

C.D. Carlos Enrique Cuevas Suárez

Dr. J. Eliezer Zamarripa Calderón

Presentación realizada en el curso de "Materiales dentales" dentro de la Licenciatura de Cirujano Dentista del Área Académica de Odontología enero – junio 2011

Cementos dentales

Dental cements

Área del Conocimiento: 3 Medicina y Ciencias de la Salud

Abstract

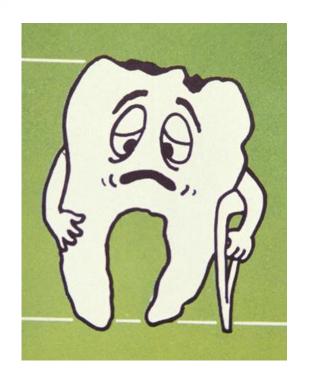
This presentation is a part of the curse "Dental Materials" imparted in the Dentistry Academic Area, Health Sciences Institute of the Universidad Autónoma del Estado de Hidalgo January – June 2011

Key words: Dental Materials, Dentistry

Resumen

La presentación es parte del curso de "Materiales dentales" impartido en el Área Académica de Odontología del Instituto de Ciencias de la Salud de la Universidad Autónoma del Estado de Hidalgo.

Enero – junio 2011

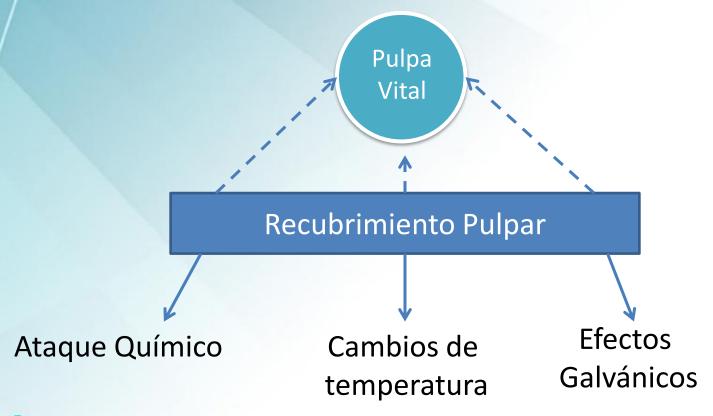

Palabras Clave: Odontología; Materiales Dentales

Principales Usos

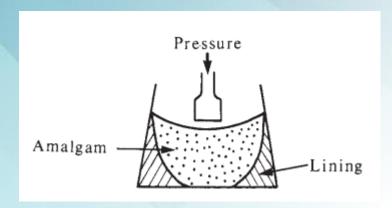
- Recubrimiento Pulpar y Bases.
- Cementantes.
- Materiales Restauradores*.

Universidad Autónoma del Estado de Hidalgo

RECUBRIMIENTOS PULPARES Y BASES

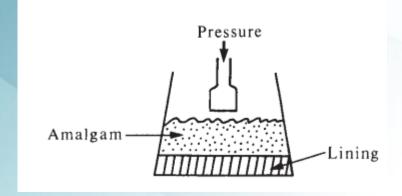


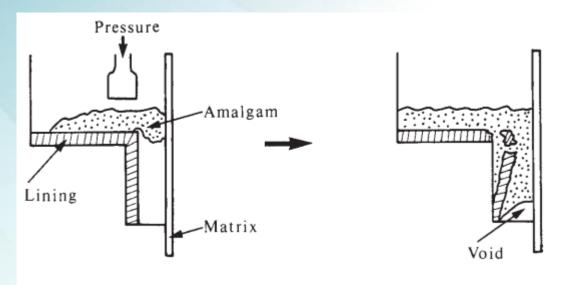
- Profundidad de la cavidad.
- Tipo de material restaurador.
- Función-Requisitos:
 - Barrera térmica, química y eléctrica.
 - Proveer una base firme que soporte al material restaurador.




Resistencia

- El recubrimiento, debe quedar intacto durante la colocación del material restaurador.
 - Grado de fraguado.
 - Dureza y espesor del material.
 - Tipo de cavidad.
 - Presión aplicada durante la obturación.





Flujo del recubrimiento no fraguado ante la presión ejercida durante la obturación con amalgama en cavidades clase I (izq) y clase II (der).

Riesgo de fractura de la base ya fraguado durante la obturación con amalgama en cavidades clase I (arriba) y clase II (abajo).

Barnices Cavitarios

- Resinas naturales o sintéticas disueltas en solventes orgánicos (acetona o éter).
- Forman una película sobre el diente por evaporación del solvente.
 - Reducen la irritación de la pulpa.
 - Previene le penetración de productos de corrosión.
 - Reduce la pigmentación asociada a las amalgamas.

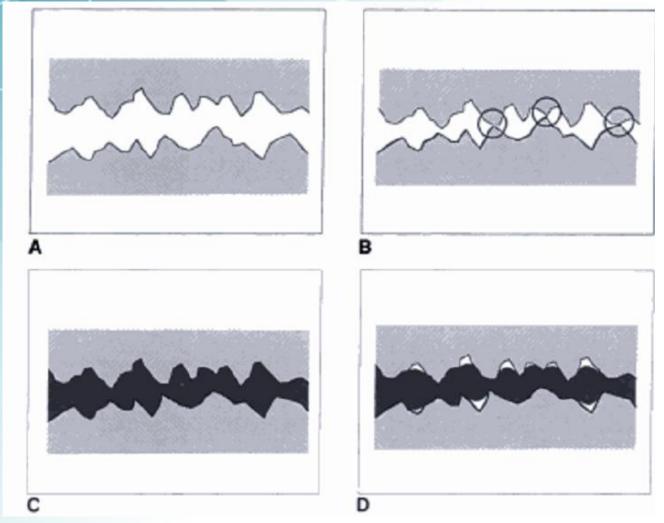
Barnices Cavitarios

- Aplicar al menos dos capas de barniz*.
- Usar pincel, microbrush o algodón.

 No utilizarse cuando se va a restaurar con materiales adhesivos (CIV y Resinas).

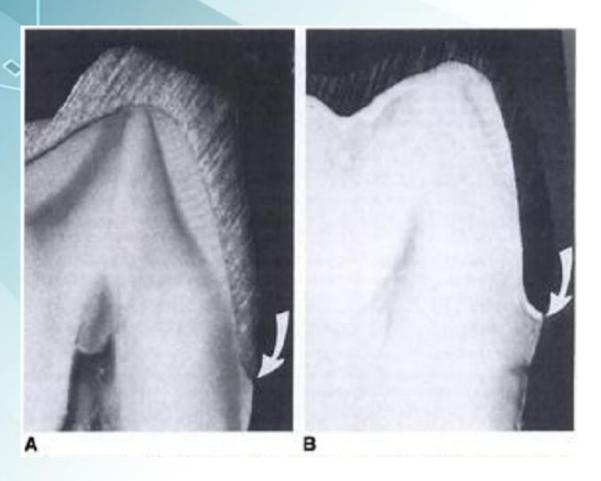
Universidad Autónoma del Estado de Hidalgo

AGENTES CEMENTANTES

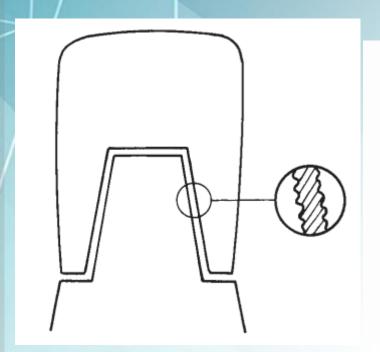


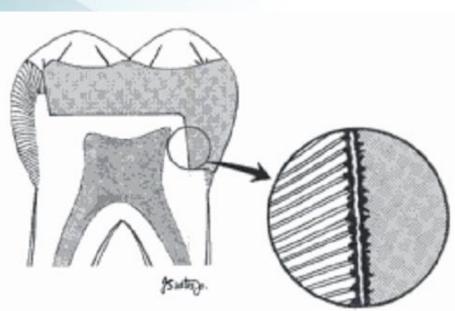
Agentes Cementantes

- Permitir la unión entre prótesis y otras restauraciones indirectas con los dientes.
- Requisitos:
 - Fluidez.
 - Grosor de película.
 - Aislamiento térmico y eléctrico.
 - Proveer retención.
 - 2 Solubilidad baja.



Interfaces prótesis-diente demostrando superficies irregulares antes de ser unidos (A), al ser presionados (B), al utilizarse una capa intermedia (C). D demuestra un cemento con poca capacidad de mojamiento.





Efecto de la viscosidad del agente cementante.

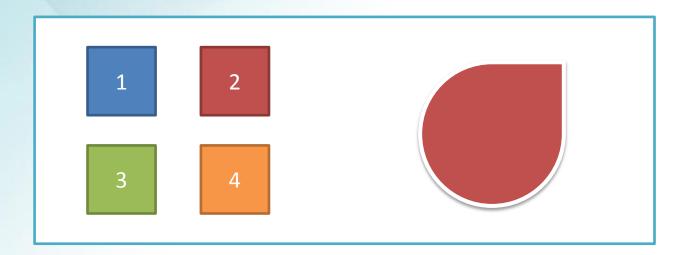
Retención mecánica lograda con un agente cementante.

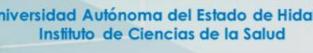
Cemento de Fosfato de Zinc

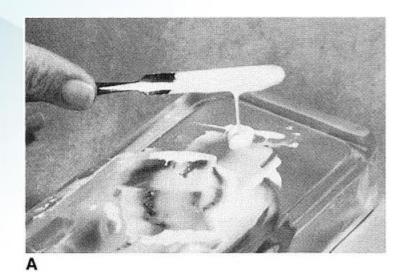
Polvo	Líquido
Óxido de Zinc (90%)	Ácido Fosfórico (45 a 64%)
Óxido de Magnesio (10%)	Agua (30 a 55%)
	Fosfato de Aluminio
	Fosfato de Zinc*

$$3ZnO + 2H_3PO_4 + H_2O \rightarrow Zn_3(PO_4)_2 \cdot 4H_2O$$

- Tiempo de trabajo y fraguado.
 - Relación Agua/Polvo. Reducción de la relación A/P 1 ««propiedades físicas»»


Efecto de la relación A/P sobre la resistencia a la compresión.




- Tiempo de trabajo y fraguado.
 - Mezclado del cemento en incrementos ↑
 - Temperatura.

- Tiempo de trabajo y fraguado.
 - Temperatura de la loseta menor temperatura 个 mayor temperatura \downarrow

Efecto de la temperatura de la loseta en el tiempo de trabajo.

- (A) Loseta enfriada.
- (B) Loseta a temp. Ambiente.

Propiedades.

Resistencia a la compresión	104 MPa
Resistencia a la tracción	5.5 MPa
Módulo de elasticidad	13.7 GPa
Grosor de película	25μm*

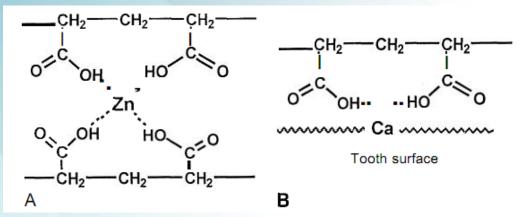
– pH

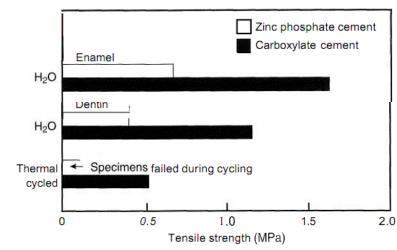
Time (min)	Zinc phosphate
2	2.14
5	2.55
10	3.14
15	3.30
20	3.62
30	3.71
60	4.34
1440	5.50

- Manipulación.
 - La relación recomendada P/L es 3.5:1*
 - Enfriar, preferentemente, la loseta donde se hará la mezcla.
 - Dividir el polvo en pequeñas porciones e irlas añadiendo una por una.
 - Espatular cada incremento por 15 o 20 s.

- Usos:
 - Cementante*.
 - Base previa a una restauración.

Cemento de Policarboxilato de Zinc (PCA)


Polvo	Líquido
Óxido de Zinc	Ácido Poliacrílico
Óxido de Magnesio	
Fluoruro estañoso*	


zinc oxide + polyacrylic acid \rightarrow Zinc polyacrylate

Reacción de fraguado y adhesión al diente.

Fuerza tensil necesaria para separar el cemento de policarboxilato al esmalte (arriba) y a la dentina (abajo)

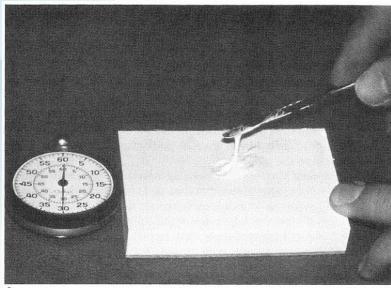
Propiedades Mecánicas

Resistencia a la compresión	55 a 67 MPa
Resistencia a la tracción	8 a 12 MPa
Módulo de elasticidad	2.4 a 4.4 GPa
Grosor de película	25μm o menos

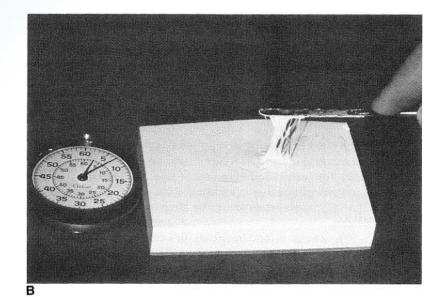
7inc

рН

	21110
Time (min)	polycarboxylale
2	3.42
5	3.94
10	4.42
15	4.76
20	4.87
30	5.03
60	5.08
1440	5.94



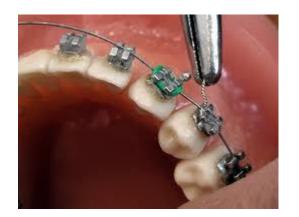
- Manipulación.
 - Relación polvo/líquido 1.5:1*
 - Hacer la mezcla, de preferencia, en losetas de vidrio.
 - Incorporar rápidamente el polvo en el líquido en grandes cantidades.
 - Colocar el material antes de que pierda su apariencia brillosa.



A

Consistencia de la mezcla a los 30 segundos (A) y a los 70 s (B).

La consistencia lograda en A, es la ideal para su uso como agente cementante.



Usos:

- Cementantes para coronas, puentes e incrustaciones*.
- Cementante de aparatología fija de ortodoncia*.
- Base previa a una restauración.

Cemento de Óxido de Zinc y Eugenol (ZOE)

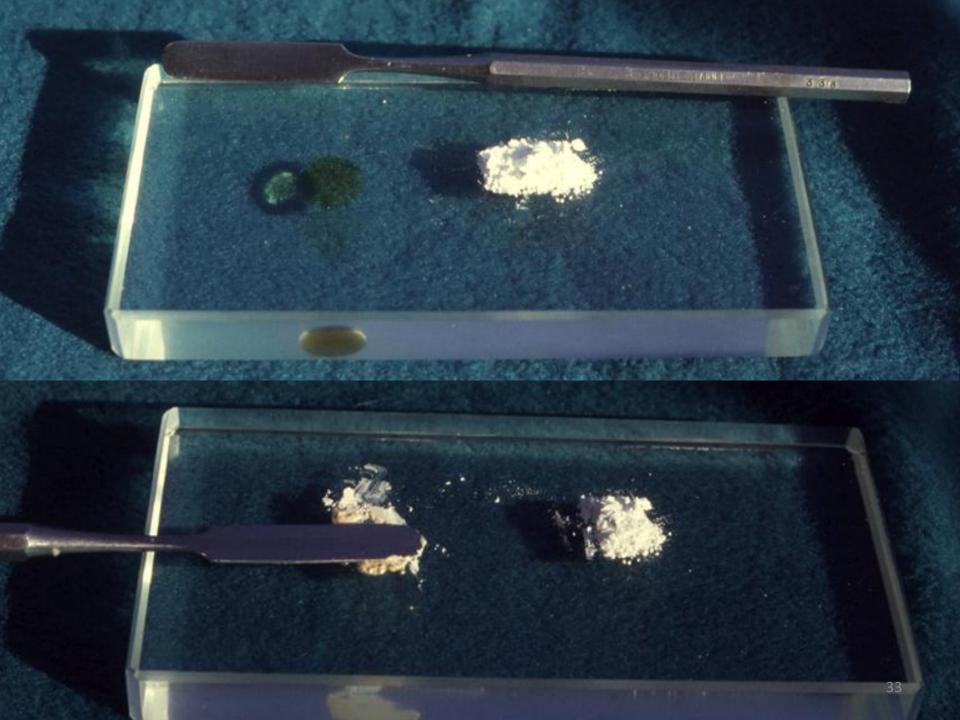
Polvo	Líquido
Óxido de Zinc	Eugenol
Acetato de Zinc	Aceite de Oliva

Óxido de Zinc y Eugenol

Propiedades.

Resistencia a la compresión	2- 25MPa
Resistencia a la tracción	1-2 Mpa
Grosor de película	35-45 μm
рН	7

Eugenol.

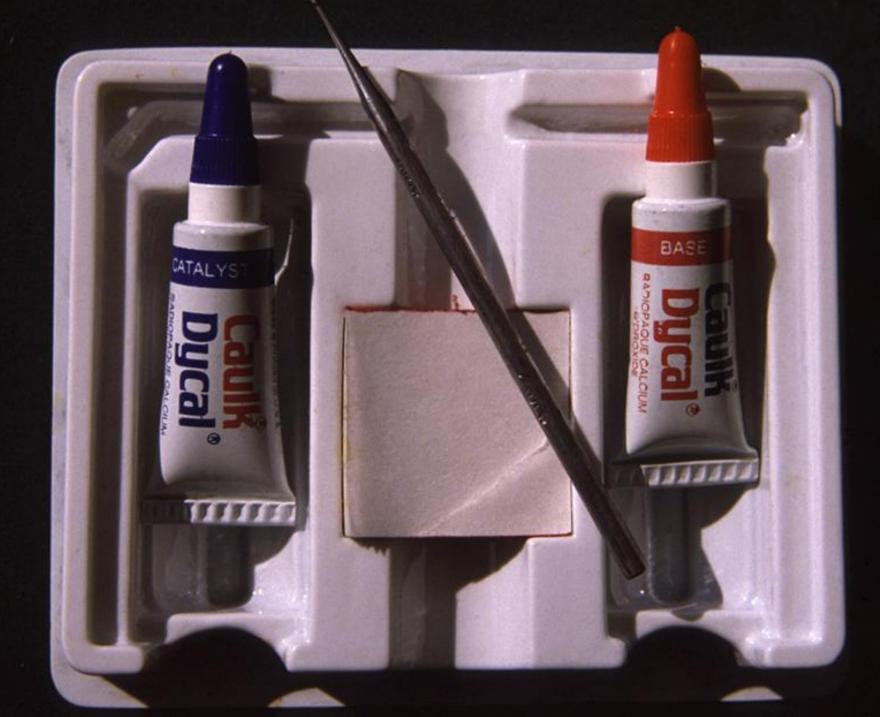

- Bactericida.
- Desensibiliza al diente.
- Interfiere en la polimerización de resinas compuestas.

Óxido de Zinc y Eugenol

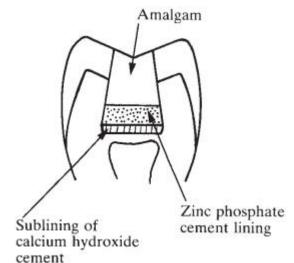
- Manipulación.
 - Relación polvo/líquido → 3:1 ó 4:1
 - Incorporar polvo al líquido y espatular vigorosamente.

Óxido de Zinc y Eugenol

- Usos.
 - Cementado temporal.
 - Material de base*.
 - Material de restauración temporal.


Cementos de Hidróxido de Calcio

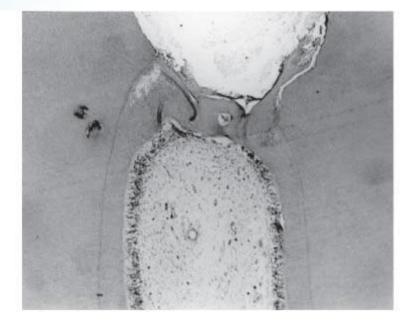
Pasta 1	Pasta 2
Hidróxido de Calcio* (50%)	Glicol Salicilato* (40%)
Óxido de Zinc* (10%)	Dioxido de Titanio
Estearato de Zinc (0.5%)	Sulfato de Calcio
Etil tolueno sulfonamida (39.5%)	Tungstato de Calcio


2

Hidróxido de Calcio

- Tiempo de trabajo y fraguado.
 - Afectado por la humedad*.
- Propiedades.
 - Resistencia a la compresión: 7- 20 Mpa.
 - Resistencia a la tracción:1.5 Mpa.

Uso del Hidróxido de Calcio como recubrimiento.

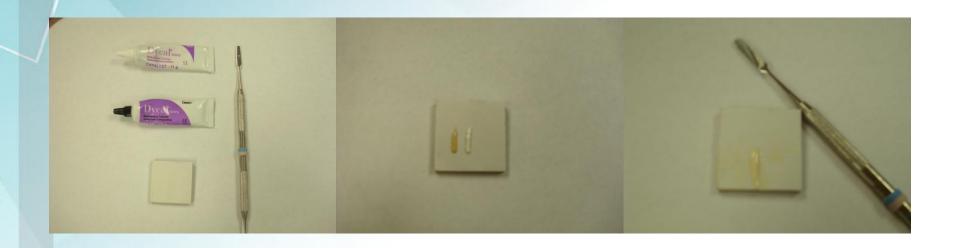


Hidróxido de Calcio

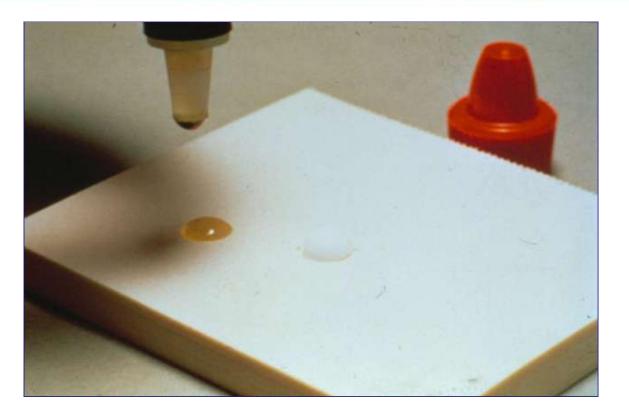
- Propiedades.
 - Antibacterial.

Permite la formación de dentina

secundaria.



Formación de dentina secundaria sobre una exposición pulpar.

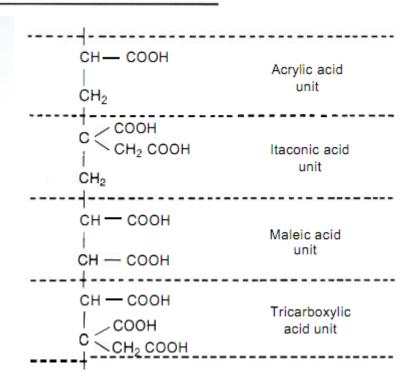


Manipulación

Universidad Autónoma del Estado de Hidalgo

CEMENTOS DE IONÓMERO DE VIDRIO

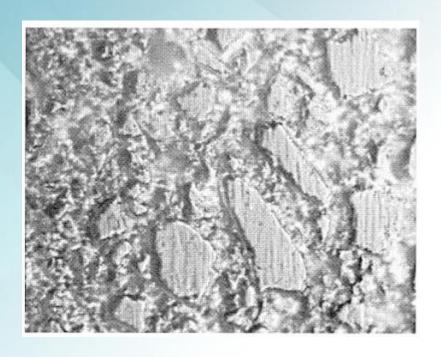
Polvo	Líquido
Vidrio de fluor aluminosilicato de calcio.	Ácido Poliacrílico.
Óxido de Zinc*	
Polvo de plata*	

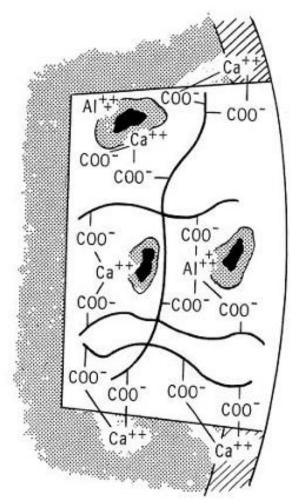


Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias de la Salud

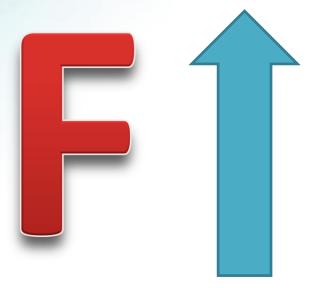
Table 16-7	Composition of Two Glass Ionomer Cement Powders		
Compound	Composition A (wt%)	Composition B (wt%)	
SiO ₂	41.9	35.2	
Al_2O_3	28.6	20.1	
AlF_3	1.6	2.4	
CaF ₂	15.7	20.1	
NaF	9.3	3.6	
$Alpo_4$	3.8	12.0	

Composición Química




- Usos:
 - Agente Cementante (p. 25 μm)
 - Base (p. 40 μm)
 - Restaurador* (p. 40 μm)

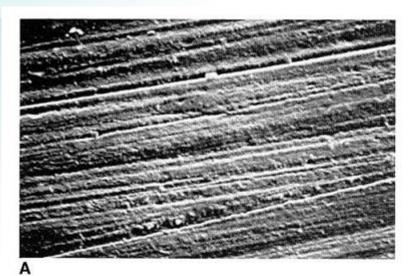
Reacción de fraguado

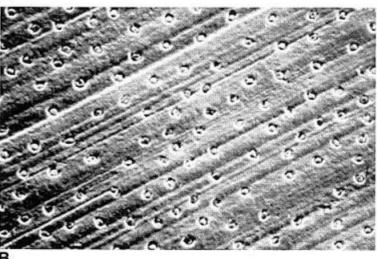

2

Estructura del ionómero de vidrio ya fraguado.

Propiedades Biológicas

Propiedades Mecánicas


Propiedad	CIV Cementante	CIV Base	CIV Restaurador
Resistencia a la tracción	6-8 MPa	10-12 MPa	12-15 MPa
Resistencia a la compresión	90-140 MPa	150-160 MPa	140-180 MPa
Grosor de película	25 μm	40 μm	40 μm



- Variables en su manipulación.
 - Superficie del diente:
 limpia y seca.

A. Superficie de dentina con barrillo dentinario. B. Eliminación del barrillo dentinario tras la limpieza con ac. grabador.

Manipulación:

- Seguir la proporción P/L recomendada por el fabricante.
- Utilizar papel de mezcla o loseta*.
- Dispensar polvo y líquido hasta el momento en que el material será mezclado.
- Incorporar rápidamente el polvo al líquido.
- El tiempo de mezclado no debe exceder los 45 a 60s.
- Utilizar el material cuando aún tiene apariencia brillosa*.

lonómero de Vidrio reforzados con metal.

 Resultan de la incorporación física de una aleación de plata al polvo de

Table 16-8	Properties of Restorative Cements				
	Compressive strength (MPa)	Diametral tensile strength (MPa)	Knoop hardness (KHN)	Solubility (ANSI/ADA Test)	Anticariogenic/ pulp response
Silicate cement	180	3.5	70	0.7	Yes/Severe
Class ionomei (Type 11)	150	6.6	48	0.4	Yes/Mild
Cermet	150	6.7	39	-	Yes/Mild
Hybrid ionomer	105	20	40	-	Yes/Mild

Ionómero de Vidrio reforzados con metal.

Table 16-9

Fracture Toughness of Cements and Other Restorative Materials

Type of material	Fracture toughness (MPa•m1/2)	
Admixed amalgam	1.29	
Light-cured glass ionomer	1.37	
Hybrid composite	1.17	
Glass ionomer lining cement	0.88	
Cermet	0.51	
Metal-reinforced glass ionomer	0.30	

Ionómero de Vidrio reforzados con metal.

Table 16-10

Cumulative Fluoride Release from Various Glass Ionomer Products

Fluoride Released		eleased (μg)
Cement Type	14 Days	30 Days
Type II glass tonomet	440	650
Cermet	200	300
Alloy admix glass 1010me1 (silver alloy admix)	3350	4040
Type I glass ionomer	470	700
Glass ionomer liner (conventional)	1000	1300
Glass ionomei liner (light-cured)	1200	1600

Ionómero de Vidrio híbridos.

- Resultan de la adición de grupos funcionales polimerizables.
 - Recubrimientos cavitarios.
 - Selladores de fisuras.
 - Bases.
 - Reconstrucción de muñones.
 - Material Restaurador.
 - Adhesivos para brackets de ortodoncia.
 - Materiales de obturación Retrógrada.

Ionómero de Vidrio híbridos.

Polvo	Líquido
Vidrio de fluor aluminosilicato de calcio.	Ácido Poliacrílico.
Iniciadores.	Agua
	HEMA (metacrilato de hidroxietil metacrilato)

Ionómero de Vidrio híbridos.

Propiedades:

- Resistencia a la compresión.
- Adhesión a la estructura.
- Contracción.

Table 9-5 Mechanical properties of glass-ionomer and hybrid ionomer cements*

	Glass ionomers	Resin-modified glass ionomers
Flexural strength (MPa)	25	35-70
Flexural modulus (GPa)	8	4
Compressive strength (MPa)	180-200	170-200
Diametral tensile strength (MPa)	22-25	35-40

SELECCIÓN DE CEMENTOS DENTALES

2

USO	Tipo de Cemento
Cementado de incrustaciones, endopostes metálicos, prótesis parcial fija en:	Ionómero de Vidrio.
Dientes no vitales o con la pulpa dental muy retraída.	Fosfato de Zinc.
Dientes vitales con retracción pulpar moderada.	Policarboxilato de Zinc.
Cementación provisional	Óxido de Zinc y Eugenol
Base o recubrimiento pulpar:	
Cavidades donde la pulpa se encuentre a mas de 0.5 mm	Ionómero de Vidrio
Exposición pulpar.	Hidróxido de Calcio