8 138 5 F3 670 14 156 7 C4 562 27 *** 111 6 C3 560 27 *** 114 6 F6 568 13 129 1		36 40 28 21 41 26	1 1 0 0	10 10 10 8	0 0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F3 670 14 156 7 C4 562 27 *** 111 6 C3 560 27 *** 114 6 F6 568 13 129 1		$40 \\ 28 \\ 21 \\ 41 \\ 26 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36 \\ 36$	1 0 0	10 10 8	0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D4 562 27 *** 111 6 D3 560 27 *** 114 6 F6 568 13 129 1		$ \begin{array}{c} 28 \\ 21 \\ 41 \\ 26 \\ \end{array} $	0 0	10 10 8	0 0 0
23 560 27 *** 114 6 21 0 10 0 75 554 18 129 1 41 1 8 0 75 554 18 1008 6 266 2 4 0 24 525 14 115 1 30 0 8 0 23 525 14 115 1 30 0 8 0 23 525 14 115 1 30 0 8 0 22 599 15 1147 2 34 0 0 22 591 18 106 3 2 146 2 144 0 22 510 18 10 8 2 2 14 0 22 510 18 100 1147 2 2 114 0 0 0	C3 560 27 *** 114 6 F6 568 13 129 1		21 41 96	0	10 8	0 0
	F6 568 13 129 1		41 26	,	8	0
F5 554 18 108 6 26 2 4 0 P4 525 14 115 1 30 0 8 0 P3 525 14 115 1 30 0 8 0 P3 582 19 138 6 34 0 10 8 0 D2 599 15 152 4 36 1 10 0 D1 659 23 147 2 36 1 10 0 F3 674 30 ** 126 8 * 23 1 5 0 F3 591 18 105 8 * 23 1 5 0 C2 510 15 4 20 0 5 0 5 0 C3 510 15 **** 33 0 5 0			96	-		
24 525 14 115 1 30 0 8 0 23 582 19 138 6 34 0 10 1 02 599 15 152 4 46 2 14 0 01 659 23 147 2 36 1 10 0 7Z 591 18 126 8 * 23 1 5 0 7Z 591 18 105 4 20 0 6 0 7Z 510 15 126 8 * 23 1 5 0 7 510 18 100 3 23 1 5 0 7 510 18 100 3 23 1 5 0 7 510 13 **** 339 0 **** 85 2 18 0 70 1094 13 **** 35 2 18 0 0 <td>T5 554 18 108 6</td> <td></td> <td>01</td> <td>2</td> <td>4</td> <td>0</td>	T5 554 18 108 6		01	2	4	0
23 582 19 138 6 34 0 10 0 22 599 15 152 4 46 2 144 0 21 659 23 147 2 36 1 100 0 $7Z$ 674 30 $**$ 126 8 $*$ 23 1 10 0 $7Z$ 591 18 105 4 20 0 6 0 $2Z$ 510 15 100 3 23 0 6 0 $2C$ 108 10 $****$ 339 0 $****$ 85 2 18 0 $20G$ 1094 13 $****$ 356 1 $***$ 105 3 2 28 0 $2MG$ 335 7 50 1 $***$ 105 3 22 18 0 6 1094 13 $****$ 356 1 $***$ 105 3 228 0 6 1094 13 $****$ 356 1 $***$ 105 32 228 0 6 1094 13 $****$ 357 33 229 291 10 6 1174 33 570 33 291 10	24 525 14 115 1		30	0	∞	0
D2 590 15 152 4 46 2 14 0 $D1$ 659 23 147 2 36 1 10 0 ZZ 674 30 ** 126 8 * 23 1 5 0 ZZ 591 18 105 4 20 0 0 6 0 ZZ 510 15 100 3 23 0 6 0 CZ 510 15 100 3 23 0 6 0 CG 1089 10 **** 339 0 **** 85 2 18 0 CG 1094 13 **** 356 1 *** 105 3 29 0 SMG 335 7 50 1 *** 105 3 22 0 $Cotal234966117435703329110$	23 582 19 138 6		34	0	10	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	D2 599 15 4		46	2	14	0
7Z 674 30 ** 126 8 * 23 1 5 0 7Z 591 18 105 4 20 0 6 0 6 0 2 0 6 0 0 6 0 0 5 0 0 6 0 0 5 0 0 6 0 0 5 0 0 5 0 0 5 0	D1 659 23 147 2		36	1	10	0
CZ59118105420060 2 Z51015100323060 2 OG108910 **** 3390 **** 8521880 2 OG108413 **** 3390 **** 8521880 3 OG109413 **** 3561 *** 1053280 3 MG3357501 *** 1053280 5 MG2349661174335703329110	FZ 674 30 ** 126 8	*	23	Ц	5	0
PZ 510 15 100 3 23 0 6 0 COG 1089 10 **** 339 0 **** 85 2 18 0 XOG 1094 13 **** 356 1 *** 105 3 28 0 SMG 335 7 50 1 *** 105 3 28 0 Fotal 2349 66 1174 3 570 33 291 10	CZ 591 18 105 4		20	0	9	0
COG 1089 10 **** 339 0 **** 85 2 18 0 ROG 1094 13 **** 356 1 *** 105 3 28 0 SMG 335 7 50 1 *** 105 3 28 0 Fotal 2349 66 1174 33 570 33 291 10	PZ 510 15 100 3		23	0	9	0
ROG 1094 13 **** 356 1 *** 105 3 28 0 EMG 335 7 50 1 13 2 2 0 Fotal 2349 66 1174 33 570 33 291 10	LOG 1089 10 **** 339 0	* * *	85	2	18	0
EMG 335 7 50 1 13 2 2 0 Fotal 2349 66 1174 33 570 33 291 10	ROG 1094 13 **** 356 1	* * *	105	3	28	0
Total 2349 66 1174 33 570 33 291 10	EMG 335 7 50 1		13	2	2	0
	Total 2349 66 1174 33		570 3	33	291	10

Cuadro C.14: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante JGZ (2/2)

Cuadro C.15: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante AEFP(1/2)

	E = 0.9	9375 s		E = 1.8	875 s		E = 3.7	75 s		E = 7.5	S	
	N+W	Я	d	N+W	R	d	N+W	К	d	N+W	Я	d
Fp2	20416	750	***	9428	287	** **	3523	84	***	939	22	***
Fp1	20488	824	* * * *	9702	329	** **	3737	00	*** *	953	20	* * * *
F8	18772	764	* * * *	7984	303	** **	2016	69	*	448	14	
F7	20445	782	* * * *	8978	260	** **	2702	34	***	531	11	* *
F4	19954	985	* * * *	9462	407		3694	163		1048	37	
F3	17686	816		8794	298	* * *	2999	57	* * * *	625	10	* * * *
T4	19624	967	* * * *	8973	478	** **	3052	199	***	947	73	* ** *
T3	19229	661	* * * *	8645	199	** **	2546	39	***	695	∞	* * * *
C4	20106	1029	* ** *	10274	504	** **	4562	228	*	1538	68	
C3	18638	887	* * *	9939	455		4522	211		1495	72	
T6	20968	1026	* ** *	10827	517	* *	4569	228	*	1584	81	
$\mathbf{T5}$	19390	718	* * * *	8929	241	** **	3134	78	***	1028	28	* * *
P4	19538	890		10430	502	* * *	4628	224		1528	80	
P3	19538	890		10430	502	* * *	4628	224		1528	80	
O2	19851	957	* * * *	10709	461		4662	186	*	1683	74	
01	19210	809	* *	9794	366	* * *	3729	108	* * * *	1209	42	
\mathbf{FZ}	19506	950	* * * *	9540	400	*	3878	129	***	1024	29	*
CZ	19109	1006	* * * *	9747	438		4377	195		1426	55	
\mathbf{PZ}	19592	1005	** **	10574	492		4643	202		1601	50	* * *
LOG	16723	614	***	10111	349	* * * *	5374	175	* * * *	2519	78	* ** *
ROG	8949	274	***	4844	155	* * * *	2058	63	* * * *	752	25	
EMG	19759	709	* * * *	7005	187	** **	1828	40	***	435	11	
Total	29332	1309		14666	656		7333	328		3666	164	
$E=tam\epsilon$	tño de ve	entana;	N+W=	NMOR y	r vigili	ia; R=M	OR; p , sig	gnificé	mcia de	la prueba	$\chi^2 \mathrm{d}$	e Pear-
son enti	te las pr	oporcic	ones de ·	ventanas	estaci	onarias	en N+W	y R:	*=0.05,	$^{**}=0.01,$	* * * *	=0.005,
****=0.	001											

	E = 15	s		E = 30	ß		E = 60	s		E = 12	0 s	
	N+W	R	d	N+W	Ч	d	N+W	Я	d	N+W	Я	d
Fp2	189	IJ		24	0		2	0		0	0	
Fp1	177	2		24	Η		11	0		0	Η	
F8	130	2		39	0		26	0		က	Η	
F7	110	လ		21	0		14	0		2	0	
F4	172	11		18	μ		∞	Η		0	0	
F3	80	4		13	0		x	0		0	0	
T4	344	29	* ** *	87	10	* *	35	9		9	0	
T3	324	Ŋ	*	92	2		66	2		22	Η	
C4	313	17		45	Ŋ		18	က		9	μ	
C3	332	15		06	2		42	က		9	0	
T6	437	26		96	11	* *	48	က		9	0	
$\mathbf{T5}$	381	21		96	10	*	53	ю		9	ហ	* * *
P4	379	24		86	∞		42	∞	*	10	0	
P3	379	24		86	∞		42	∞	*	10	0	
02	462	26		111	9		45	2	*	12	0	
01	314	23	*	63	10	* * * *	30	လ		9	Η	
\mathbf{FZ}	148	လ		16	0		×	0		1	0	
CZ	233	10		35	က		17	1		1	0	
PZ	329	19		49	9	*	22	1		က	0	
LOG	1045	31	* * *	378	6	*	117	4		35	2	
ROG	1243	40	* * *	531	13	* * *	246	4	*** *	92	6	
EMG	109	J.		21	0		2	0		0	0	
Total	1833	82		916	41		450	28		225	14	
	E=tam;	año d	le ventar	na; N+W	=NN	IOR y 7	vigilia; R=	=MO]	R; p , sig	gnificancia	, de	
	la pruet	Da χ^2	de Pea	rson entre	e las	propor	ciones de	venta	unas est	acionarias	en	
	N XV -	< *. , P		** <u>_001</u> **	**		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)	
	N+W		`=U.Ub,	**=U.U1,	 ; ;	0.005, ⁻	·***	_				

Cuadro C.16: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante AEFP (2/2)

Cuadro C.17: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante PCM (1/2)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 **** 13 5 **** 11 5 **** 15 5 **** 15
) 166 **** 256 **** 167 ****
3831 256 * 2201 167 2
** 3901
4.00 +
7691 7
-
1417 * 1383 *
$\frac{14376}{15465}$ 14723

136

N+W R N FP1 324 11 *** 59 1 ** 10 0		E = 15	s		E = 30	s		E = 60	s		E = 12	0 s	
Fp2 417 11 **** 84 1 * 9 0 2 0 Fp1 324 11 *** 59 1 3 0 0 0 0 F7 425 10 **** 118 4 15 0 1 0		N+W	Ч	d	N+M	ы	d	N+W	Ч	d	N+W	Ч	d
Fp1 324 11 *** 59 1 ** 50 1 ** 50 1 0 0 0 0 0 0 F7 425 10 **** 118 4 15 0 1 0 0 1 0 0 F3 501 27 ** 122 12 18 1 22 0 1 0 0 0 0 F3 501 27 ** 101 5 19 0	Fp2	417	11	* * * *	84		*	6	0		2	0	
F8 527 25 *** 118 4 15 0 1 0 F7 425 10 **** 87 0 * 17 0 1 0 F3 501 27 ** 101 5 19 0 1 0 T3 501 27 ** 101 5 19 0 1 0 T3 474 35 115 7 29 0 3 0 C4 633 81 **** 161 21 23 5 8 1 C5 616 81 **** 153 20 **** 33 5 6 0 1 1 C4 596 7 **** 134 26 **** 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td>Fp1</td> <td>324</td> <td>11</td> <td>* * *</td> <td>59</td> <td>Η</td> <td></td> <td>с С</td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td>	Fp1	324	11	* * *	59	Η		с С	0		0	0	
F7 425 10 **** 87 0 * 17 0 1 0 F3 501 27 ** 101 5 19 0 1 2 0 F3 501 27 ** 101 5 19 0 1 0 T3 500 69 *** 130 18 20 5 3 0 C4 633 81 **** 157 22 * 30 4 1 0 C5 616 81 **** 153 20 *** 33 5 5 1 1 0 C4 633 81 **** 134 26 *** 35 5 5 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F8	527	25	* * *	118	4		15	0		Ξ	0	
F4 531 48 122 12 12 12 12 12 12 12 1 2 0 T3 501 27 ** 101 5 19 0 1 0 T3 474 35 115 7 29 0 3 0 C4 633 81 **** 161 21 23 5 3 0 C3 600 70 *** 157 22 * 30 4 4 1 T6 624 83 **** 153 20 **** 25 6 0 0 T6 624 83 **** 154 26 *** 15 1 P4 596 7 *** 134 26 *** 16 1 1 P4 596 7 *** 134 26 *** 16 1 1 1 1 1 1 1 1 1 1 1 1 <	F7	425	10	* * *	87	0	*	17	0		Ξ	0	
F3 501 27 ** 101 5 19 0 1 0 T3 474 35 115 7 29 0 3 0 T3 474 35 115 7 29 0 3 0 C4 633 81 **** 157 20 6 3 0 C3 600 70 *** 157 20 6 9 0 T6 624 83 **** 153 29 **** 15 16 P4 506 74 *** 153 29 *** 15 1 P4 506 74 *** 153 29 *** 15 1 P4 50 74 *** 134 27 ** 15 1 P3 610 81 *** 15 10 7 1 1 P3 <td>F4</td> <td>531</td> <td>48</td> <td></td> <td>122</td> <td>12</td> <td></td> <td>18</td> <td>Η</td> <td></td> <td>2</td> <td>0</td> <td></td>	F4	531	48		122	12		18	Η		2	0	
T4 590 69 *** 130 18 20 5 3 0 T3 474 35 115 7 29 0 3 0 C4 633 81 **** 161 21 33 5 8 1 C3 600 70 *** 157 22 * 30 4 1 T6 616 81 **** 153 29 *** 30 4 1 T6 616 81 **** 153 29 *** 30 4 1 T6 616 81 **** 193 30 *** 30 4 1 T6 616 81 **** 134 26 *** 35 5 16 1 T6 618 83 **** 162 24 ** 40 6 0 1 T7 11 53 *** 164 2 ** 2 1 1 1	F3	501	27	* *	101	ហ		19	0			0	
T3 474 35 115 7 29 0 3 5 8 1 C4 633 81 **** 161 21 33 5 8 8 1 C3 600 70 *** 157 22 * 30 4 -4 1 T6 624 83 **** 193 29 **** 29 6 -9 9 0 T3 616 81 **** 193 30 *** 57 16 **** 15 1 P4 596 74 *** 134 26 **** 35 5 -6 9 1 P3 620 85 *** 162 24 $*$ 40 6 -8 8 1 P3 620 85 *** 163 24 $*$ 27 -4 16 -6 9 1 P3 620 85 *** 163 24 -7 -27 9 6 -8 8 1 C3 600 69 $*$ 8 -16 27 -8 -27 -6 9 1 F2 547 54 -13 13 27 -8 -27 -6 -6 -6 -6 -6 -6 -6 -6	T4	590	69	* * *	139	18		20	Ŋ		33	0	
C4 633 81 **** 161 21 33 5 8 1 C3 600 70 *** 157 22 * 30 4 4 1 T6 624 83 **** 153 29 **** 57 16 **** 15 1 T5 616 81 **** 133 26 **** 57 16 **** 15 1 P4 596 74 **** 134 26 **** 162 24 * 40 6 0 0 P3 620 85 **** 164 27 *** 36 7 4 1	T3	474	35		115	1		29	0		ဂ	0	
C3 600 70 *** 157 22 * 30 4 4 1 T6 624 83 **** 153 29 **** 29 6 9 0 T5 616 81 **** 193 30 *** 57 16 **** 15 1 P4 596 74 **** 134 26 **** 35 5 6 0 0 0 P3 620 85 **** 162 24 * 40 6 8 1 1 O1 633 83 **** 184 27 *** 36 7 * 4 1 C2 600 69 *** 147 22 * 29 3 0 FZ 560 8 *** 134 13 27 0 3 0 2 1 1 1 <td>C4</td> <td>633</td> <td>81</td> <td>* * * *</td> <td>161</td> <td>21</td> <td></td> <td>33</td> <td>Ŋ</td> <td></td> <td>∞</td> <td>1</td> <td></td>	C4	633	81	* * * *	161	21		33	Ŋ		∞	1	
TG 624 83 **** 153 29 **** 29 6 9 0 T5 616 81 *** 193 30 *** 57 16 **** 15 1 P4 596 74 *** 134 26 *** 35 5 6 6 0 P3 620 85 *** 134 26 *** 35 5 6 6 0 P3 620 85 *** 164 27 ** 36 7 6 0 P3 620 85 *** 164 27 ** 36 7 7 4 1 O1 633 83 *** 184 27 ** 36 7 -44 1 P 7 9 1 P 7 1 P 7 9 1 P 7	C3	600	20	* * *	157	22	*	30	4		4	1	
T5 616 81 **** 193 30 *** 57 16 **** 15 15 1 P4 596 74 **** 134 26 **** 35 5 6 0 P3 620 85 **** 162 24 * 40 6 8 P3 620 85 **** 162 24 * 9 0 P2 648 72 ** 164 27 ** 55 12 ** 9 1 P2 547 54 134 13 27 0 7 44 1 P2 600 69 ** 134 13 27 0 7 9 1 P2 600 81 **** 199 2 *** 51 0 7 7 1 P2 600 81 **** 113 2 * 29 3 7 7 1 P2 600 81 **** 138 13 2 1 32 4 4 4 2 P2 60 83 **** 167 22 1 7 1 P2 60 81 **** 138 13 7 1 7 1 P2 60 81 **** 147 22 1 7 1 P2 60 81 **** 139 2 $*$ P2 60 81 **** 138 13 8 1 P2 60 81 **** 139 2 1 P2 60 81 **** 139 2 1 P2 80 9 81 **** 139 2 1 P2 9 80 9 81 **** 139 2 1 P2 9 80 9 80 1 P2 9 80 9 80 1 P2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	16	624	83	* * * *	153	29	* ** *	29	9		6	0	
P4 596 74 **** 134 26 **** 134 26 **** 134 66 6 0 6 0 P3 620 85 **** 162 24 * 40 6 8 1 O2 648 72 ** 164 27 *** 36 7 4 1 O1 633 83 **** 184 27 ** 36 7 4 1 CZ 600 69 *** 134 13 ** 57 12 ** 9 1 CZ 600 69 *** 134 13 ** 51 0 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <td>T5</td> <td>616</td> <td>81</td> <td>* * * *</td> <td>193</td> <td>30</td> <td>* * *</td> <td>57</td> <td>16</td> <td>* * * *</td> <td>15</td> <td>Η</td> <td></td>	T5	616	81	* * * *	193	30	* * *	57	16	* * * *	15	Η	
P3 620 85 **** 162 24 * 40 6 8 1 O2 648 72 ** 164 27 *** 36 7 4 1 O1 633 83 **** 164 27 ** 55 12 ** 9 1 FZ 547 54 134 13 ** 55 12 ** 9 1 FZ 600 69 *** 159 15 32 4 4 2 1 LOG 586 13 **** 199 2 ** 20 0 7 1 2 LOG 376 5 **** 113 2 * 26 0 7 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 <td>P4</td> <td>596</td> <td>74</td> <td>* * *</td> <td>134</td> <td>26</td> <td>* * * *</td> <td>35</td> <td>Ŋ</td> <td></td> <td>9</td> <td>0</td> <td></td>	P4	596	74	* * *	134	26	* * * *	35	Ŋ		9	0	
O2 648 72 $**$ 164 27 $***$ 36 7 4 1 O1 633 83 $****$ 184 27 $**$ 55 12 $**$ 9 1 FZ 547 54 134 13 27 0 3 0 CZ 600 69 $***$ 147 22 $**$ 51 0 3 0 CZ 609 81 $****$ 113 2 $**$ 51 0 7 1 LOG 586 13 $****$ 113 2 $****$ 51 0 7 1 LOG 376 5 $****$ 113 2 $****$ 51 0 7 1 ROG 376 162 0 $****$ 113 2 $****$ 2 0 7 1 1 ROG 376 16 2 $*****$	P3	620	85	* * * *	162	24	*	40	9		∞	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	O2	648	72	* *	164	27	* * *	36	2		4	Η	
FZ 547 54 134 13 27 0 3 0 CZ 600 69 $***$ 159 15 32 4 4 2 PZ 609 81 $****$ 147 22 $*$ 29 3 5 1 LOG 586 13 $****$ 199 2 $****$ 51 0 7 1 ROG 376 5 $****$ 113 2 $*$ 26 0 10 0 ROG 162 0 $****$ 18 0 2 $*$ 26 0 10 0 FMG 162 0 $****$ 18 0 2 $*$ 26 0 10 0 Total 1388 118 694 59 346 30 178 10 F=tamaño de ventana; $N+W=NMOR$ v Ia prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en v v v v v	01	633	83	* * *	184	27	* *	55	12	*	6	Η	
CZ60069***159151532442PZ60981****14722*29351LOG58613****1992****51071ROG3765****1132*260100EMG1620****1802*26000Total138811869459346301781010E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	\mathbf{FZ}	547	54		134	13		27	0		33	0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CZ	600	69	* * *	159	15		32	4		4	7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\mathbf{PZ}	609	81	* * *	147	22	*	29	က		ŋ	Ц	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LOG	586	13	* * *	199	2	* * *	51	0		2	Η	
EMG 162 0 **** 18 0 2 0 0 Total 1388 118 694 59 346 30 178 10 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	ROG	376	IJ	* * * *	113	2	*	26	0		10	0	
Total 1388 118 694 59 346 30 178 10 E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	EMG	162	0	* * * *	18	0		2	0		0	0	
E=tamaño de ventana; N+W=NMOR y vigilia; R=MOR; p, significancia de la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en	Total	1388	118		694	59		346	30		178	10	
la prueba χ^2 de Pearson entre las proporciones de ventanas estacionarias en		E=tamar	io de	ventana	W+W=	NMC	R y vig	ilia; R=M	IOR;	p, signi	ficancia d	е	
the foregroup of the second of		a. nrueha	γ^2 0	le Pears	on entre l	as ni	ronorcio	nes de ve	ntanƙ	as estac	ionarias e	Ц	
	. ,		, ליי									1	

Cuadro C.18: Épocas estacionarias según tamaño de ventana, y comparación de sus proporciones entre etapas de sueño; participante PCM (2/2)

Esta página se dejó intencionalmente en blanco.

Bibliografía

- Allegrini, P., Paradisi, P., Menicucci, D. y Gemignani, A.: Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Frontiers in Physiology, 1:128, 2010.
- [2] Ardila, A. y Ostrosky, F.: Guía para el diagnóstico neuropsicológico. Instituto de Neuropsicología e Intervención Psicológica del Sureste, 2012. Disponible en http://www.inips.com.mx/archivos/Ardila_Ostrosk_Guia_para_ el_Diagnostico_Neuropsicologico.pdf.
- [3] Asimov, I.: Memorias. Autobiografía Isaac Asimov. Ediciones B, 1ª ed., 1994.
- [4] Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., Cavedo, E., Bozzao, A., Buttinelli, C., Esposito, F., Giubilei, F., Guizzaro, A., Marino, S., Montella, P., Quattrocchi, C. C., Redolfi, A., Soricelli, A., Tedeschi, G., Ferri, R., Rossi-Fedele, G., Ursini, F., Scrascia, F., Vernieri, F., Pedersen, T. J., Hardemark, H. G., Rossini, P. M. y Frisoni, G. B.: Resting State Cortical Electroencephalographic Rhythms are Related to Gray Matter Volume in Subjects with Mild Cognitive Impairment and Alzheimer's Disease. Human Brain Mapping, 34(6):1427–1446, 2013.
- [5] Blake, M. G. y Boccia, M. M.: Behavioral Neuroscience of Learning and Memory, vol. 37 de Current Topics in Behavioral Neurosciences, cap. Basal Forebrain Cholinergic System and Memory, págs. 253–273. Springer, 2018.

- [6] Brayet, P., Petit, D., Frauscher, B., Gagnon, J. F., Gosselin, N., Gagnon, K., Rouleau, I. y Montplaisir, J.: Quantitative EEG of Rapid-Eye-Movement Sleep: A Marker of Amnestic Mild Cognitive Impairment. Clinical EEG and Neuroscience, 47(2):134–141, 2016.
- [7] Chen, P., Wu, D., Chen, C., Chi, N. y Kang, J.H.and Hu, C.: Rapid eye movement sleep atonia in patients with cognitive impairment. J Neurol Sci, 15:34–37, 2011.
- [8] Cohen, B. A. y Sances, Jr, A.: Stationarity of the human electroencephalogram. Medical and Biological Engineering and Computing, 15(5):513–518, 1977.
- [9] Constantine, W. y Percival, D.: fractal: A Fractal Time Series Modeling and Analysis Package, 2017. https://CRAN.R-project.org/package=fractal, R package version 2.0-4.
- [10] Corsi-Cabrera, M.: *Psicofisiología del sueño*. Editorial Trillas, 1983.
- [11] Crum, R. M., Anthony, J. C., Bassett, S. S. y Folstein, M. F.: Population-Based Norms for the Mini-Mental State Examination by Age and Educational Level. JAMA, 269(18):2386–2391, 1993.
- [12] Dahlhaus, R.: Fitting time series models to nonstationary processes. The annals of Statistics, 25(1):1–37, 1997.
- [13] Diekelmann, S. y Born, J.: The memory function of sleep. Nature Reviews Neuroscience, 11:114–126, 2010.
- [14] Dubois, B., Feldman, H. H., Jacova, C., DeKosky, S. T., Barberger-Gateau, P., Cummings, J., Delacourte, A., Galasko, D., Gauthier, S., Jicha, G., Meguro, K., O'Brien, J., Pasquier, F., Robert, P., Rossor, M., Salloway, S., Stern, Y., Visser, P. J. y Scheltens, P.: Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS-ADRDA criteria. The Lancet Neurology, 6(8):734– 746, 2007.
- [15] Ermentrout, G. B. y Terman, D. H.: Mathematical Foundations of Neuroscience, vol. 35 de Interdisciplinary Applied Mathematics. Springer Science & Business Media, 2010.

- [16] Folstein, M. F., Folstein, S. E. y McHugh, P. R.: "Mini-mental state": A Practical Method for Grading the Cognitive State of Patients for the clinician. Journal of Psychiatric Research, 12(3):189–198, 1975.
- [17] Iber, C., Ancoli-Israel, S., Chesson, A., Quan, S. F. y cols.: The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine Westchester, IL, 2007.
- [18] Instituto Nacional de Estadística Geografía e Informática, INEGI: Censo de Población y Vivienda 2010. http://www.beta.inegi.org.mx/proyectos/ccpv/ 2010/. Revisado: 2017-11-15.
- [19] Instituto Nacional de Estadística Geografía e Informática, INEGI: Encuesta Intercensal 2015. http://www.beta.inegi.org.mx/proyectos/enchogares/ especiales/intercensal/. Revisado: 2017-11-15.
- [20] Instituto Nacional de Geriatría y Secretaría de Salud: Plan de acción Alzheimer y otras demencias. México, 2014, 2014. México.
- [21] Kaiser, D. A.: QEEG: State of the Art, or State of Confusion. Journal of Neurotherapy, 4(2):57–75, 2000.
- [22] Kaplan, A.Y.: The problem of segmental description of human electroencephalogram. Fiziologiya Cheloveka, 25:107-114, 1999. Versión en inglés disponible en la página del autor https://www.researchgate. net/profile/Alexander_Kaplan2/publication/13094535_The_problem_ of_segmental_description_of_human_electroencephalogram/links/ 541a86c00cf2218008bfbadf.pdf.
- [23] Kaplan, A. Y. y Shishkin, S. L.: Application of the change-point analysis to the investigation of the brain's electrical activity. En Non-Parametric Statistical Diagnosis, págs. 333–388. Springer, 2000.
- [24] Katz, S., Downs, T. D., Cash, H. R. y Grotz, R. C.: Progress in development of the index of ADL. The Gerontologist, 10(1):20–30, 1970.
- [25] Kawabata, N.: A Nonstationary Analysis of the Electroencephalogram. IEEE Transactions on Biomedical Engineering, BME-20(6):444–452, 1973.

- [26] Kipiński, L., Konig, R., Sieluzycki, C. y Kordecki, W.: Application of modern tests for stationarity to single-trial MEG data. Biological Cybernetics, 105(3– 4):183–195, 2011.
- [27] Klem, G., Lüders, H.O., Jasper, H.H. y Elger, C.: The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 52:3–6, 1999. (Suplemento).
- [28] Knopman, D. S., DeKosky, S. T., Cummings, J., Chui, H., Corey-Bloom, J., Relkin, N., Small, G., Miller, B. y Stevens, J.: Practice Parameter: Diagnosis of Dementia (An Evidence-based Review) Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology, 56(9):1143–1153, 2001.
- [29] Kolmogorov, A.N.: Foundations of the Theory of Probability: Second English Edition. Courier Dover Publications, 2018.
- [30] Lindgren, B. R.: Statistical Theory. Chapman & Hall, 4ª ed., 1993.
- [31] Lindgren, G.: Stationary Stochastic Processes: Theory and Applications. Texts in Statistical Science. CRC Press, 2012.
- [32] López, C. A.: Manual diagnóstico y estadístico de los trastornos mentales: DSM-5. Editorial Médica Panamericana, 2014.
- [33] Ma, Y., Shi, W., Peng, C. K. y Yang, A. C.: Nonlinear dynamical analysis of sleep electroencephalography using fractal and entropy approaches. Sleep Medicine Reviews, 37:85–93, 2018.
- [34] McEwen, J. A. y Anderson, G. B.: Modeling the Stationarity and Gaussianity of Spontaneous Electroencephalographic Activity. IEEE Transactions on Biomedical Engineering, BME-22(5):361–369, 1975.
- [35] Nason, G.: A test for second order stationarity and approximate confidence intervals for localized autocovariances for locally stationary time series. Journal of the Royal Statistical Society. Series B (Methodological), 75(5):879–904, 2013.

- [36] Niedermeyer, E. y Schomer, D. L.: Niedermeyer's Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. Lippincott Williams & Wilkins, 6^a ed., 2011.
- [37] Ostrosky-Solís, F., Ardila, A. y Rosselli, M.: Neuropsi: A brief neuropsychological test battery in Spanish with norms by age and educational level. Journal of the International Neuropsychological Society, 5:413–433, 1999.
- [38] Ostrosky-Solís, F., Gómez, M. E., Villaseñor, E. M., Roselli, M., Ardila, A. y Pineda, D.: *Neuropsi: Atención y Memoria*. Manual Moderno, 2ª ed., 2003.
- [39] Ostrosky-Solís, F., López-Arango, G. y Ardila, A.: Sensitivity and Specificity of the Mini-Mental State Examination in a Spanish-Speaking Population. Applied Neuropsychology, 7(1):25–31, 2000.
- [40] Park, D. C. y Reuter-Lorenz, P.: The Adaptive Brain: Aging and Neurocognitive Scaffolding. Annual Review of Psychology, 60:173–196, 2009.
- [41] Porter, V. R., Buxton, W. G. y Avidan, A. Y.: Sleep, cognition and dementia. Current psychiatry reports, 17(12):97, 2015.
- [42] Prichep, L., John, E., Ferris, S., Rausch, L., Fang, Z., Cancro, R., Torossian, C. y Reisberg, B.: Prediction of longitudinal cognitive decline in normal elderly with subjective complaints using electrophysiological imaging. Neurobiology of aging, 27(3):471–481, 2006.
- [43] Prichep, L., John, E., Ferris, S. H., Reisberg, B., Almas, M., Alper, K. y Cancro, R.: Quantitative EEG correlates of cognitive deterioration in the elderly. Neurobiology of Aging, 15(1):85–90, 1994.
- [44] Priestley, M. B.: Evolutionary Spectra and Non-stationary Processes. Journal of the Royal Statistical Society. Series B (Methodological), 27(2):204–237, 1965.
- [45] Priestley, M. B.: Design Relations for Non-stationary Processes. Journal of the Royal Statistical Society. Series B (Methodological), 28(1):228–240, 1966.
- [46] Priestley, M. B.: Spectral Analysis and Time Series, vol. 1, 2. Academic Press, 1981.

- [47] Priestley, M. B. y Subba Rao, T.: A Test for Non-stationarity of Time-series. Journal of the Royal Statistical Society. Series B (Methodological), 31(1):140– 149, 1969.
- [48] Rincón, L.: Construyendo la integral estocástica de Itô. Sociedad Matemática, 2005.
- [49] Robles, A., Del Ser, T., Alom, J., Peña-Casanova, J. y Demencias, S. E. d. N. Grupo Asesor del Grupo de Neurología de la Conducta y: Propuesta de criterios para el diagnóstico clínico del deterioro cognitivo ligero, la demencia y la enfermedad de Alzheimer. Neurología, 17(1):17–32, 2002.
- [50] Rosales-Lagarde, A.: La relación sueños-cerebro y sus modelos. Ludus Vitalis, 22(41):311–331, 2016.
- [51] Rosales-Lagarde, A., Rodríguez-Torres, E. E., Itzá-Ortíz, B. A., Miramontes, P., Vázquez-Tagle Gallegos, G., Enciso-Alva, J. C., García Muñoz, V., Cubero-Rego, L., Pineda-Sánchez, E., Martínez Alcalá, C. y López-Noguerola, J. S.: The Color of Noise and Weak Stationarity at the NREM to REM sleep transition in Mild Cognitive Impaired subjects. Frontiers, (aceptado).
- [52] Rosales-Lagarde, A., Rodríguez-Torres, E., Enciso-Alva, J., Martínez-Alcalá, C., Vázquez-Tagle, G., Tetlalmatzi-Montiel, M., Viveros, J. y López-Noguerola, J. S.: Stationarity During REM Sleep in Old Adults. En Alzheimer's & Dementia: 2017 Abstract Supplement, vol. 13, págs. P723–P724. Elsevier, 2017.
- [53] Rosenzweig, M. R., Breedlove, S. M. y Leiman, A. L.: Biological psychology: An introduction to behavioral, cognitive, and clinical neuroscience. Sinauer Associates, 2002.
- [54] Sanhueza Guzmán, C.: Programa de entrenamiento cerebral en adultos mayores sin deterioro cognitivo: atención, memoria y funciones ejecutivas. Tesis de Doctorado, Universidad Complutense de Madrid, 2014.
- [55] Schliebs, R. y Arendt, T.: The cholinergic system in aging and neuronal degeneration. Behavioural Brain Research, 221(2):555–563, 2011.

- [56] Scullin, M. K. y Bliwise, D. L.: Sleep, Cognition, and Normal Aging: Integrating a Half Century of Multidisciplinary Research. Perspectives on Psychological Science, 10(1):97–137, 2015.
- [57] Shorack, G. R.: Probability for Statisticians. Springer texts in statistics. Springer, 1^a ed., 2000.
- [58] Siegel, S. y Castellan, N. J.: Estadística No Paramétrica Aplicada a las ciencias de la conducta. Trillas México, 4^a ed., 2012.
- [59] Sinoff, G., Ore, L., Zlotogorsky, D. y Tamir, A.: Short anxiety screening test—a brief instrument for detecting anxiety in the elderly. International Journal of Geriatric Psychiatry, 14(12):1062–1071, 1999.
- [60] Smith, C.: Sleep states, memory processes and synaptic plasticity. Behavioural Brain Research, 78(1):49–56, 1996.
- [61] Smith, C.: Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Medicine Reviews, 5(6):491–506, 2001.
- [62] Sugimoto, H., Ishii, N., Iwata, A., Suzumura, N. y Tomita, T.: On the stationarity and normality of the electroencephalographic data during sleep stages. Computer Programs in Biomedicine, 8(3–4):224–234, 1978.
- [63] Tejedor, F. J.: Análisis de varianza. La Muralla, 1999.
- [64] Vázquez-Tagle Gallegos, G. R., García-Muñoz, V., Rosales-Lagarde, A., Rodríguez Torres, E., Martínez-Alcalá, C. y Reséndiz-Flores, O.: Correlación inter-hemisférica durante el sueño MOR del Adulto Mayor con Deterioro Cognitivo, 2016. Congreso Nacional, Sociedad Mexicana de Ciencias Fisiológicas. Campeche, México.
- [65] Webster, J. G. (ed.): Medical Instrumentation. Applications and Design. Wiley, Estados Unidos, 4^a ed., 2009.
- [66] Werner, G.: Viewing brain processes as Critical State Transitions across levels of organization: Neural events in Cognition and Consciousness, and general principles. BioSystems, 96(1):114–119, 2009.

- [67] Wiener, N.: Cybernetics or Control and Communication in the Animal and the Machine, vol. 25. MIT Press, 1961.
- [68] Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M. y Leirer, V.O.: Development and Validation of a Geriatric Depression Screening Scale: A Preliminary Report. Journal of Psychiatric Research, 17(1):37–49, 1982.