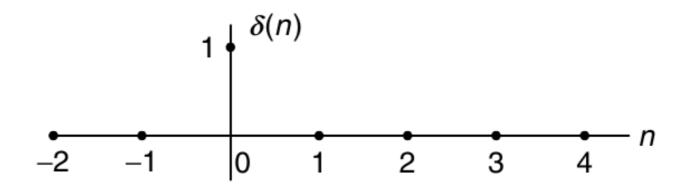


Digital signals and systems

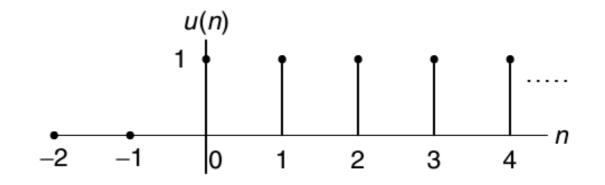
Unit impulse sequence

$$\delta(n) = \begin{cases} 1 & n = 0\\ 0 & n \neq 0 \end{cases}$$

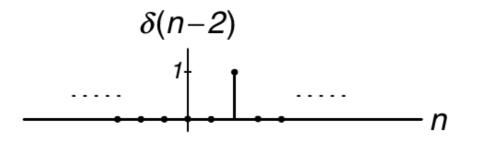


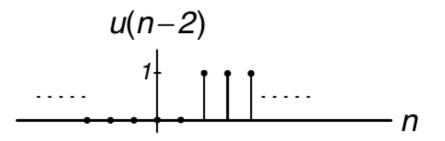
Unit step sequence

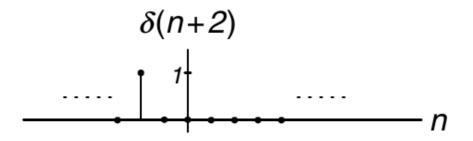
$$u(n) = \begin{cases} 1 & n \ge 0\\ 0 & n < 0 \end{cases}$$

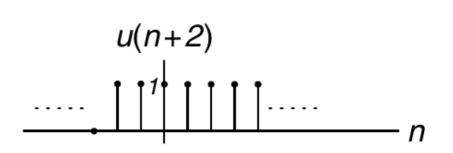


Shifted sequences







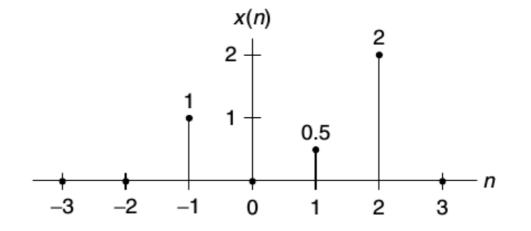


Example

Given the following,

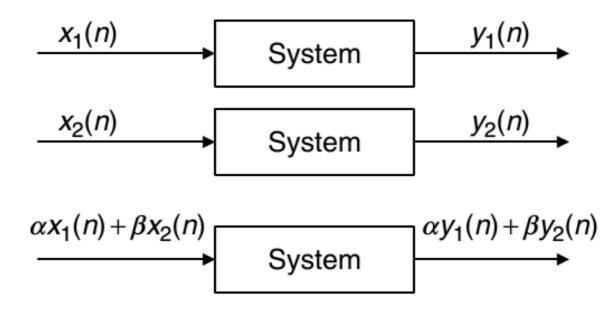
$$x(n) = \delta(n+1) + 0.5\delta(n-1) + 2\delta(n-2),$$

a. Sketch this sequence.

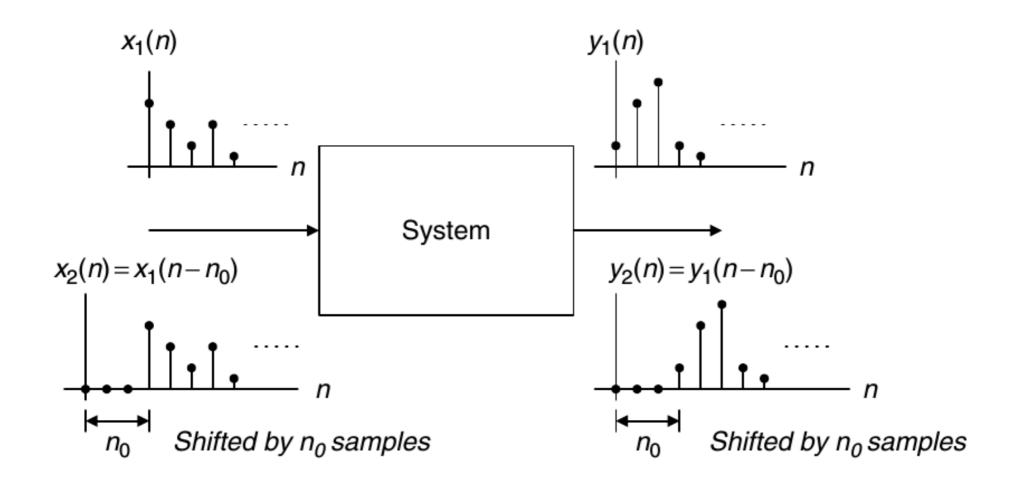


- 3.1. Sketch each of the following special digital sequences:
 - a. 5δ(*n*)
 - b. $-2\delta(n-5)$
 - c. -5u(n)
 - d. 5u(n-2)
- 3.2. Calculate the first eight sample values and sketch each of the following sequences:
 - a. $x(n) = 0.5^n u(n)$
 - b. $x(n) = 5\sin(0.2\pi n)u(n)$
 - c. $x(n) = 5\cos(0.1\pi n + 30^{\circ})u(n)$
 - d. $x(n) = 5(0.75)^n \sin(0.1\pi n)u(n)$
- 3.3. Sketch the following sequences:

a. $x(n) = 3\delta(n+2) - 0.5\delta(n) + 5\delta(n-1) - 4\delta(n-5)$ b. $x(n) = \delta(n+1) - 2\delta(n-1) + 5u(n-4)$



Time invariance



Causality

A causal system is one in which the output y(n) at time n depends only on the current input x(n) at time n, its past input sample values such as x(n-1), x(n-2), ...: Otherwise, if a system output depends on the future input values, such as x(n+1), x(n+2), ..., the system is noncausal.

3.6. Determine which of the following is a linear system.

a.
$$y(n) = 5x(n) + 2x^2(n)$$

b.
$$y(n) = x(n-1) + 4x(n)$$

c.
$$y(n) = 4x^3(n-1) - 2x(n)$$

3.7. Given the following linear systems, find which one is time invariant.

a.
$$y(n) = -5x(n - 10)$$

b. $y(n) = 4x(n^2)$

3.8. Determine which of the following linear systems is causal.

a.
$$y(n) = 0.5x(n) + 100x(n-2) - 20x(n-10)$$

b. y(n) = x(n+4) + 0.5x(n) - 2x(n-2)

Diference equations

A causal, linear, time-invariant system can be described by a difference equation having the following general form:

$$y(n) + a_1y(n-1) + \ldots + a_Ny(n-N)$$

 $= b_0 x(n) + b_1 x(n-1) + \ldots + b_M x(n-M),$

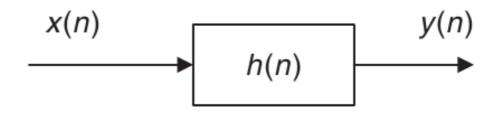
$$y(n) = -\sum_{i=1}^{N} a_i y(n-i) + \sum_{j=0}^{M} b_j x(n-j).$$

System Representation Using Its Impulse Response

A linear time-invariant system can be completely described by its unit-impulse response, which is defined as the system response due to the impulse input d(n) with zero initial conditions



With the obtained unit-impulse response h(n), we can represent the linear time-invariant system



Example

Given the linear time-invariant system y(n)=0.5x(n) + 0.25x(n-1) with an initial condition x(-1)=0,

- Determine the unit-impulse response h(n).
- Draw the system block diagram.
- Write the output using the obtained impulse response.

Solution:

a. According to Figure 3.13, let $x(n) = \delta(n)$, then

$$h(n) = y(n) = 0.5x(n) + 0.25x(n-1) = 0.5\delta(n) + 0.25\delta(n-1).$$

Thus, for this particular linear system, we have

$$h(n) = \begin{cases} 0.5 & n = 0\\ 0.25 & n = 1\\ 0 & elsewhere \end{cases}$$

b. The block diagram of the linear time-invariant system is shown as

$$x(n) \qquad y(n) \\ h(n) = 0.5\delta(n) + 0.25\delta(n-1)$$

FIGURE 3.15 The system block diagram in Example 3.7.

c. The system output can be rewritten as

$$y(n) = h(0)x(n) + h(1)x(n-1).$$

Convolution (Digital convolution sum)

 $y(n) = \ldots + h(-1)x(n+1) + h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + \ldots$

 $h(n) = \ldots + h(-1)\delta(n+1) + h(0)\delta(n) + h(1)\delta(n-1) + h(2)\delta(n-2) + \ldots,$

Example

Given the difference equation y(n)=0.25y(n-1) + x(n) for $n \ge 0$ and y(-1)=0, Determine the unit-impulse response h(n). Draw the system block diagram. Write the output using the obtained impulse response.

For a step input x(n)=u(n), verify and compare the output responses for the first three output samples using the difference equation and digitial convolution sum

Solution:

a. Let $x(n) = \delta(n)$, then

$$h(n) = 0.25h(n-1) + \delta(n).$$

To solve for h(n), we evaluate

$$h(0) = 0.25h(-1) + \delta(0) = 0.25 \times 0 + 1 = 1$$

$$h(1) = 0.25h(0) + \delta(1) = 0.25 \times 1 + 0 = 0.25$$

$$h(2) = 0.25h(1) + \delta(2) = 0.25 \times 0.5 + 0 = 0.0625$$

...

With the calculated results, we can predict the impulse response as

$$h(n) = (0.25)^n u(n) = \delta(n) + 0.25\delta(n-1) + 0.0625\delta(n-2) + \dots$$

b. The system block diagram is given in Figure 3.16.

$$\xrightarrow{x(n)} h(n) = \delta(n) + 0.25\delta(n-1) + \cdots$$

c. The output sequence is a sum of infinite terms expressed as

$$y(n) = h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + \dots$$

= x(n) + 0.25x(n-1) + 0.0625x(n-2) + \dots

d. From the difference equation and using the zero-initial condition, we have

$$y(n) = 0.25y(n-1) + x(n)$$
 for $n \ge 0$ and $y(-1) = 0$
 $n = 0, y(0) = 0.25y(-1) + x(0) = u(0) = 1$
 $n = 1, y(1) = 0.25y(0) + x(1) = 0.25 \times u(0) + u(1) = 1.25$
 $n = 2, y(2) = 0.25y(1) + x(2) = 0.25 \times 1.25 + u(2) = 1.3125$

Applying the convolution sum in Equation (3.15) yields

$$y(n) = x(n) + 0.25x(n-1) + 0.0625x(n-2) + \dots$$

$$n = 0, \ y(0) = x(0) + 0.25x(-1) + 0.0625x(-2) + \dots$$

$$= u(0) + 0.25 \times u(-1) + 0.125 \times u(-2) + \dots = 1$$

$$n = 1, \ y(1) = x(1) + 0.25x(0) + 0.0625x(-1) + \dots$$

$$= u(1) + 0.25 \times u(0) + 0.125 \times u(-1) + \dots = 1.25$$

$$n = 2, \ y(2) = x(2) + 0.25x(1) + 0.0625x(0) + \dots$$

$$= u(2) + 0.25 \times u(1) + 0.0625 \times u(0) + \dots = 1.3125$$

"... a linear time-invariant system can be represented by the convolution sum using its impulse response and input sequence."

3.10. Find the unit-impulse response for each of the following linear systems.

a.
$$y(n) = 0.5x(n) - 0.5x(n-2)$$
; for $n \ge 0$, $x(-2) = 0$, $x(-1) = 0$
b. $y(n) = 0.75y(n-1) + x(n)$; for $n \ge 0$, $y(-1) = 0$
c. $y(n) = -0.8y(n-1) + x(n-1)$; for $n \ge 0$, $x(-1) = 0$, $y(-1) = 0$

- 3.11. For each of the following linear systems, find the unit-impulse response, and draw the block diagram.
 - a. y(n) = 5x(n-10)
 - b. y(n) = x(n) + 0.5x(n-1)

Digital convolution sum

20

A linear time-invariant system can be represented by using a digital convolution sum. Given a linear time-invariant system, we can determine its unit-impulse response h(n), which relates the system input and output. (The sequences h(k) and x(k) in equations are interchangeable).

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

= ... + h(-1)x(n+1) + h(0)x(n) + h(1)x(n-1) + h(2)x(n-2) + ...

 $L(a) = L(a) \cdot L(a)$

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

= ... + x(-1)h(n+1) + x(0)h(n) + x(1)h(n-1) + x(2)h(n-2) + ...

... para un sistema causal

$$y(n) = \sum_{k=0}^{\infty} h(k) x(n-k) = \sum_{k=0}^{\infty} x(k) h(n-k).$$

Methods to implement convolution

Graphical (need reverse and shifted sequences) Formula Table

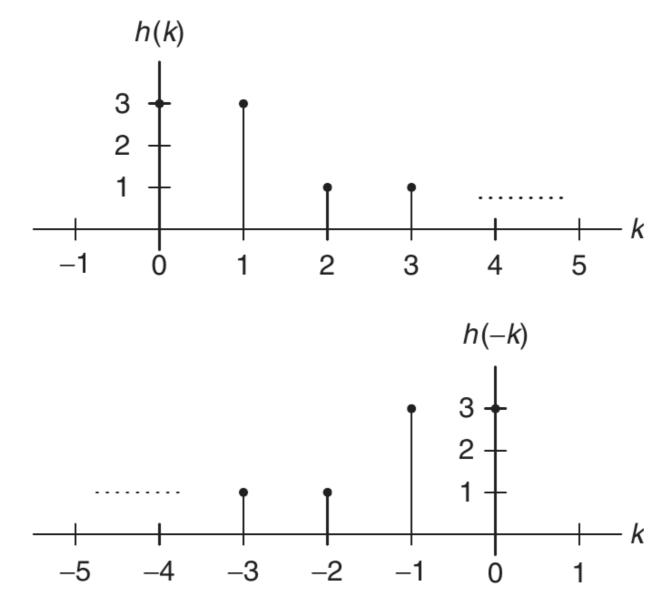
The reversed sequence is a mirror image of the original sequence, assuming the vertical axis as the mirror (If h(n) is the given sequence, h(-n) is the reversed sequence)

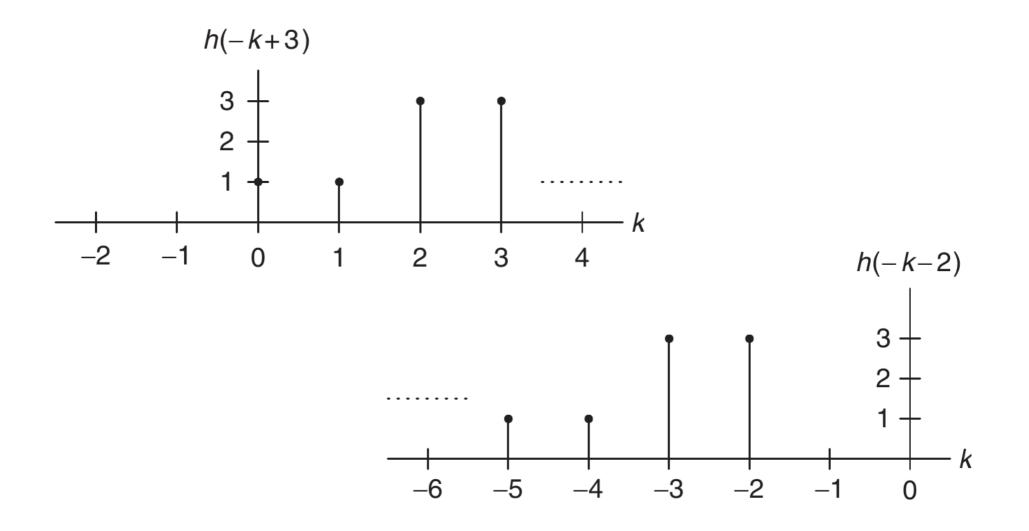
Given a sequence,

$$h(k) = \begin{cases} 3, & k = 0, 1\\ 1, & k = 2, 3\\ 0 & elsewhere \end{cases}$$

where k is the time index or sample number,

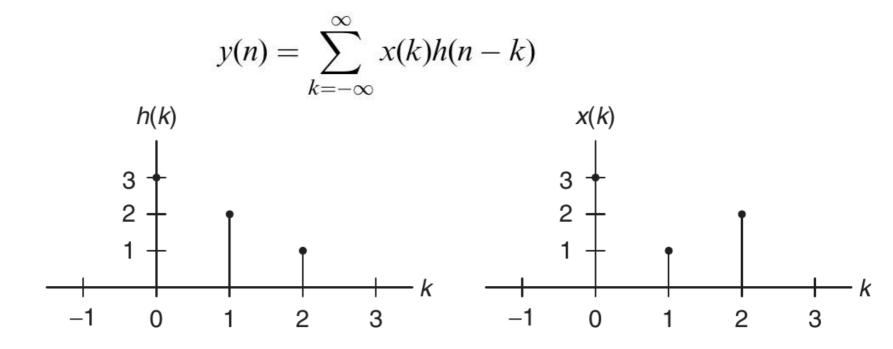
- a. Sketch the sequence h(k) and reversed sequence h(-k).
- b. Sketch the shifted sequences h(-k+3) and h(-k-2).



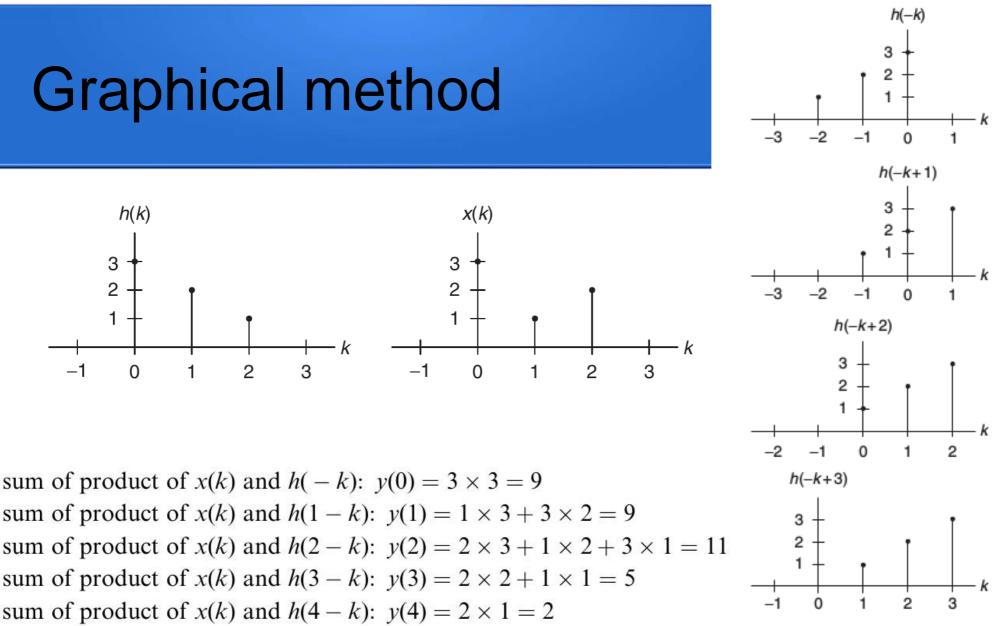


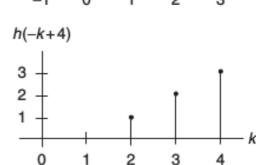
Example

Using the following sequences defined in Figure 3.21, evaluate the digital convolution



- a. By the graphical method.
- b. By applying the formula directly.
- c. using the table method



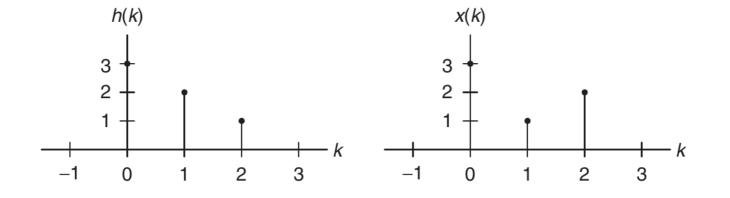


Animation

Animación 1

Animación 2

Formula method

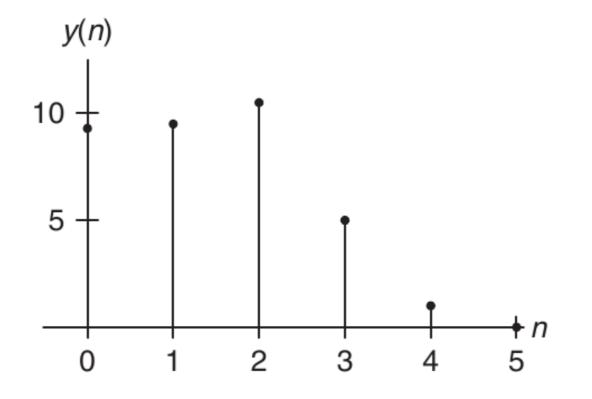


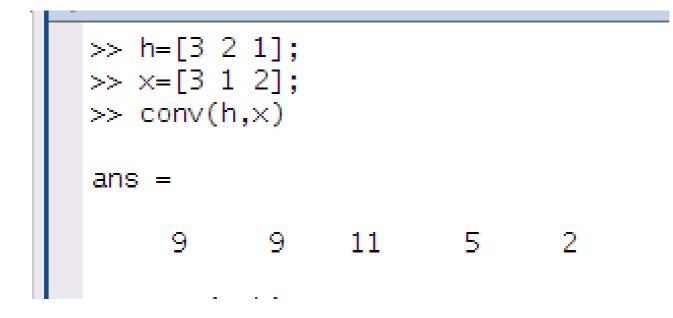
 $n = 0, y(0) = x(0)h(0) + x(1)h(-1) + x(2)h(-2) = 3 \times 3 + 1 \times 0 + 2 \times 0 = 9,$ $n = 1, y(1) = x(0)h(1) + x(1)h(0) + x(2)h(-1) = 3 \times 2 + 1 \times 3 + 2 \times 0 = 9,$ $n = 2, y(2) = x(0)h(2) + x(1)h(1) + x(2)h(0) = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11,$ $n = 3, y(3) = x(0)h(3) + x(1)h(2) + x(2)h(1) = 3 \times 0 + 1 \times 1 + 2 \times 2 = 5.$ $n = 4, y(4) = x(0)h(4) + x(1)h(3) + x(2)h(2) = 3 \times 0 + 1 \times 0 + 2 \times 1 = 2,$ $n \ge 5, y(n) = x(0)h(n) + x(1)h(n-1) + x(2)h(n-2) = 3 \times 0 + 1 \times 0 + 2 \times 0 = 0.$

Table method

<i>k</i> :	-2	-1	0	1	2	3	4	5	
x(k):			3	1	2				
h(-k):	1	2	3						$y(0) = 3 \times 3 = 9$
h(1-k)		1	2	3					$y(1) = 3 \times 2 + 1 \times 3 = 9$
h(2 - k)			1	2	3				$y(2) = 3 \times 1 + 1 \times 2 + 2 \times 3 = 11$
h(3 - k)				1	2	3			$y(3) = 1 \times 1 + 2 \times 2 = 5$
h(4 - k)					1	2	3		$y(4) = 2 \times 1 = 2$
h(5-k)						1	2	3	y(5) = 0 (no overlap)
									72

Convolution





Example

A system representation using the unit-impulse response for the linear system

$$y(n) = 0.25y(n-1) + x(n)$$
 for $n \ge 0$ and $y(-1) = 0$

is determined in Example 3.8 as

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k),$$

where $h(n) = (0.25)^n u(n)$. For a step input x(n) = u(n),

a. Determine the output response for the first three output samples using the table method.

Problems

3.15. Using the following sequence definitions,

$$h(k) = \begin{cases} 2, & k = 0, 1, 2\\ 1, & k = 3, 4\\ 0 & elsewhere \end{cases} \text{ and } x(k) = \begin{cases} 2, & k = 0\\ 1, & k = 1, 2\\ 0 & elsewhere, \end{cases}$$

evaluate the digital convolution

$$y(n) = \sum_{k=-\infty}^{\infty} x(k)h(n-k)$$

- a. using the graphical method;
- b. using the table method;
- c. applying the convolution formula directly.

3.16. Using the sequence definitions

$$x(k) = \begin{cases} -2, & k = 0, 1, 2\\ 1, & k = 3, 4\\ 0 & elsewhere \end{cases} \text{ and } h(k) = \begin{cases} 2, & k = 0\\ -1, & k = 1, 2\\ 0 & elsewhere, \end{cases}$$

evaluate the digital convolution

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k)$$

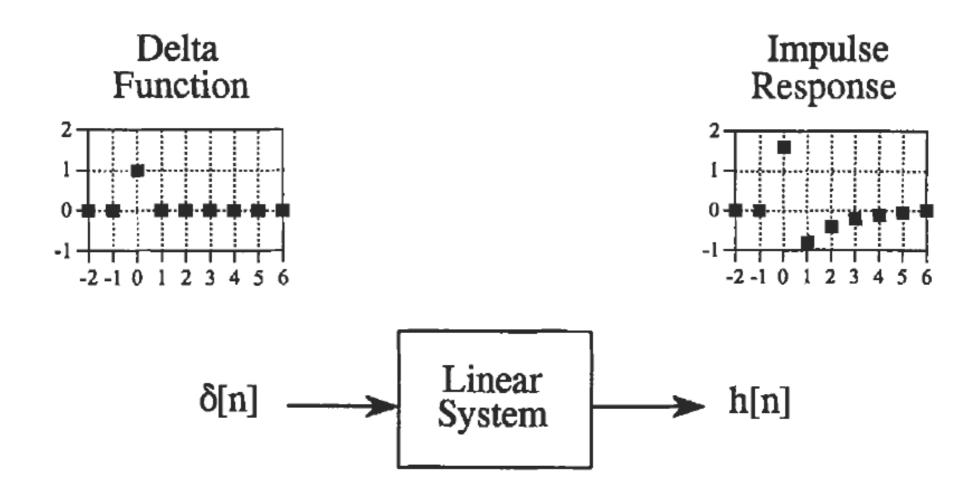
- a. using the graphical method;
- b. using the table method;
- c. applying the convolution formula directly.

3.17. Convolve the following two rectangular sequences:

$$x(n) = \begin{cases} 1 & n = 0, 1 \\ 0 & otherwise \end{cases} \text{ and } h(n) = \begin{cases} 0 & n = 0 \\ 1 & n = 1, 2 \\ 0 & otherwise \end{cases}$$

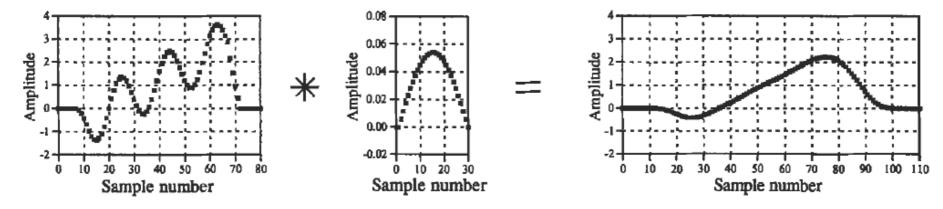
using the table method.

Convolution

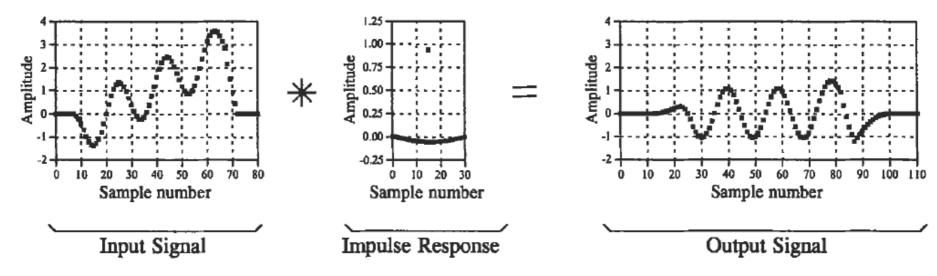


Examples convolution

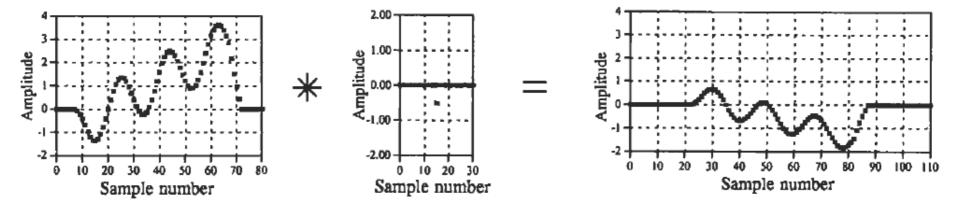
a. Low-pass Filter



b. High-pass Filter



a. Inverting Attenuator



b. Discrete Derivative

