

Universidad Autónoma del Estado de Hidalgo

Preparatoria No.3

Área Académica: Matemáticas (Geometría Analítica)

Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas.

Profesor(a): Juana Inés Pérez Zárate

Periodo: Enero – Junio 2012

Universidad Autónoma del Estado de Hidalgo

Topic: Rectangular and polar coordinates, definitions and theorems. Abstract

Abstract

This slides present a short introduction to analytic geometry. Concepts about absolute value, directed distance, rectangular and polar coordinates, distance between two points, division of a segment in a given rate, polygons area, function definition and classification are included. Also examples, exercises and tasks are proposed.

Keywords: Points, flat, areas, function.

Tema: Coordenadas rectangulares y polares, definiciones fundamentales y teoremas.

Resumen

Se hace una breve introducción a la geometría analítica. Se dan a conocer conceptos sobre valor absoluto, distancia dirigida, coordenadas rectangulares y polares, distancia entre dos puntos, división de un segmento en una razón dada, área de polígonos y definición de función y su clasificación. Se proponen ejemplos, ejercicios y tareas.

Keywords: Puntos, plano, áreas, función.

Desarrollo del tema

Objetivos de aprendizaje: Que el alumno reconozca la importancia de la relación del álgebra con la Geometría y sea capaz de aplicar conceptos para resolver problemas relacionados con distancias entre puntos.

UNIDAD 1 Coordenadas rectangulares y polares, definiciones fundamentales y teoremas.

1.1 Introducción

La geometría plana comprende el estudio de figuras tales como rectas, círculos y triángulos que se encuentran en un plano. Los teoremas se comprueban de manera deductiva por razonamiento a partir de ciertos postulados.

En geometría analítica, las figuras geométricas planas se estudian mediante el uso de sistemas coordenados y de ecuaciones y fórmulas. En particular, se hará notar como se generalizan muchas de las nociones de la geometría elemental por los métodos de la geometría analítica. Esto será ilustrado con aplicaciones a las propiedades de las líneas rectas y de las figuras rectilíneas.

Tarea: investigar la clasificación de los números reales.

1.2 Valor absoluto

Definición de valor absoluto

El valor absoluto de un número real "a" denotado por |a|, se define

1) Si $a \ge 0$, entonces |a| = a

2) Si a < 0, entonces |a| = -a

Dado que *a* es negativo en la parte 2) de la definición, - *a* representa un número real positivo.

Notación de valor absoluto |a|

a)
$$|3| = 3$$
, porque $3 > 0$

b)
$$|-3| = -(-3)$$
, porque $-3 < 0$. Así,

$$|-3|=3$$

c)
$$|2 - \sqrt{2}| = 2 - \sqrt{2}$$
, porque $2 - \sqrt{2} > 0$

d)
$$|\sqrt{2} - 2| = -(\sqrt{2} - 2)$$
, porque $\sqrt{2} - 2$
< 0. Así,

$$|\sqrt{2} - 2| = 2 - \sqrt{2}$$

Por los incisos anteriores, en general, tenemos:

|a| = |-a| para todo número real a

Supresión de un símbolo de valor absoluto

Si x < 1, reescribe $|x - 1| \sin u \sin e \sin u$ símbolo de valor absoluto.

Solución: Si x < 1, entonces x - 1 < 0; esto es,

x – 1 es negativo; por lo tanto, por la parte 2)

de la definición de valor absoluto,

$$|x-1| = -(x-1) = -x + 1 = 1 - x$$

$$|7-2| = |2-7| = 5$$

$$|5| = |-5| = 5$$

$$5 = 5 = 5$$

Solución: Si x < 1, entonces x - 1 < 0; esto es,

x – 1 es negativo; por lo tanto, por la parte 2)

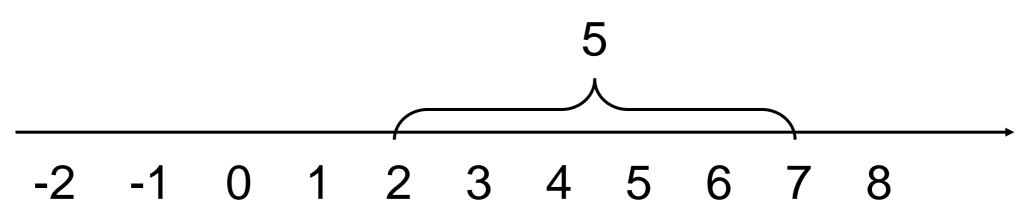
de la definición de valor absoluto,

$$|x-1| = -(x-1) = -x+1 = 1-x$$

$$|7-2| = |2-7| = 5$$

$$|5| = |-5| = 5$$

$$5 = 5 = 5$$



Se usará el concepto de valor absoluto para definir la distancia entre dos puntos de una recta coordenada

1.3 Distancia dirigida

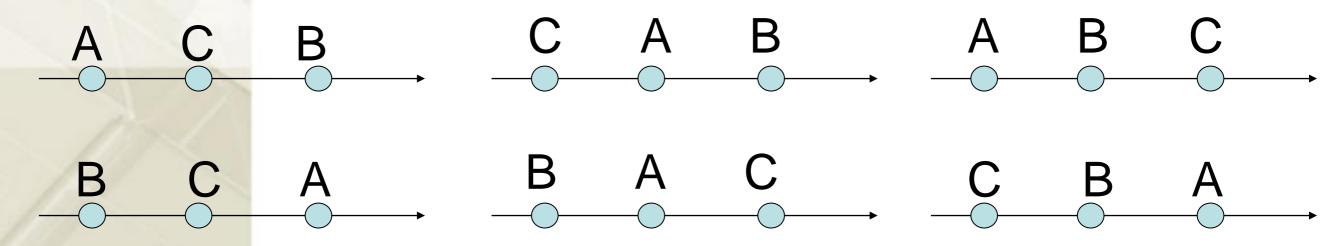
Para la recta *e*, AB es un segmento cuyos extremos son A y B

1	A	В
L	•	•

cuya longitud se representa por \overline{AB}

Para efectos de geometría analítica añadiremos al concepto de segmento, la idea de sentido o dirección, decimos entonces que el segmento AB está dirigido de A hacia B, y lo indicamos por medio de una flecha. En este caso A se llama origen o punto inicial y B extremo o punto final o viceversa.

Si ahora consideramos 3 puntos distintos A, B y C sobre una línea recta cuya dirección positiva es de izquierda a derecha, hay 6 ordenaciones posibles de estos puntos.



Si consideramos solamente segmentos dirigidos de longitudes positivas, tenemos las 6 relaciones siguientes:

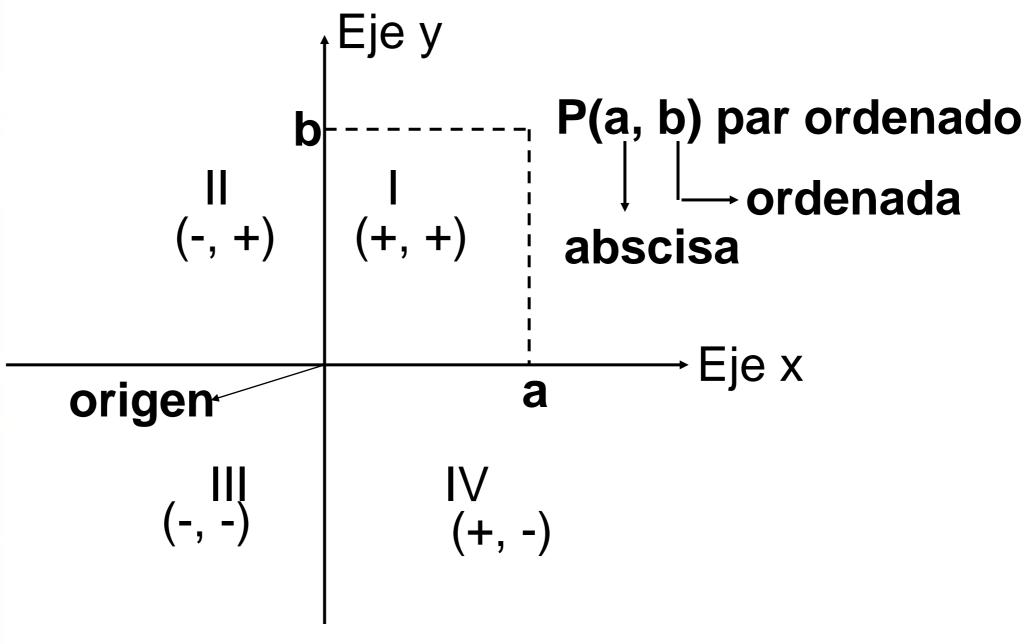
$$AC+CB = \overline{AB}$$
 $CA+\overline{AB}=\overline{CB}$
 $AB+\overline{BC}=\overline{AC}$

$$\overline{BC} + \overline{CA} = \overline{BA}$$

$$\overline{BA} + \overline{AC} = \overline{BC}$$

$$\overline{CB} + \overline{BA} = \overline{CA}$$

1.4 Coordenadas rectangulares, polares y conversión



Tarea: investigar la biografía de René Descartes.

Traer compás, regla y transportador

El sistema coordenado rectangular en el plano establece una correspondencia biunívoca entre cada punto del plano y un par ordenado de números reales.

Ejercicios: trazar el triángulo cuyos vértices son:

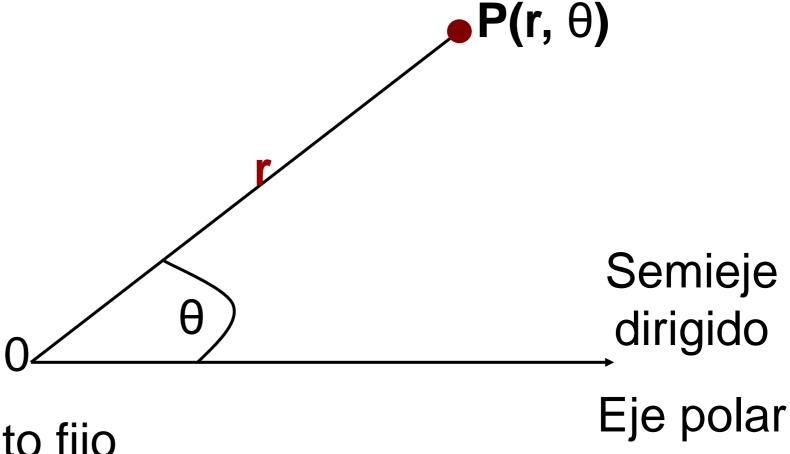
A(3, 2) B(-4, 1) y C(1, -5)

Trazar el polígono cuyos vértices son:

P(5, -1) Q(3, 4) R(-4, 4) S(-3 -2) y

T(0, -6)

Coordenadas polares



Punto fijo

Origen o polo

r = d(0, P)

θ denota la medida de cualquier ángulo r y θ son coordenadas polares de P

θ es positivo si el ángulo es generado por una rotación del eje polar en sentido contrario al giro de las manecillas del reloj y negativo si la rotación es en el sentido del giro de las manecillas del reloj.

Como los ángulos pueden darse en grados o radianes tenemos que

 π radianes = 180°

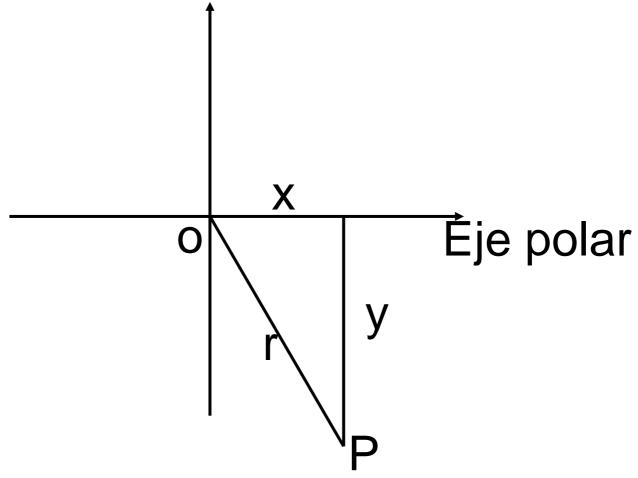
de donde, 1 radián =

$$\frac{180}{p} = 57^{\circ}17'45''$$
aproximadamente

$$1^{\circ} = \frac{p}{180}$$
 radianes = 0.0117453 rad aprox.

Conversión. Paso de coordenadas polares a rectangulares y viceversa

Teorema: si el polo y el eje polar del sistema de coordenadas polares coinciden, respectivamente, con el origen y la parte positiva del eje "x" de un sistema de coordenadas rectangulares, el paso de uno a otro de estos sistemas puede efectuarse por medio de las siguientes fórmulas de transformación:



$$x = r \cos q$$

$$y = r \sin q$$

$$x^{2} + y^{2} = r^{2}$$

$$q = \tan^{-1} \frac{\partial y \ddot{\partial}}{\partial x \ddot{\partial}}$$

$$r = \pm \sqrt{x^2 + y^2}$$

$$Senq = \pm \frac{y}{\sqrt{x^2 + y^2}}$$

$$\cos \gamma = \pm \frac{x}{\sqrt{x^2 + y^2}}$$

Ejemplo: Hallar las coordenadas rectangulares del punto P cuyas coordenadas polares son (4, 120°)

$$r = 4; \quad \theta = 120^{\circ}$$

$$x = r \cos \theta$$
 $y = r \sin \theta$

$$x = 4Cos 120^{\circ}$$
 $y = 4 Sen 120^{\circ}$

$$x = 4(-0.5)$$
 $y = 4(0.86602)$

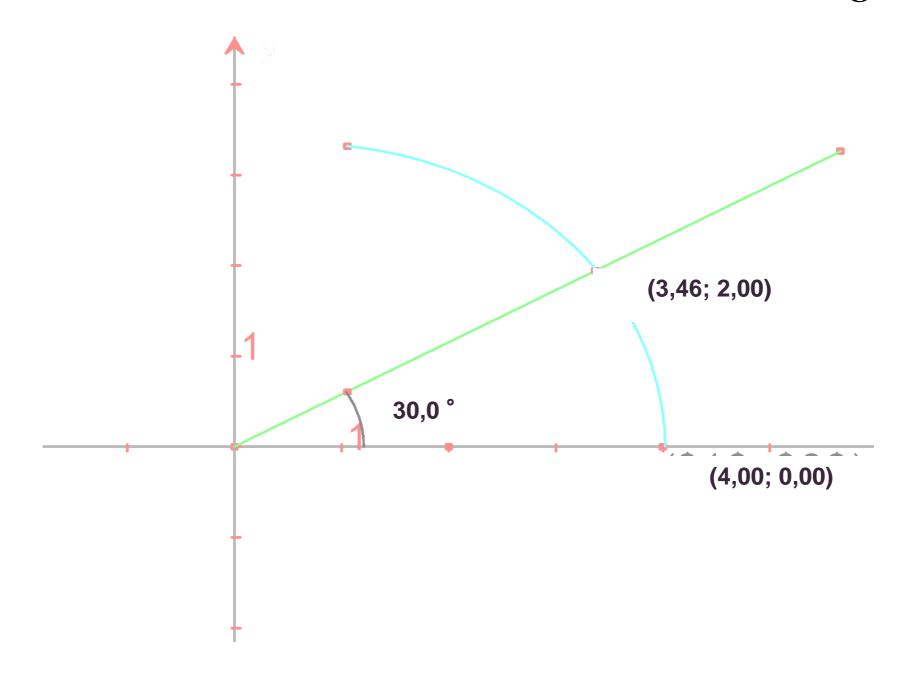
$$x = -2$$
 $y = 3.4641$

Entonces las coordenadas rectangulares de P son (– 2, 3.4641)

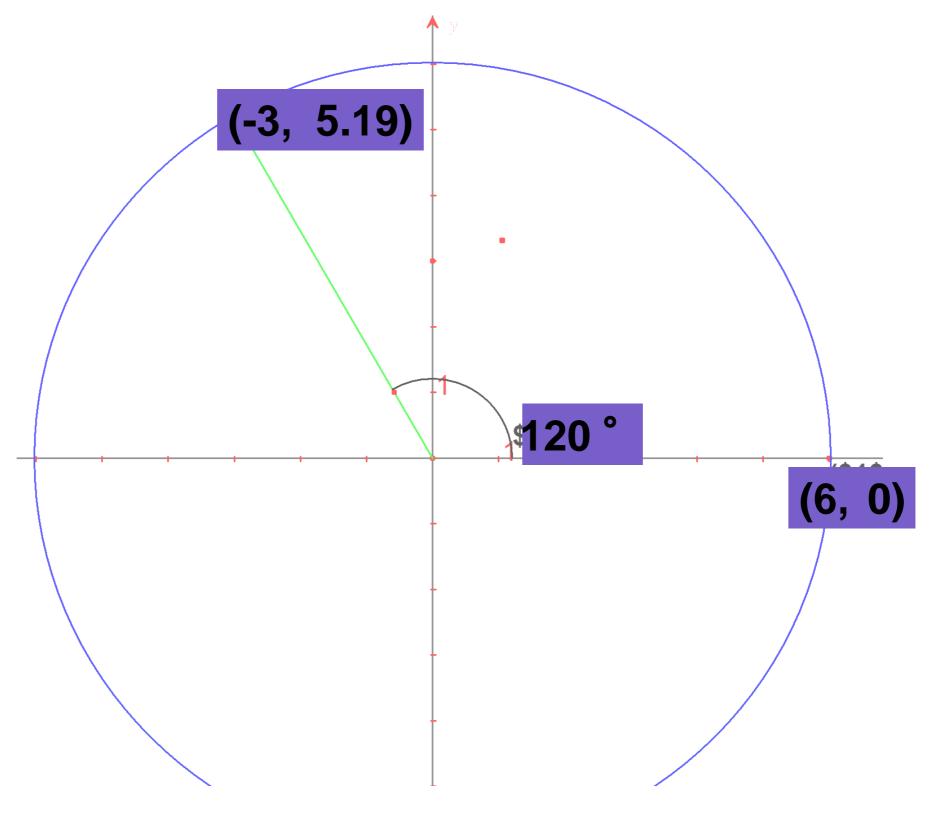
Complementa la siguiente tabla.

Ángulo θ en		Ángulo θ en	
Radianes	Grados	Radianes	Grados
0	0°		
<u>p</u>	30°	$\frac{3}{4}\pi$	
<u>p</u> 4	45°	$\frac{7}{6}\pi$	
<u>p</u> 3	60°	$\frac{4}{3}\pi$	
$\frac{p}{2}$	90°	$\frac{3}{2}\pi$	
$\frac{2}{3}p$	120°	$\frac{7}{4}\pi$	

Ejemplo: trazar el punto $P(4, \frac{P}{6})$



Trazar el punto P(6, $\frac{2}{3}p$)



Convierte a coordenadas polares las siguientes coordenadas rectangulares:

A(5, 3)

B(-3, 4)

$$r = \pm \sqrt{x^2 + y^2}$$

$$\theta = Tan^{-1} \left(\frac{y}{x}\right)$$

$$\theta = Tan^{-1} \left(\frac{y}{x}\right)$$

$$\theta = Tan^{-1} \left(\frac{y}{x}\right)$$

$$\theta = 30.96$$

$$\theta = Tan^{-1} \left(\frac{3}{5}\right)$$

$$\theta = Tan^{-1} (0.6)$$

$$\theta = 30.96$$

$$\theta = 30^{\circ}57'49''$$

$$r = \pm \sqrt{x^{2} + y^{2}}$$

$$\theta = Tan^{-1} \left(\frac{3}{5}\right)$$

$$r = \pm \sqrt{(-3)^{2} + 4^{2}}$$

$$q = Tan^{-1} \frac{x}{6} + \frac{4}{3} \frac{0}{6}$$

$$q = Tan^{-1} \left(\frac{y}{x}\right)$$

$$\theta = Tan^{-1} \left(0.6\right)$$

$$r = \pm \sqrt{9 + 16}$$

$$q = Tan^{-1} \left(-1.33\right)$$

$$q = -53.0612 + 180$$

$$q = 126.93$$

$$q = 126.93$$

$$q = 126.93$$

$$q = 126.956'19''$$

TAREA:

•CONVIERTE A COORDENADAS POLARES LOS SIGUIENTES PUNTOS:

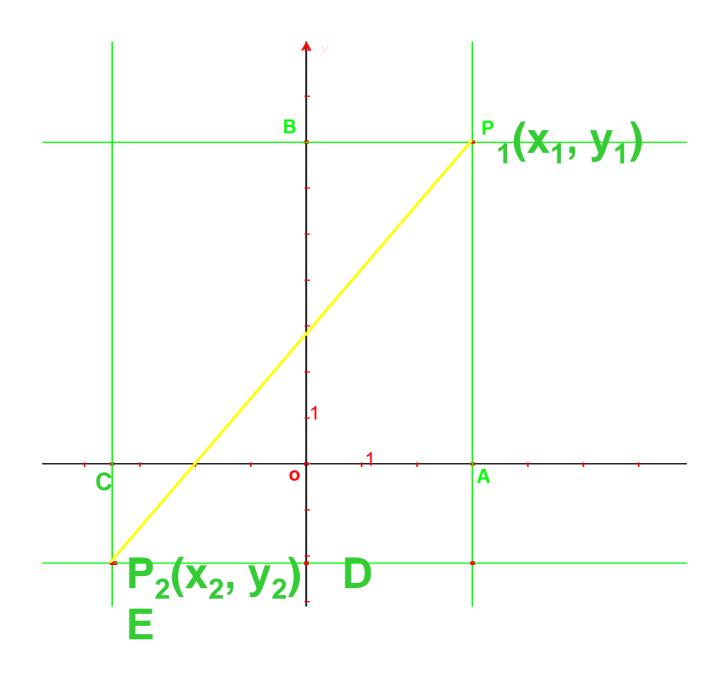
A(3, 5); B(-3, 4); C(1, 7); D(-6, 3); E(5, 2). GRAFICAR

•CONVIERTE A COORDENADAS RECTANGULARES LOS SIGUIENTES PUNTOS:

P(4, 30°); Q(3, 70°); R(6, 130°); S(5, 90°); T(7, 45°)

GRAFICAR

1.5 DISTANCIA ENTRE DOS PUNTOS Sean $P_1(x_1, y_1)$ y $P_2(x_2, y_2)$ dos puntos cualesquiera.



Vamos a determinar la distancia d entre P_1 y P_2 , siendo $d = |\overline{P_1P_2}|$

Por P_1 y P_2 trazamos las perpendiculares P_1A y P_2D a ambos ejes coordenados, y sea E su punto de intersección.

Consideremos el triángulo rectángulo P₁EP₂

Por el teorema de Pitágoras tenemos:

$$d^{2} = \overline{P_{1}P_{2}}^{2} = \overline{P_{2}E}^{2} + \overline{EP_{1}}^{2}$$

$$= (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}$$

$$d^{2} = (x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}$$

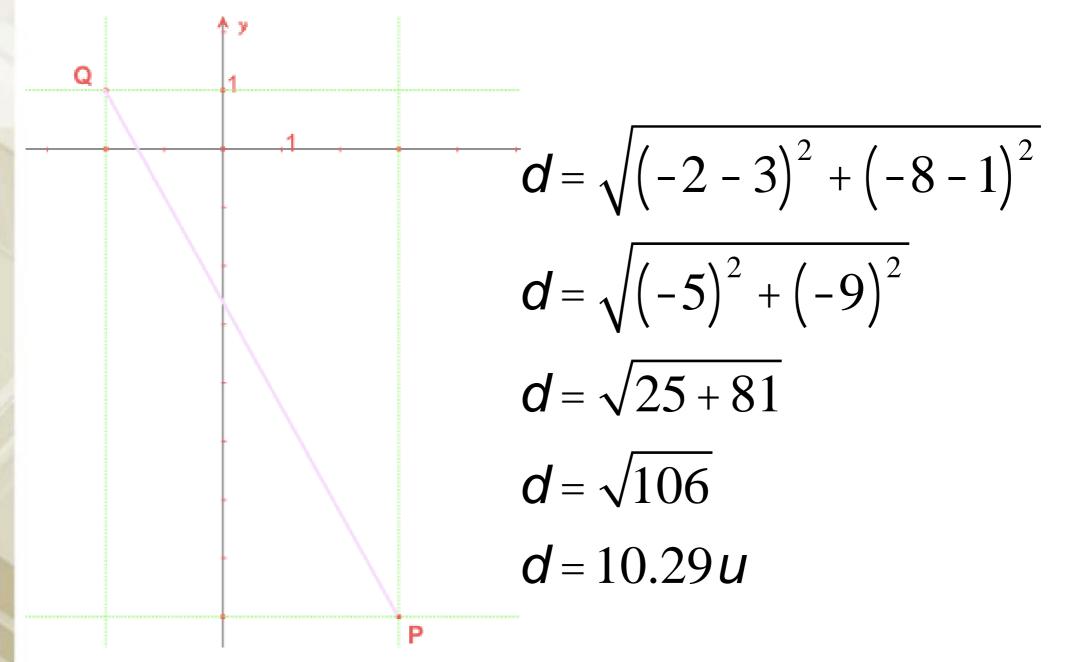
$$d = \sqrt{(x_{1} - x_{2})^{2} + (y_{1} - y_{2})^{2}}$$

Por el teorema: en un sistema coordenado lineal, la longitud del segmento dirigido que une dos puntos dados se obtiene, en magnitud y sentido, restando la coordenada el origen de la coordenada el extremo

o también
$$d = |P_1P_2| = |x_1 - x_2|$$

 $d = |P_2P_1| = |x_2 - x_1|$

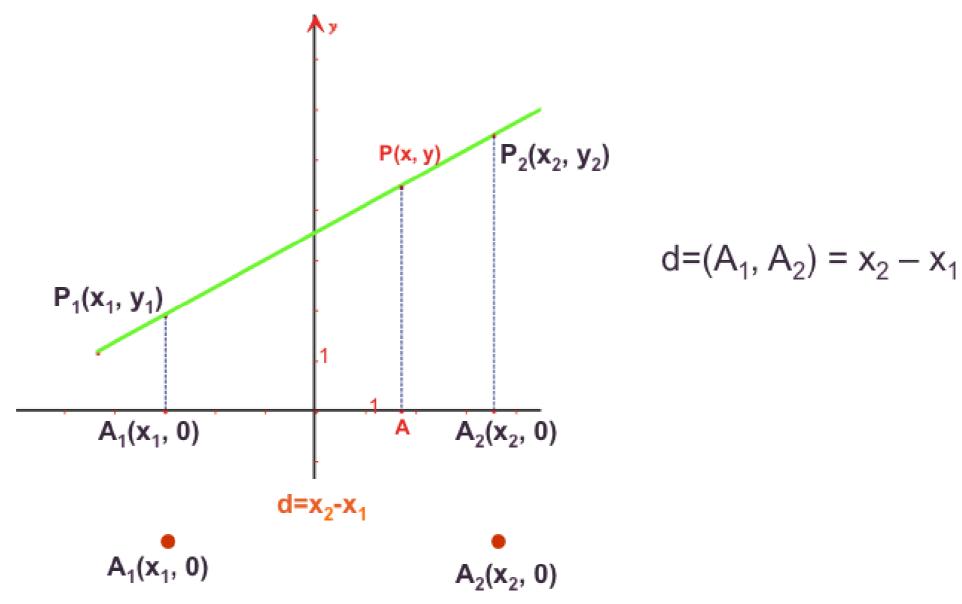
Aplicación del concepto de distancia entre dos puntos: Hallar la distancia entre los puntos P(3, -8) y Q (-2, 1)



Tarea: hallar la distancia entre los siguientes pares de puntos. Graficar

6.- Resolver ejercicios 1, 2, 5, 7 y 9 página 15 del libro de Geometría Analítica de Lehmann

1.6 División de un segmento en una razón dada



Si queremos encontrar las coordenadas del punto P que se halla a de la distancia de P₁ a P₂

vemos que puesto que A está a entre A_1 y A_3^2 ,

la coordenada de x de A es igual a la coordenada de x de A_1 , más de la distancia de A_1 a A_2 ;

analíticamente es así: $x = x_1 + (x_2 - x_1)$

 $\frac{2}{3}$

En forma análoga, la coordenada de y de A es:

$$y = y_1 + (y_2 - y_1)$$

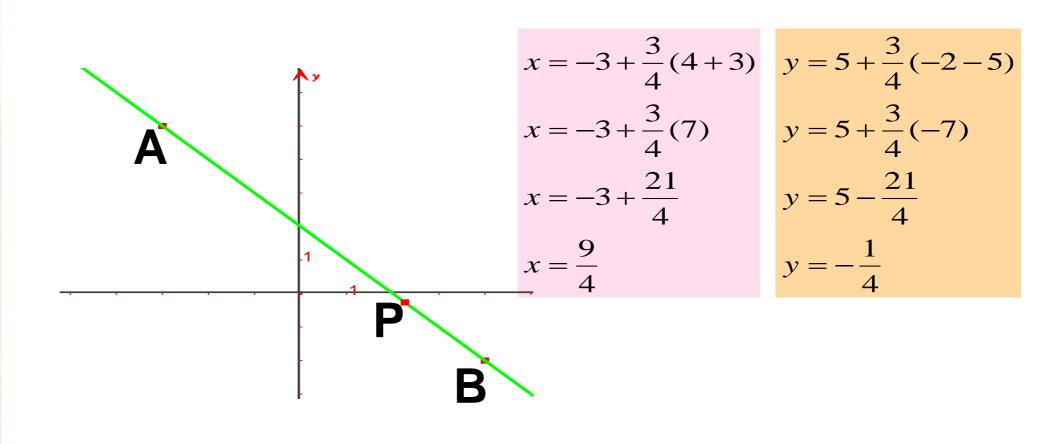
En general si la razón dada la representamos por "k" las expresiones anteriores quedan así:

$$x = x_1 + k (x_2 - x_1)$$

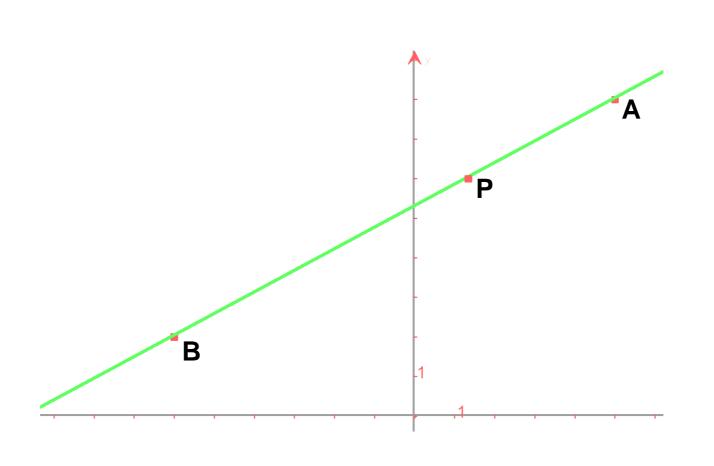
$$y = y_1 + k (y_2 - y_1)$$

Aplicación.

Encontrar las coordenadas de un punto que se encuentra a ¾ de la distancia que hay de A(-3, 5) a B(4, -2). Graficamos



Dados A (5, 8) y B (-6, 2), encuentra el punto del segmento AB que se localice a 1/3 del recorrido de A a B



$$x = 5 + \frac{1}{3}(-11)$$

$$x = 5 - \frac{11}{3}$$

$$x = \frac{4}{3}$$

$$y = 8 + \frac{1}{3}(2 - 8)$$

$$y = 8 + \frac{1}{3}(-6)$$

$$y = 8 - 2$$

$$y = 6$$

Tarea:

Encontrar las coordenadas de un punto que se encuentra a ¾ de la distancia que hay de A(-3, 5) a B(4, -2)Encontrar las coordenadas de un punto que se encuentra a 3/5 de la distancia que hay de P(2, 6) a Q(5, -Encontrar las coordenadas de un punto que se encuentra a 1/3 de la distancia que hay de T(3, -5) a U(-4, 2)Encontrar las coordenadas de un punto que se encuentra a 4/7 de la distancia que hay de

L(- 4, - 2) a M(4, 6) Graficar cada ejercicio por separado.

Caso particular: punto medio de un segmento

- División de un segmento en dos partes iguales, también llamado punto medio de un segmento.
- Se aplican las siguientes expresiones para hallar las coordenadas del punto medio de un segmento.

$$x = \frac{x_2 + x_1}{2}$$

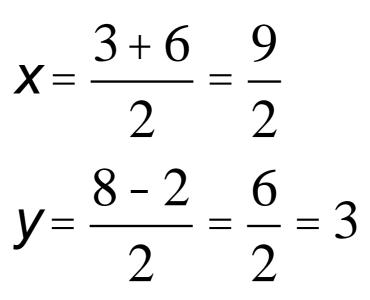
$$y = \frac{y_2 + y_1}{2}$$

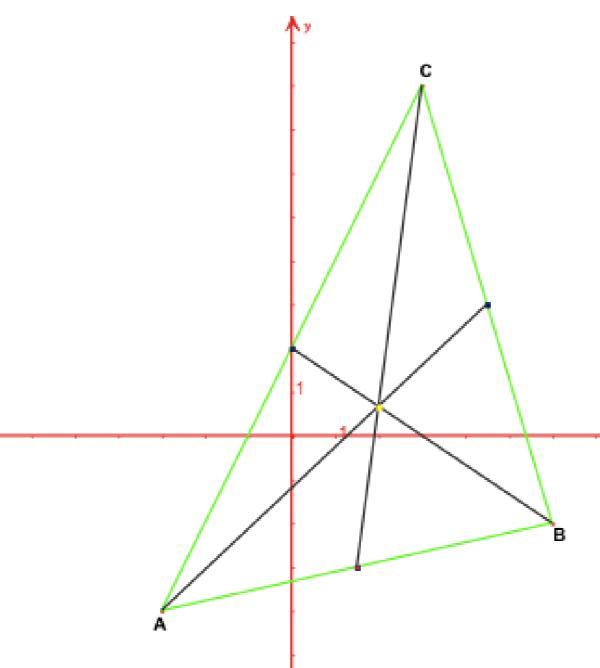
Dibújese el triángulo con vértices A(- 3, -4), B(6, - 2) y C(3, 8). Encuéntrense las coordenadas del punto sobre cada mediana que se halla a 2/3 de la distancia que hay entre el vértice y el punto medio del lado opuesto, este punto es el baricentro del triángulo.

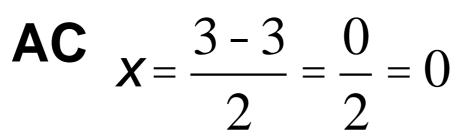
 Primero encontramos los puntos medios de cada lado del triángulo para poder trazar las medianas.

$$x = \frac{x_2 + x_1}{2} = \frac{6 + (-3)}{2} = \frac{6 - 3}{2} = \frac{3}{2}$$

$$y = \frac{y_2 + y_1}{2} = \frac{-2 + (-4)}{2} = \frac{-2 - 4}{2} = \frac{-6}{2} = -3$$







$$y = \frac{8-4}{2} = \frac{4}{2} = 2$$

Ahora tomamos el segmento CM por ejemplo, y calculamos el punto que se encuentra a 2/3 de C hacia M

$$C(3,8); M\left(\frac{3}{2}, -3\right); r = \frac{2}{3}$$

$$x = x_1 + r(x_2 - x_1)$$

$$x = 3 + \frac{2}{3}\left(\frac{3}{2} - 3\right)$$

$$x = 3 + \frac{2}{3}\left(-\frac{3}{2}\right)$$

$$x = 3 - 1$$

$$y = y_1 + r(y_2 - y_1)$$

$$y = 8 + \frac{2}{3}(-3 - 8)$$

$$y = 8 + \frac{2}{3}(-11)$$

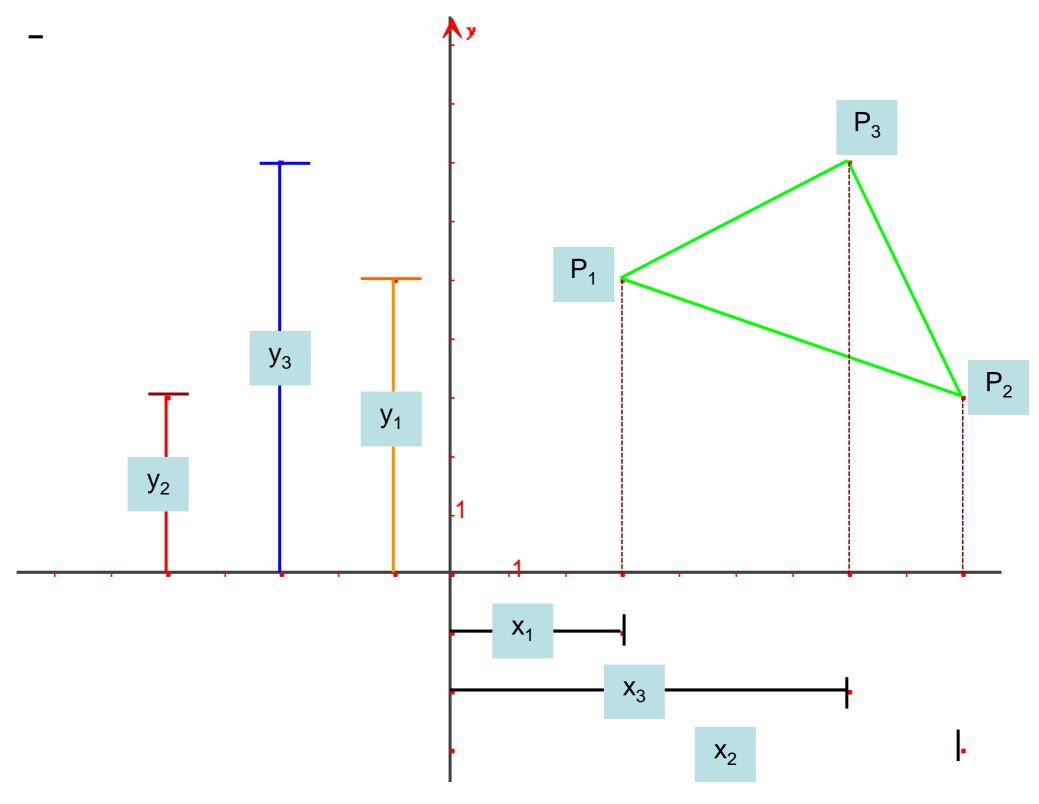
$$y = 8 - \frac{22}{3}$$

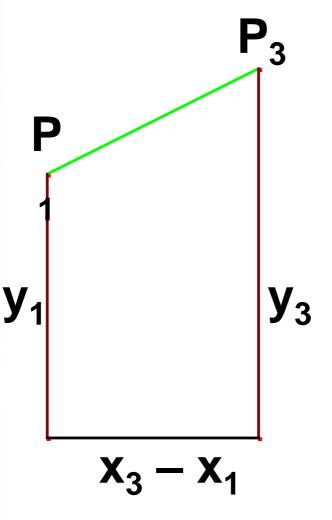
$$y = 8 - \frac{22}{3}$$

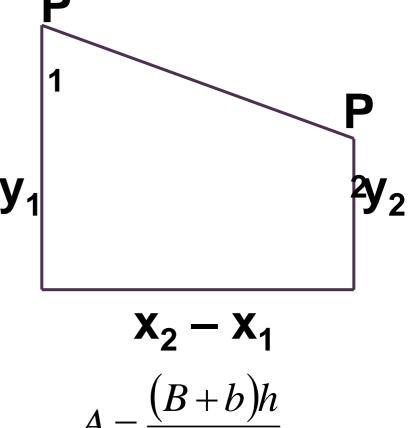
$$y = \frac{2}{3}$$

Tarea: calcular el punto que se encuentra a 2/3 de A hacia M y de B hacia M y hacer lo mismo con los siguientes triángulos:

1.7 Área de polígonos







$$A = \frac{(B+b)h}{2}$$

$$A = \frac{(B+b)h}{2} \qquad A = \frac{(B+b)h}{2} \qquad A = \frac{(B+b)h}{2}$$

 $X_2 - X_3$

$$A = \frac{(y_3 + y_1)(x_3 - x_1)}{2} + \frac{(y_3 + y_2)(x_2 - x_3)}{2} - \frac{(y_1 + y_2)(x_2 - x_1)}{2}$$

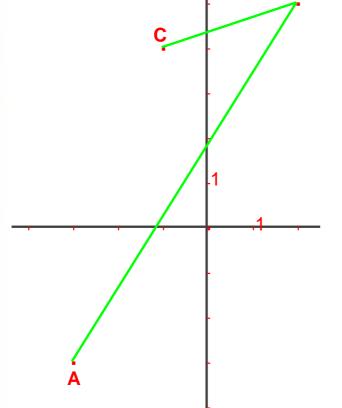
$$A = \frac{1}{2}(x_3y_3 + x_3y_1 - x_1y_3 - x_1y_1 + x_2y_3 + x_2y_2)$$

$$-x_3y_3-x_3y_2-x_2y_1-x_2y_2+x_1y_1+x_1y_2$$

$$A = \frac{1}{2}(x_1y_2 + x_2y_3 + x_3y_1) - (x_1y_3 + x_2y_1 + x_3y_2)$$

Ejemplo: Hallar el área de un triángulo cuyos vértices son: A(- 3, - 3), B(2, 5), C(-1, 4).

Graficamos_B



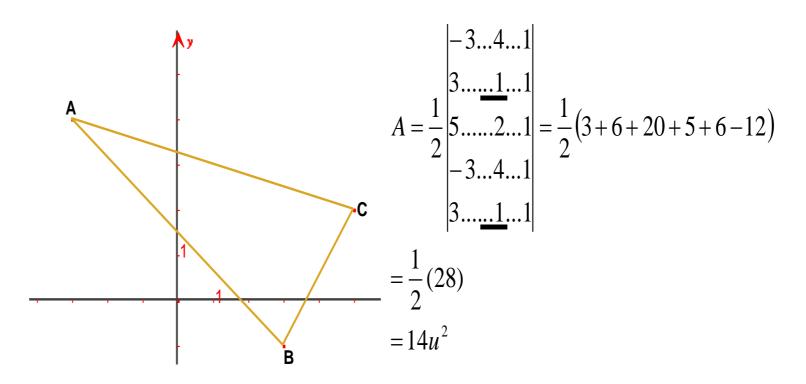
$$A = \frac{1}{2}(-15+8+3)-(-12-6-5)$$

$$A = \frac{1}{2}(-4) - (-23)$$

$$A = \frac{1}{2}(-4 + 23)$$

$$A = \frac{19}{2} = 9.5u^2$$

Otra forma de hallar el área de un triángulo o un polígono es por medio del método de determinantes. Hallar el área de un triángulo cuyos vértices son A(-3, 4), B (3, -1) y C(5, 2). Graficamos



Tarea. Hallar el área de los siguientes polígonos cuyos vértices son:

Funciones Elementales

matemática, las funciones En **polinómicas** son las funciones $x \rightarrow P(x)$, donde P es un polinomio en x, es decir una suma finita de potencias de x multiplicados por coeficientes reales.

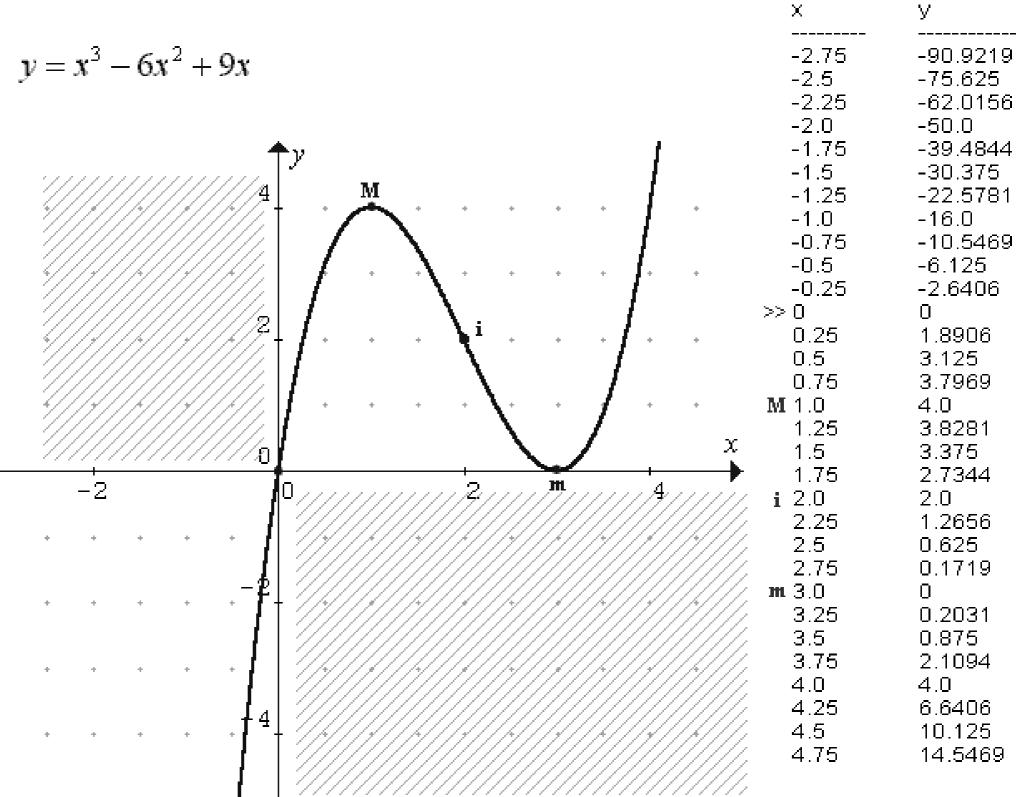
En matemática, un polinomio, es una expresión en la que constantes y variables se combinan usando tan sólo adición, substracción y multiplicación. Por ejemplo, $2x^2yz^3-3y^2+5yz-2$

es un polinómio, pero

$$\frac{1}{x^2+1}$$

no es un polinomio.

GRÁFICA DE UNA FUNCIÓN POLINÓMICA



Función lineal: ax + b es un binomio del primer grado

Una función lineal de una variable real es una función matemática de la forma:

$$f(x) = mx + b$$

donde **m** y **b** son constantes.
Una función lineal de una única variable independiente **x** suele escribirse en la forma siguiente

$$y = mx + b$$

que se conoce como ecuación de la recta en el plano xy.

m es denominada la pendiente de la recta.

b es la ordenada en el origen, el valor de y en el punto x= 0.

GRÁFICA DE FUNCIONES LINEALES



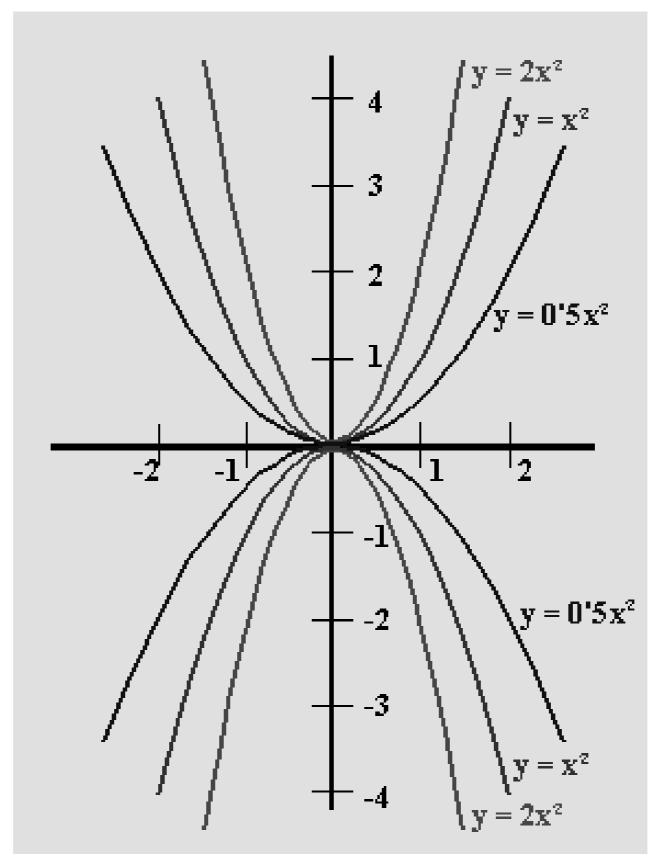
Función cuadrática: ax² + bx + c es un trinomio del segundo grado.

 Una ecuación de segundo grado con una incógnita es una ecuación que se puede poner bajo la forma canónica:

$$ax^2 + bx + c = 0$$

 donde a, b y c, con a ≠ 0, son números que pertenecen a un cuerpo, usualmente a R o a C.

GRÁFICA DE DIFERENTES FUNCIONES CUADRÁTICAS



FUNCIONES TRASCENDENTALES

 Cualquier función que no se puede expresar como una solución de una ecuación polinómica se le llama función trascendental.

Función exponencial

En términos generales, una función es exponencial si se expresa de la $F(x) = K \cdot a^x$ La expresión **función exponencial** se reserva para la inversa de la función logaritmo natural o, dicho en otros términos, para el caso en que a = e. Con esa definición, su dominio es R, pero se puede ampliar al cuerpo de los complejos.

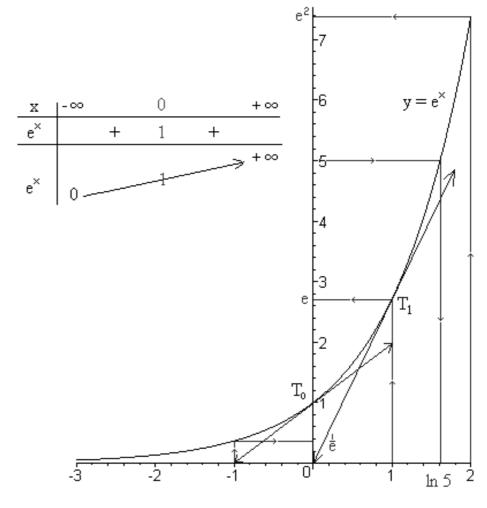
Esta función se nota exp: **R** → **R**+*

$$x \mapsto e^x = \exp(x)$$

donde e es la base de los logaritmos naturales.

$$y = \exp x <=> x = \ln y$$

(con y >0)



La tangente en x = 1, T1, pasa por el origen.

La tangente en x = 0, T0, pasa por el punto (-1, 0).

FUNCIÓN LOGARÍTMICA

En Matemática, el **logaritmo** es la función inversa de la función potencia $x = b^n$, que permite obtener n. Esta función se escribe como $n = \log b x$.

Por ejemplo:

$$_{3^4=81}$$
 \longrightarrow $log_381=4$

El logaritmo es una de tres funciones relacionadas entre sí: en *bn* = *x*, *b* puede ser encontrado con radicales, *n* con logaritmos y *x* con exponenciación.

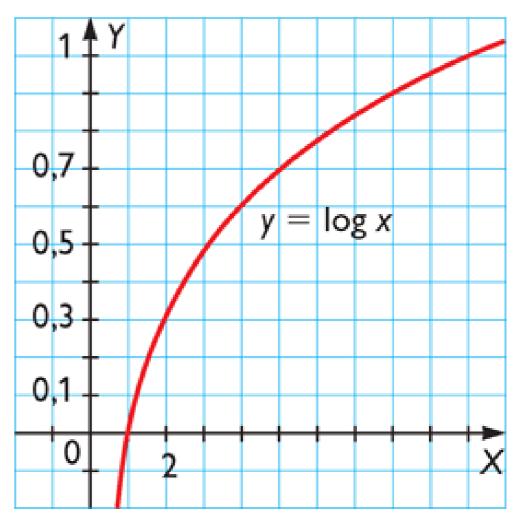
Se denomina logaritmo neperiano o logaritmo natural (In)

al logaritmo en base e de un número.

La función log b(x) está definida dondequiera

que x es un número real positivo y b es un número real positivo diferente a 1.

GRÁFICA DE UNA FUNCIÓN LOGARÍTMICA

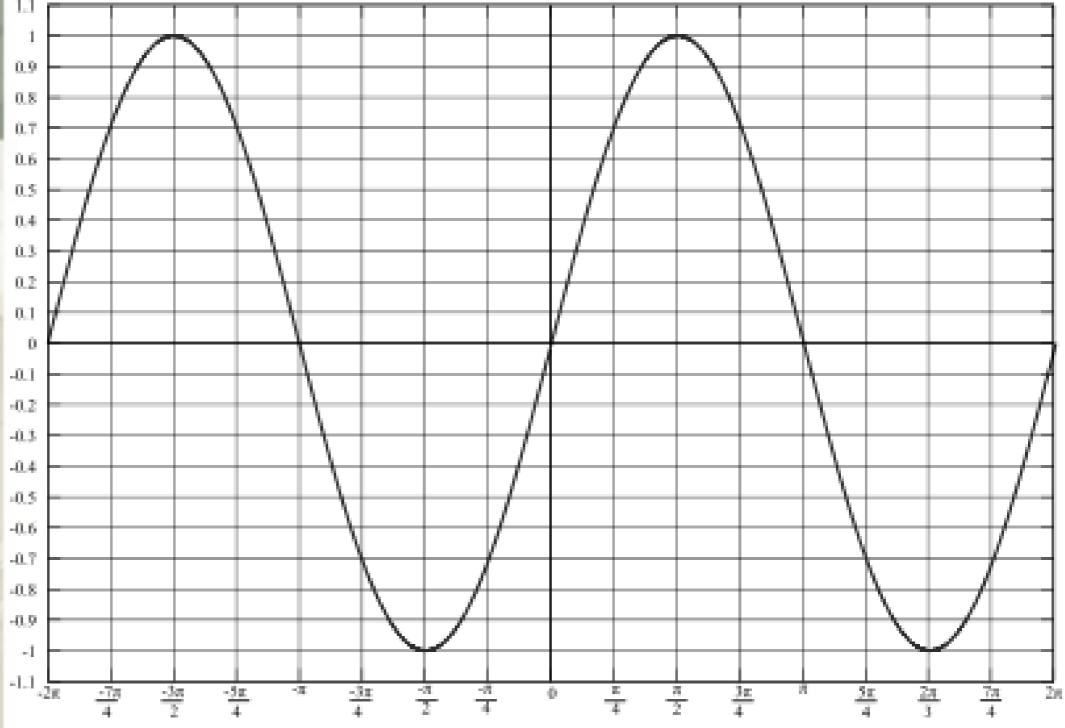


Funciones trigonométricas:

En matemáticas, se entiende por **sinusoide** la función seno o la curva que la representa, en general todos los gráficos de ondas se llaman sinusoides. La sinusoide puede ser descrita por la siguiente fórmula: $A \sin x (fx + \varphi)$

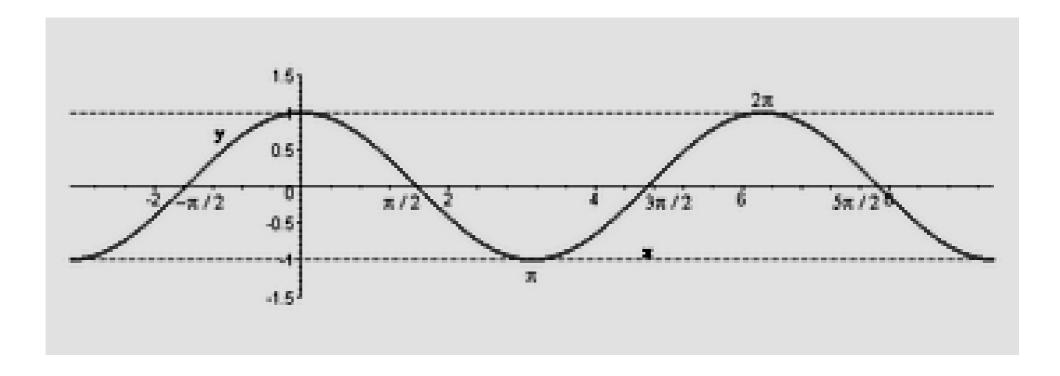
A es la amplitud f es la frecuencia φ es la fase O también τ es el período de oscilación

Función seno para A = f = 1 y $\varphi = 0$.



- En trigonometría el coseno (abreviado cos) se define como la razón entre el cateto adyacente y la hipotenusa. O también como la abscisa correspondiente a un punto que pertenece a una circunferencia unitaria centrada en el origen.
- En matemáticas el coseno es la función obtenida al hacer variar la razón mencionada, siendo una de las funciones trascendentes.

Representación de la función coseno, denominada <u>cosinusoide</u>.



Bibliografía

- GARCÍA Juárez Marco Antonio, LOPEZ Rueda Gonzalo. Geometría y Trigonometría Editorial Esfinge.
- ANFOSSI Agustín. Geometría Analítica. Editorial Progreso.