

# Universidad Autónoma del Estado de Hidalgo

Instituto de Ciencias Básicas e Ingeniería Área Académica de Matemáticas y Física

Línea de investigación: Economía y Finanzas Matemáticas Programa educativo: Maestría en Ciencias en Matemáticas y su

Didáctica

Nombre de la asignatura: Optativa de Matemáticas I (Algebra Lineal)

Tema: Teoría de Valores Propios Ciclo: Agosto-Diciembre de 2007. Profesor: Fernando Barrera Mora Tema: Teoría de Valores Propios

Abstract: In this lecture it is shown how to compute the eigenvalues

of a matrix without using determinants

Keywords: Eigenvalue, Eigenvector, Minimal Polynomial.

Palabras clave: Valores propios, Vectores Propios, Polinomio mínimo

# Eigenteoría sin determinantes

Fernando Barrera Mora

barrera@uaeh.edu.mx

Universidad Autónoma del Estado de Hidalgo

Taller de álgebra lineal XVIII Semana Regional de Investigación y Docencia UNISON, 2008





- ¿Cuáles son los problemas fundamentales en álgebra lineal?
- Haciendo un análisis se llega a que dichos problemas sonnes:

$$AX = B, \qquad AX = \lambda X$$
 (1)

- ¿Qué conceptos y métodos son esenciales al resolverlos?
- Desde los inicios, la teoria de los determinantes ha jugado un papel importante en su solución (Regla de Gramer, polinomio característico).
- Estudios recientes han mostrado que el concepto de independencia lineal es central al abordar dichos problemas.



- ¿Cuáles son los problemas fundamentales en álgebra lineal?
- Haciendo un análisis se llega a que dichos problemas son resolver las ecuaciones:

$$AX = B, \qquad AX = \lambda X \tag{1}$$

- ¿Qué conceptos y métodos son esenciales al resolverlos?
- Desde los inicios, la teoría de los determinantes ha jugado un papel importante en su solución (Regla de Cramer, polinomio característico).
- Estudios recientes han mostrado que el concepto de independencia lineal es central al abordar dichos problemas.



- ¿Cuáles son los problemas fundamentales en álgebra lineal?
- Haciendo un análisis se llega a que dichos problemas son resolver las ecuaciones:

$$AX = B, \qquad AX = \lambda X$$
 (1)

- ¿Qué conceptos y métodos son esenciales al resolverlos?
- Desde los inicios, la teoría de los determinantes ha jugado un papel importante en su solución (Regla de Cramer, polinomio característico).
- Estudios recientes han mostrado que el concepto de independencia lineal es central al abordar dichos problemas.



- ¿Cuáles son los problemas fundamentales en álgebra lineal?
- Haciendo un análisis se llega a que dichos problemas son resolver las ecuaciones:

$$AX = B, \qquad AX = \lambda X$$
 (1)

- ¿Qué conceptos y métodos son esenciales al resolverlos?
- Desde los inicios, la teoría de los determinantes ha jugado un papel importante en su solución (Regla de Cramer, polinomio característico).
- Estudios recientes han mostrado que el concepto de independencia lineal es central al abordar dichos problemas.



- ¿Cuáles son los problemas fundamentales en álgebra lineal?
- Haciendo un análisis se llega a que dichos problemas son resolver las ecuaciones:

$$AX = B, \qquad AX = \lambda X$$
 (1)

- ¿Qué conceptos y métodos son esenciales al resolverlos?
- Desde los inicios, la teoría de los determinantes ha jugado un papel importante en su solución (Regla de Cramer, polinomio característico).
- Estudios recientes han mostrado que el concepto de independencia lineal es central al abordar dichos problemas.



- ¿Cuáles son los problemas fundamentales en álgebra lineal?
- Haciendo un análisis se llega a que dichos problemas son resolver las ecuaciones:

$$AX = B, \qquad AX = \lambda X$$
 (1)

- ¿Qué conceptos y métodos son esenciales al resolverlos?
- Desde los inicios, la teoría de los determinantes ha jugado un papel importante en su solución (Regla de Cramer, polinomio característico).
- Estudios recientes han mostrado que el concepto de independencia lineal es central al abordar dichos problemas.



- Forma escalonada reducida y dependencia lineal
- Sistemas de ecuaciones y combinaciones linealeas

- 🗩 El rango illa y rango columna de 🗷 colnciden...

- Forma escalonada reducida y dependencia lineal
- ② Sistemas de ecuaciones y combinaciones linealeas ② Los sistemas  $AX = B y x_1 A_1 + \cdots + x_n A_n = B$  son equivalentes.
- El rango fila y rango columna de A coinciden.

- Forma escalonada reducida y dependencia lineal
- Sistemas de ecuaciones y combinaciones linealeas
  - Los sistemas AX = B y  $x_1A_1 + \cdots + x_nA_n = B$  son equivalentes.
  - Otra interpretación geométrica de las soluciones.
- El rango fila y rango columna de A coinciden.

- Forma escalonada reducida y dependencia lineal
- Sistemas de ecuaciones y combinaciones linealeas
  - Los sistemas AX = B y  $x_1A_1 + \cdots + x_nA_n = B$  son equivalentes.
  - Otra interpretación geométrica de las soluciones.
- 3 El rango fila y rango columna de A coinciden.

- Forma escalonada reducida y dependencia lineal
- Sistemas de ecuaciones y combinaciones linealeas
  - Los sistemas AX = B y  $x_1A_1 + \cdots + x_nA_n = B$  son equivalentes.
  - Otra interpretación geométrica de las soluciones.
- 3 El rango fila y rango columna de A coinciden.

- Forma escalonada reducida y dependencia lineal
- Sistemas de ecuaciones y combinaciones linealeas
  - Los sistemas AX = B y  $x_1A_1 + \cdots + x_nA_n = B$  son equivalentes.
  - Otra interpretación geométrica de las soluciones.
- Sel rango fila y rango columna de A coinciden.

# EL Problema de Valores y Vectores

# CARACTERÍSTICOS

#### **TEOREMA**

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia:
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la



### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

## Demostración

- Existencia.
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- Existencia.
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia.
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia.
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia.
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia.
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

#### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .



### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia:
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i=0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

#### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia:
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

#### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia:
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i=0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

#### TEOREMA

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia:
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
  - La segunda parte se prueba usando el algoritmo de la

#### **TEOREMA**

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia:
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
- La segunda parte se prueba usando el algoritmo de la



#### **TEOREMA**

(Polinomio Mínimo) Si A es una matriz  $n \times n$ , entonces existe un único polinomio de mínimo grado, mónico m(x) que satisface:

- m(A) = 0.
- Si f(x) es otro polinomio tal que f(A) = 0, entonces m(x) divide a f(x).
- $deg(m(x)) \leq n$ .

- Existencia:
  - sea  $\{Y_1, \ldots, Y_n\}$  una base de  $\mathbb{R}^n$ ,
  - existe  $h_i(x)$  polinomio tal que  $h_i(A)Y_i = 0$ ,
  - defina  $g(x) := h_1(x) \cdots h_n(x)$ , entonces g(A) = 0.
- La segunda parte se prueba usando el algoritmo de la



#### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - \dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

### DEMOSTRACIÓN

- Si r = 0, entonces W = V y cualquier polinomio constante ≠ 0 funciona.
- Si r = 1, entonces dim(W) = n 1.
  - Sean,  $\{X_1, \ldots, X_{n-1}\}$  una base de W y Y tal que  $\{X_1, \ldots, X_{n-1}, Y\}$  es base de  $\mathbb{R}^n$ ,
  - entonces AY = Z + cY, para algún  $c \in \mathbb{R}$  y  $Z \in W$ .
  - De esto se concluye que  $(A cI)(\mathbb{R}^n) \subseteq W$ .



### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - \dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

### DEMOSTRACIÓN

- Si r = 0, entonces W = V y cualquier polinomio constante ≠ 0 funciona.
- Si r = 1, entonces dim(W) = n 1.
  - Sean,  $\{X_1, \ldots, X_{n-1}\}$  una base de W y Y tal que  $\{X_1, \ldots, X_{n-1}, Y\}$  es base de  $\mathbb{R}^n$ ,
  - entonces AY = Z + cY, para algún  $c \in \mathbb{R}$  y  $Z \in W$
  - De esto se concluye que  $(A cI)(\mathbb{R}^n) \subseteq W$ .



### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - \dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

### **DEMOSTRACIÓN**

- Si r = 0, entonces W = V y cualquier polinomio constante ≠ 0 funciona.
- Si r = 1, entonces dim(W) = n 1
  - Sean,  $\{X_1, \ldots, X_{n-1}\}$  una base de W y Y tal que  $\{X_1, \ldots, X_{n-1}, Y\}$  es base de  $\mathbb{R}^n$ ,
  - entonces AY = Z + cY, para algún  $c \in \mathbb{R}$  y  $Z \in W$ .
  - De esto se concluye que  $(A cI)(\mathbb{R}^n) \subseteq W$



### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - \dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

## **DEMOSTRACIÓN**

### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - \dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

### DEMOSTRACIÓN

### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

## DEMOSTRACIÓN

- Si r = 0, entonces W = V y cualquier polinomio constante  $\neq 0$  funciona.
- Sir = 1, entonces dim(W) = n 1.

#### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

## DEMOSTRACIÓN

- Si r = 0, entonces W = V y cualquier polinomio constante  $\neq 0$  funciona.
- Si r = 1, entonces dim(W) = n 1.

#### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

#### DEMOSTRACIÓN

- Si r = 0, entonces W = V y cualquier polinomio constante  $\neq 0$  funciona.
- Si r = 1, entonces dim(W) = n 1.

#### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

#### DEMOSTRACIÓN

- Si r = 0, entonces W = V y cualquier polinomio constante  $\neq 0$  funciona.
- Si r = 1, entonces dim(W) = n 1.
  - Sean,  $\{X_1, \dots, X_{n-1}\}$  una base de W y Y tal que  $\{X_1, \dots, X_{n-1}, Y\}$  es base de  $\mathbb{R}^n$ ,
  - entonces AY = Z + cY, para algún  $c \in \mathbb{R}$  y  $Z \in W$
  - De esto se concluye que  $(A cI)(\mathbb{R}^n) \subseteq W$



#### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

#### **DEMOSTRACIÓN**

- Si r = 0, entonces W = V y cualquier polinomio constante  $\neq 0$  funciona.
- Si r = 1, entonces dim(W) = n 1.
  - Sean,  $\{X_1, \ldots, X_{n-1}\}$  una base de W y Y tal que  $\{X_1, \ldots, X_{n-1}, Y\}$  es base de  $\mathbb{R}^n$ ,
  - entonces AY = Z + cY, para algún  $c \in \mathbb{R}$  y  $Z \in W$ .
  - De esto se concluye que  $(A cI)(\mathbb{R}^n) \subseteq W$



#### LEMA

Si A es una matriz  $n \times n$ , y W es un subespacio A-invariante de dimensión positiva, entonces existe un polinomio g(x) de grado  $\leq n - dim(W)$ , que satisface  $g(A)(\mathbb{R}^n) \subseteq W$ .

#### **DEMOSTRACIÓN**

- Si r = 0, entonces W = V y cualquier polinomio constante  $\neq 0$  funciona.
- Si r = 1, entonces dim(W) = n 1.
  - Sean,  $\{X_1, \ldots, X_{n-1}\}$  una base de W y Y tal que  $\{X_1, \ldots, X_{n-1}, Y\}$  es base de  $\mathbb{R}^n$ ,
  - entonces AY = Z + cY, para algún  $c \in \mathbb{R}$  y  $Z \in W$ .
  - De esto se concluye que  $(A cI)(\mathbb{R}^n) \subseteq W$ .



- Supongamos r > 1 y sea X ∈ R<sup>n</sup> \ W; existe un polinomio
   g₁(x) de mínimo grado tal que g₁(A)X ∈ W .
- Sea,  $l := \deg(g_1(x)) \ y \ W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\}).$
- La minimalidad de / garantiza:
- $= W \cap W_1 = \{0\}.$
- $\circ$  También se tiene que  $W+W_{\rm L}$  es A-invariante
- $\dim(W+W_1)=n-r_1>\dim(W)$
- Por hipotesis de induccion, existe  $g_2(x)$  de grand
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W_1$
- $\bullet \deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le 1$ 
  - $\deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:

- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $\deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \deg(g_1) + n \dim(W + W_1) = n \dim(W)$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:

- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $\deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:
  - $\{X, AX, ..., A^{l-1}X\}$  es l.i.
  - $W \cap W_1 = \{0\}$
- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $ullet \deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \\ \deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:
  - $\{X, AX, ..., A^{l-1}X\}$  es l.i.
- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $\deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \deg(g_1) + n \dim(W + W_1) = n \dim(W)$ .



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:
  - $\{X, AX, ..., A^{l-1}X\}$  es l.i.
  - $W \cap W_1 = \{0\}.$
- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$ .
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n) \subseteq g_1(A)(W+W_1) \subseteq W$  y
- $ullet \deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \\ \deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:
  - $\{X, AX, ..., A^{l-1}X\}$  es l.i.
  - $W \cap W_1 = \{0\}.$
- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $\deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:
  - $\{X, AX, ..., A^{l-1}X\}$  es l.i.
  - $W \cap W_1 = \{0\}.$
- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$ .
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $\deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:
  - $\{X, AX, ..., A^{l-1}X\}$  es l.i.
  - $W \cap W_1 = \{0\}.$
- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$ .
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $\deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Supongamos r > 1 y sea  $X \in \mathbb{R}^n \setminus W$ ; existe un polinomio  $g_1(x)$  de mínimo grado tal que  $g_1(A)X \in W$ .
- Sea,  $I := \deg(g_1(x))$  y  $W_1 = \mathcal{L}(\{X, AX, \dots, A^{l-1}X\})$ .
- La minimalidad de / garantiza:
  - $\{X, AX, ..., A^{l-1}X\}$  es l.i.
  - $W \cap W_1 = \{0\}.$
- También se tiene que  $W + W_1$  es A-invariante y  $\dim(W + W_1) = n r_1 > \dim(W) = n r$ .
- Por hipótesis de inducción, existe  $g_2(x)$  de grado  $\leq n \dim(W + W_1)$  tal que  $g_2(A)(\mathbb{R}^n) \subseteq W + W_1$ .
- De lo anterior  $g_1(A)g_2(A)(\mathbb{R}^n)\subseteq g_1(A)(W+W_1)\subseteq W$  y
- $ullet \deg(g_1g_2) = \deg(g_1) + \deg(g_2) \le \\ \deg(g_1) + n \dim(W + W_1) = n \dim(W).$



- Si n=1, entonces para cualquier  $X \neq 0$  se tiene
- AX = cX, por lo que A cI es la matriz cero
- Supongamos n > 1, y el resultado cierto para todos los
- espacios vectoriales de diffierisión < n.
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con a liquin  $a_1 \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual essente
  - $\mathbf{z}$  Si  $N=\mathbb{R}^n$ , hemos terminado. Si  $N
    eq \mathbb{R}^n$ , entonces la
- restricción de A a N satisface la conclusión (deg(h) < dim(N), h polinomio mínimo de la restricción
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n \dim(N)$  tal que  $g_1(A)(\mathbb{R}^n) \subseteq N$ .
  - 4 D > 4 A > 4 B > 4 B > 9 Q P

- Si n = 1, entonces para cualquier  $X \neq 0$  se tiene AX = cX, por lo que A cI es la matriz cero.
- Supongamos n > 1, y el resultado cierto para todos los espacios vectoriales de dimensión < n.</li>
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con algún  $a_i \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual es A-invariante.
- Si N = ℝ<sup>n</sup>, hemos terminado. Si N ≠ ℝ<sup>n</sup>, entonces la restricción de A a N satisface la conclusión (deg(h) ≤ dim(N), h polinomio mínimo de la restricción.
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n-\dim(N)$  tal que  $g_1(A)(\mathbb{R}^n)\subseteq N$ .
- De lo anterior se concluye  $h(A)g_1(A)(\mathbb{R}^n) = 0$  y  $\deg(hg_1) \leq n$ .

- Si n = 1, entonces para cualquier  $X \neq 0$  se tiene AX = cX, por lo que A cI es la matriz cero.
- Supongamos n > 1, y el resultado cierto para todos los espacios vectoriales de dimensión < n.</li>
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con algún  $a_i \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual es A-invariante.
- Si N = ℝ<sup>n</sup>, hemos terminado. Si N ≠ ℝ<sup>n</sup>, entonces la restricción de A a N satisface la conclusión (deg(h) ≤ dim(N), h polinomio mínimo de la restricción.
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n-\dim(N)$  tal que  $g_1(A)(\mathbb{R}^n)\subseteq N$ .
- De lo anterior se concluye  $h(A)g_1(A)(\mathbb{R}^n) = 0$  y  $deg(hg_1) < n$ .

- Si n = 1, entonces para cualquier  $X \neq 0$  se tiene AX = cX, por lo que A cI es la matriz cero.
- Supongamos n > 1, y el resultado cierto para todos los espacios vectoriales de dimensión < n.</li>
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con algún  $a_i \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual es A-invariante.
- Si N = ℝ<sup>n</sup>, hemos terminado. Si N ≠ ℝ<sup>n</sup>, entonces la restricción de A a N satisface la conclusión (deg(h) ≤ dim(N), h polinomio mínimo de la restricción.
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n-\dim(N)$  tal que  $g_1(A)(\mathbb{R}^n)\subseteq N$ .
- De lo anterior se concluye  $h(A)g_1(A)(\mathbb{R}^n) = 0$  y deg $(hg_1) \le n$ .

- Si n = 1, entonces para cualquier  $X \neq 0$  se tiene AX = cX, por lo que A cI es la matriz cero.
- Supongamos n > 1, y el resultado cierto para todos los espacios vectoriales de dimensión < n.</li>
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con algún  $a_i \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual es A-invariante.
- Si N = ℝ<sup>n</sup>, hemos terminado. Si N ≠ ℝ<sup>n</sup>, entonces la restricción de A a N satisface la conclusión (deg(h) ≤ dim(N), h polinomio mínimo de la restricción.
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n-\dim(N)$  tal que  $g_1(A)(\mathbb{R}^n)\subseteq N$ .
- De lo anterior se concluye  $h(A)g_1(A)(\mathbb{R}^n) = 0$  y  $deg(hg_1) < n$ .

- Si n = 1, entonces para cualquier  $X \neq 0$  se tiene AX = cX, por lo que A cI es la matriz cero.
- Supongamos n > 1, y el resultado cierto para todos los espacios vectoriales de dimensión < n.</li>
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con algún  $a_i \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual es A-invariante.
- Si N = ℝ<sup>n</sup>, hemos terminado. Si N ≠ ℝ<sup>n</sup>, entonces la restricción de A a N satisface la conclusión (deg(h) ≤ dim(N), h polinomio mínimo de la restricción.)
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n-\dim(N)$  tal que  $g_1(A)(\mathbb{R}^n)\subseteq N$ .
- De lo anterior se concluye  $h(A)g_1(A)(\mathbb{R}^n)=0$  y  $\deg(hg_1)\leq n.$

- Si n = 1, entonces para cualquier  $X \neq 0$  se tiene AX = cX, por lo que A cI es la matriz cero.
- Supongamos n > 1, y el resultado cierto para todos los espacios vectoriales de dimensión < n.</li>
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con algún  $a_i \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual es A-invariante.
- Si N = ℝ<sup>n</sup>, hemos terminado. Si N ≠ ℝ<sup>n</sup>, entonces la restricción de A a N satisface la conclusión (deg(h) ≤ dim(N), h polinomio mínimo de la restricción.)
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n-\dim(N)$  tal que  $g_1(A)(\mathbb{R}^n)\subseteq N$ .
- De lo anterior se concluye  $h(A)g_1(A)(\mathbb{R}^n)=0$  y  $\deg(hg_1)\leq n.$

- Si n = 1, entonces para cualquier  $X \neq 0$  se tiene AX = cX, por lo que A cI es la matriz cero.
- Supongamos n > 1, y el resultado cierto para todos los espacios vectoriales de dimensión < n.</li>
- Sea  $X \neq 0$ , entonces  $a_0X + a_1AX + \cdots + a_nA^nX = 0$ , con algún  $a_i \neq 0$ .
- Sea  $A_1 = a_0 I + a_1 A + \cdots + a_n A^n$  y N su núcleo, el cual es A-invariante.
- Si N = ℝ<sup>n</sup>, hemos terminado. Si N ≠ ℝ<sup>n</sup>, entonces la restricción de A a N satisface la conclusión (deg(h) ≤ dim(N), h polinomio mínimo de la restricción.)
- Por el lema, existe un polinomio  $g_1(x)$  de grado a lo más  $n-\dim(N)$  tal que  $g_1(A)(\mathbb{R}^n)\subseteq N$ .
- De lo anterior se concluye  $h(A)g_1(A)(\mathbb{R}^n)=0$  y  $\deg(hg_1)\leq n.$

#### Teorema (Descomposición Primaria)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

- $\bullet \mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$
- Cada W<sub>i</sub> es A-invariante.
- La matriz  $B_i$  tiene por polinomio mínimo a  $p_i^{r_i}(x)$ .

#### TEOREMA (DESCOMPOSICIÓN PRIMARIA)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

#### TEOREMA (DESCOMPOSICIÓN PRIMARIA)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

#### TEOREMA (DESCOMPOSICIÓN PRIMARIA)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

#### TEOREMA (DESCOMPOSICIÓN PRIMARIA)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

#### TEOREMA (DESCOMPOSICIÓN PRIMARIA)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

- $\bullet \ \mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$
- Cada W<sub>i</sub> es A-invariante.
- La matriz  $B_i$  tiene por polinomio mínimo a  $p_i^{r_i}(x)$ .



#### TEOREMA (DESCOMPOSICIÓN PRIMARIA)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

- $\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$ .
- Cada W<sub>i</sub> es A-invariante.
- La matriz  $B_i$  tiene por polinomio mínimo a  $p_i^{r_i}(x)$ .



#### TEOREMA (DESCOMPOSICIÓN PRIMARIA)

Sea A una matriz  $n \times n$ ,

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

- $\bullet \mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k.$
- Cada W<sub>i</sub> es A-invariante.
- La matriz  $B_i$  tiene por polinomio mínimo a  $p_i^{r_i}(x)$ .

- Para cada i, sea  $f_i(x) = \prod_{j \neq i} \rho_j^{ij}(x)$ . Los polinomios
  - $f_1, f_2, \ldots, f_K$  son primos relativos.
- Existen  $g_1, g_2, \ldots, g_k$  tales que

$$f_1(x)g_1(x) + \dots + f_k(x)g_k(x) = 1.$$
 (2)

- Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:
- $A_1 + A_2 + \cdots + A_k = l$ , le metriz identificad
- $\bullet$  Si  $i \neq j$ , entences  $A_1A_2 = 0$
- Para todo i = 1, 2, ..., k se tiene  $A_i^c = A_i$ .
- La propiedad 1 implica:
- $A_1(\mathbb{R}^n) \pm A_2(\mathbb{R}^n) \pm \cdots \pm A_k(\mathbb{R}^n) = \mathbb{R}^n$

- Para cada i, sea  $f_i(x) = \prod_{j \neq i} p_j^{r_j}(x)$ . Los polinomios  $f_1, f_2, \dots, f_k$  son primos relativos.
- Existen  $g_1, g_2, \dots, g_k$  tales que

$$f_1(x)g_1(x) + \dots + f_k(x)g_k(x) = 1.$$
 (2)

• Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:

A<sub>1</sub> + A<sub>2</sub> + · · · + A<sub>k</sub> = I, la matriz identidad.
 Si i ≠ j, entonces A<sub>i</sub>A<sub>j</sub> = 0.

Para todo i = 1, 2, ..., k se tiene  $A_i^2 = A_i$ .

• La propiedad 1 implica:  $A_1(\mathbb{R}^n) + A_2(\mathbb{R}^n) + \dots + A_k(\mathbb{R}^n) = \mathbb{R}$ 



- Para cada i, sea  $f_i(x) = \prod_{j \neq i} p_j^{r_j}(x)$ . Los polinomios  $f_1, f_2, \dots, f_k$  son primos relativos.
- Existen  $g_1, g_2, \dots, g_k$  tales que

$$f_1(x)g_1(x) + \cdots + f_k(x)g_k(x) = 1.$$
 (2)

• Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:

• La propiedad 1 implica:

$$A_1(\mathbb{R}^n) + A_2(\mathbb{R}^n) + \cdots + A_k(\mathbb{R}^n) = \mathbb{R}^n.$$



- Para cada i, sea  $f_i(x) = \prod_{j \neq i} p_j^{r_j}(x)$ . Los polinomios  $f_1, f_2, \dots, f_k$  son primos relativos.
- Existen  $g_1, g_2, \dots, g_k$  tales que

$$f_1(x)g_1(x) + \cdots + f_k(x)g_k(x) = 1.$$
 (2)

- Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:
  - $\bigcirc$   $A_1 + A_2 + \cdots + A_k = I$ , la matriz identidad.
  - ② Si  $i \neq j$ , entonces  $A_i A_i = 0$
  - Solution Para todo i = 1, 2, ..., k se tiene  $A_i^2 = A_i$ .
- La propiedad 1 implica:

$$A_1(\mathbb{R}^n) + A_2(\mathbb{R}^n) + \cdots + A_k(\mathbb{R}^n) = \mathbb{R}^n.$$



- Para cada i, sea  $f_i(x) = \prod_{j \neq i} p_j^{r_j}(x)$ . Los polinomios  $f_1, f_2, \dots, f_k$  son primos relativos.
- Existen  $g_1, g_2, \dots, g_k$  tales que

$$f_1(x)g_1(x) + \cdots + f_k(x)g_k(x) = 1.$$
 (2)

- Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:

  - ② Si  $i \neq j$ , entonces  $A_i A_i = 0$ .
- La propiedad 1 implica:  $A_1(\mathbb{R}^n) + A_2(\mathbb{R}^n) + \cdots + A_k(\mathbb{R}^n) = \mathbb{R}^n$



- Para cada i, sea  $f_i(x) = \prod_{j \neq i} p_j^{r_j}(x)$ . Los polinomios  $f_1, f_2, \dots, f_k$  son primos relativos.
- Existen  $g_1, g_2, \dots, g_k$  tales que

$$f_1(x)g_1(x) + \cdots + f_k(x)g_k(x) = 1.$$
 (2)

- Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:
  - $A_1 + A_2 + \cdots + A_k = I$ , la matriz identidad.
  - ② Si  $i \neq j$ , entonces  $A_i A_j = 0$ .
  - 3 Para todo i = 1, 2, ..., k se tiene  $A_i^2 = A_i$ .
- La propiedad 1 implica:

$$A_1(\mathbb{R}^n) + A_2(\mathbb{R}^n) + \cdots + A_k(\mathbb{R}^n) = \mathbb{R}^n.$$



- Para cada i, sea  $f_i(x) = \prod_{j \neq i} p_j^{r_j}(x)$ . Los polinomios  $f_1, f_2, \dots, f_k$  son primos relativos.
- Existen  $g_1, g_2, \dots, g_k$  tales que

$$f_1(x)g_1(x) + \cdots + f_k(x)g_k(x) = 1.$$
 (2)

- Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:
  - $\bullet$   $A_1 + A_2 + \cdots + A_k = I$ , la matriz identidad.
  - ② Si  $i \neq j$ , entonces  $A_i A_j = 0$ .
- La propiedad 1 implica:



- Para cada i, sea  $f_i(x) = \prod_{j \neq i} p_j^{r_j}(x)$ . Los polinomios  $f_1, f_2, \dots, f_k$  son primos relativos.
- Existen  $g_1, g_2, \dots, g_k$  tales que

$$f_1(x)g_1(x) + \cdots + f_k(x)g_k(x) = 1.$$
 (2)

- Definimos  $A_i := f_i(A)g_i(A)$  y se verifica directamente:
  - $\bullet$   $A_1 + A_2 + \cdots + A_k = I$ , la matriz identidad.
  - ② Si  $i \neq j$ , entonces  $A_i A_j = 0$ .
- La propiedad 1 implica:  $A_1(\mathbb{R}^n) + A_2(\mathbb{R}^n) + \cdots + A_k(\mathbb{R}^n) = \mathbb{R}^n$ .



- Mostraremos que A<sub>i</sub>(ℝ<sup>n</sup>) = W<sub>i</sub> y que forman una suma directa.
- Sea  $Y \in A_i(\mathbb{R}^n)$ ,  $Y = A_i X = f_i(A)g_i(A)X$  para algún  $X \in \mathbb{R}^n$
- entonces
- $B_i Y = p_i'(A) Y = p_i'(A) t_i(A) g_i(A) X = m(A) g_i(A) X = 0,$ probando que  $Y \in W_i$ .
- Reciprocamente, sea  $X \in W_i$ ; como  $A_1 + A_2 + \cdots + A_k = I$ , entonces  $X = A_1X + A_2X + \cdots + A_kX$ .
- También se tiene  $p_i^{\mu}(x)$  divide a  $f_i(x)$  para todo  $j \neq i$ ,
- entonces  $A_jX = I_j(A)g_j(A)X = 0$ , para todo  $j \neq i$ , por lo que  $X = A_iX \in A_i(\mathbb{R}^n)$ .

- Mostraremos que  $A_i(\mathbb{R}^n) = W_i$  y que forman una suma directa.
- Sea  $Y \in A_i(\mathbb{R}^n)$ ,  $Y = A_i X = f_i(A)g_i(A)X$  para algún  $X \in \mathbb{R}^n$
- entonces  $B_iY = p_i^{r_i}(A)Y = p_i^{r_i}(A)f_i(A)g_i(A)X = m(A)g_i(A)X = 0$ , probando que  $Y \in W_i$ .
- Recíprocamente, sea  $X \in W_i$ ; como  $A_1 + A_2 + \cdots + A_k = I$ , entonces  $X = A_1X + A_2X + \cdots + A_kX$ .
- También se tiene  $p_i^{r_i}(x)$  divide a  $f_i(x)$  para todo  $j \neq i$ ,
- entonces  $A_jX = f_j(A)g_j(A)X = 0$ , para todo  $j \neq i$ , por lo que  $X = A_iX \in A_i(\mathbb{R}^n)$ .



- Mostraremos que  $A_i(\mathbb{R}^n) = W_i$  y que forman una suma directa.
- Sea  $Y \in A_i(\mathbb{R}^n)$ ,  $Y = A_i X = f_i(A)g_i(A)X$  para algún  $X \in \mathbb{R}^n$
- entonces  $B_iY = p_i^{r_i}(A)Y = p_i^{r_i}(A)f_i(A)g_i(A)X = m(A)g_i(A)X = 0$ , probando que  $Y \in W_i$ .
- Recíprocamente, sea  $X \in W_i$ ; como  $A_1 + A_2 + \cdots + A_k = I$ , entonces  $X = A_1X + A_2X + \cdots + A_kX$ .
- También se tiene  $p_i^{r_i}(x)$  divide a  $f_i(x)$  para todo  $i \neq i$ ,
- entonces  $A_jX = f_j(A)g_j(A)X = 0$ , para todo  $j \neq i$ , por lo que  $X = A_iX \in A_i(\mathbb{R}^n)$ .



- Mostraremos que  $A_i(\mathbb{R}^n) = W_i$  y que forman una suma directa.
- Sea  $Y \in A_i(\mathbb{R}^n)$ ,  $Y = A_i X = f_i(A)g_i(A)X$  para algún  $X \in \mathbb{R}^n$
- entonces  $B_iY = p_i^{r_i}(A)Y = p_i^{r_i}(A)f_i(A)g_i(A)X = m(A)g_i(A)X = 0$ , probando que  $Y \in W_i$ .
- Recíprocamente, sea  $X \in W_i$ ; como  $A_1 + A_2 + \cdots + A_k = I_k$  entonces  $X = A_1X + A_2X + \cdots + A_kX$ .
- También se tiene  $p_i^{r_i}(x)$  divide a  $f_i(x)$  para todo  $j \neq i$ ,
- entonces  $A_jX = f_j(A)g_j(A)X = 0$ , para todo  $j \neq i$ , por lo que  $X = A_iX \in A_i(\mathbb{R}^n)$ .



- Mostraremos que  $A_i(\mathbb{R}^n) = W_i$  y que forman una suma directa.
- Sea  $Y \in A_i(\mathbb{R}^n)$ ,  $Y = A_i X = f_i(A)g_i(A)X$  para algún  $X \in \mathbb{R}^n$
- entonces  $B_iY = p_i^{r_i}(A)Y = p_i^{r_i}(A)f_i(A)g_i(A)X = m(A)g_i(A)X = 0$ , probando que  $Y \in W_i$ .
- Recíprocamente, sea  $X \in W_i$ ; como  $A_1 + A_2 + \cdots + A_k = I$ , entonces  $X = A_1X + A_2X + \cdots + A_kX$ .
- También se tiene  $p_i^{r_i}(x)$  divide a  $f_i(x)$  para todo  $j \neq i$ ,
- entonces  $A_jX = f_j(A)g_j(A)X = 0$ , para todo  $j \neq i$ , por lo que  $X = A_iX \in A_i(\mathbb{R}^n)$ .



- Mostraremos que  $A_i(\mathbb{R}^n) = W_i$  y que forman una suma directa.
- Sea  $Y \in A_i(\mathbb{R}^n)$ ,  $Y = A_i X = f_i(A)g_i(A)X$  para algún  $X \in \mathbb{R}^n$
- entonces  $B_iY = p_i^{r_i}(A)Y = p_i^{r_i}(A)f_i(A)g_i(A)X = m(A)g_i(A)X = 0$ , probando que  $Y \in W_i$ .
- Recíprocamente, sea  $X \in W_i$ ; como  $A_1 + A_2 + \cdots + A_k = I$ , entonces  $X = A_1X + A_2X + \cdots + A_kX$ .
- También se tiene  $p_i^{r_i}(x)$  divide a  $f_i(x)$  para todo  $j \neq i$ ,
- entonces  $A_jX = f_j(A)g_j(A)X = 0$ , para todo  $j \neq i$ , por lo que  $X = A_iX \in A_i(\mathbb{R}^n)$ .



- Mostraremos que  $A_i(\mathbb{R}^n) = W_i$  y que forman una suma directa.
- Sea  $Y \in A_i(\mathbb{R}^n)$ ,  $Y = A_i X = f_i(A)g_i(A)X$  para algún  $X \in \mathbb{R}^n$
- entonces  $B_iY = p_i^{r_i}(A)Y = p_i^{r_i}(A)f_i(A)g_i(A)X = m(A)g_i(A)X = 0$ , probando que  $Y \in W_i$ .
- Recíprocamente, sea  $X \in W_i$ ; como  $A_1 + A_2 + \cdots + A_k = I$ , entonces  $X = A_1X + A_2X + \cdots + A_kX$ .
- También se tiene  $p_i^{r_i}(x)$  divide a  $f_j(x)$  para todo  $j \neq i$ ,
- entonces  $A_jX = f_j(A)g_j(A)X = 0$ , para todo  $j \neq i$ , por lo que  $X = A_iX \in A_i(\mathbb{R}^n)$ .



- Mostraremos que  $A_i(\mathbb{R}^n) \cap \left( \sum_{j \neq i} A_j(\mathbb{R}^n) \right) = \{0\}.$
- ullet Sea  $X\in A_i(\mathbb{R}^n)\cap\left(\sum_{j
  eq i}A_j(\mathbb{R}^n)
  ight)$  ,
- entonces  $X = A_i(Z) = \sum_{j \neq i} A_j(X_j)$ . Aplicando  $A_i$  a esta ecuación y usando la Propiedad 2 enunciada antes se tiene  $A_i(X) = A_i^2(Z) = \sum_{i \neq i} A_i A_j(X_j) = 0$ .
- Ahora usando la Propiedad 3 se tiene  $0 = A_i(X) = A_i^2(Z) = A_i(Z) = X$ , finalizando la prueba de la primera parte del teorema.



- Mostraremos que  $A_i(\mathbb{R}^n) \cap \left( \sum_{j \neq i} A_j(\mathbb{R}^n) \right) = \{0\}.$
- ullet Sea  $X\in A_i(\mathbb{R}^n)\cap\left(\sum_{j
  eq i}A_j(\mathbb{R}^n)
  ight),$
- entonces  $X = A_i(Z) = \sum_{j \neq i} A_j(X_j)$ . Aplicando  $A_i$  a esta ecuación y usando la Propiedad 2 enunciada antes se tiene  $A_i(X) = A_i^2(Z) = \sum_{j \neq i} A_i A_j(X_j) = 0$ .
- Ahora usando la Propiedad 3 se tiene  $0 = A_i(X) = A_i^2(Z) = A_i(Z) = X$ , finalizando la prueba de la primera parte del teorema.



- Mostraremos que  $A_i(\mathbb{R}^n) \cap \left( \sum_{j \neq i} A_j(\mathbb{R}^n) \right) = \{0\}.$
- ullet Sea  $X\in A_i(\mathbb{R}^n)\cap\left(\sum_{j
  eq i}A_j(\mathbb{R}^n)
  ight),$
- entonces  $X = A_i(Z) = \sum_{j \neq i} A_j(X_j)$ . Aplicando  $A_i$  a esta ecuación y usando la Propiedad 2 enunciada antes se tiene  $A_i(X) = A_i^2(Z) = \sum_{j \neq i} A_i A_j(X_j) = 0$ .
- Ahora usando la Propiedad 3 se tiene  $0 = A_i(X) = A_i^2(Z) = A_i(Z) = X$ , finalizando la prueba de la primera parte del teorema.



- Mostraremos que  $A_i(\mathbb{R}^n) \cap \left( \sum_{j \neq i} A_j(\mathbb{R}^n) \right) = \{0\}.$
- Sea  $X \in A_i(\mathbb{R}^n) \cap \left(\sum_{j \neq i} A_j(\mathbb{R}^n)\right)$ ,
- entonces  $X = A_i(Z) = \sum_{j \neq i} A_j(X_j)$ . Aplicando  $A_i$  a esta ecuación y usando la Propiedad 2 enunciada antes se tiene  $A_i(X) = A_i^2(Z) = \sum_{j \neq i} A_i A_j(X_j) = 0$ .
- Ahora usando la Propiedad 3 se tiene  $0 = A_i(X) = A_i^2(Z) = A_i(Z) = X$ , finalizando la prueba de la primera parte del teorema.



- La segunda parte del teorema se tiene de manera directa usando que T conmuta con p\( T \).
- Para la parte tres, note que  $B_i = \rho_i^{\prime\prime}(A)$  es cero en  $W_i$  por lo que el polinomio mínimo de A en  $W_i$ , divide a  $\rho_i^{\prime\prime}(x)$ .
- Si h(x) es cualquier otro polinomio tal que h(E) = 0, con E, la restricción de A a  $W_i$ , entonces h(A)h(A) es el operador cero, por lo que  $m(x) = p_i^h(x)h(x)$  divide a h(x), probando el teorema.

- La segunda parte del teorema se tiene de manera directa usando que T conmuta con p<sub>i</sub><sup>r<sub>i</sub></sup>(T).
- Para la parte tres, note que  $B_i = p_i^{r_i}(A)$  es cero en  $W_i$  por lo que el polinomio mínimo de A en  $W_i$ , divide a  $p_i^{r_i}(x)$ .
- Si h(x) es cualquier otro polinomio tal que  $h(E_i) = 0$ , con  $E_i$  la restricción de A a  $W_i$ , entonces  $h(A)f_i(A)$  es el operador cero, por lo que  $m(x) = p_i^{r_i}(x)f_i(x)$  divide a  $h(x)f_i(x)$ , es decir  $p_i^{r_i}(x)$  divide a h(x), probando el teorema.

- La segunda parte del teorema se tiene de manera directa usando que T conmuta con p<sub>i</sub><sup>r<sub>i</sub></sup>(T).
- Para la parte tres, note que  $B_i = p_i^{r_i}(A)$  es cero en  $W_i$  por lo que el polinomio mínimo de A en  $W_i$ , divide a  $p_i^{r_i}(x)$ .
- Si h(x) es cualquier otro polinomio tal que  $h(E_i) = 0$ , con  $E_i$  la restricción de A a  $W_i$ , entonces  $h(A)f_i(A)$  es el operador cero, por lo que  $m(x) = p_i^{r_i}(x)f_i(x)$  divide a  $h(x)f_i(x)$ , es decir  $p_i^{r_i}(x)$  divide a h(x), probando el teorema.

- La segunda parte del teorema se tiene de manera directa usando que T conmuta con p<sub>i</sub><sup>r<sub>i</sub></sup>(T).
- Para la parte tres, note que  $B_i = p_i^{r_i}(A)$  es cero en  $W_i$  por lo que el polinomio mínimo de A en  $W_i$ , divide a  $p_i^{r_i}(x)$ .
- Si h(x) es cualquier otro polinomio tal que  $h(E_i) = 0$ , con  $E_i$  la restricción de A a  $W_i$ , entonces  $h(A)f_i(A)$  es el operador cero, por lo que  $m(x) = p_i^{r_i}(x)f_i(x)$  divide a  $h(x)f_i(x)$ , es decir  $p_i^{r_i}(x)$  divide a h(x), probando el teorema.

## **COROLARIOS**

#### COROLARIO

Sea A una matriz  $n \times n$ . Entonces A es singular  $\iff$  el cero es raíz de su polinomio mínimo.

#### Corolario

Sea A una matriz  $n \times n$ . Entonces A tiene un subespacio invariante de dimensión uno  $\iff$  el polinomio mínimo de A tiene un factor lineal.

## **COROLARIOS**

#### **COROLARIO**

Sea A una matriz  $n \times n$ . Entonces A es singular  $\iff$  el cero es raíz de su polinomio mínimo.

#### **COROLARIO**

Sea A una matriz  $n \times n$ . Entonces A tiene un subespacio invariante de dimensión uno  $\iff$  el polinomio mínimo de A tiene un factor lineal.

#### TEOREMA

Sea A una matriz  $n \times n$  con polinomio mínimo  $p(x)^l$ , con p(x) irreducible de grado r. Entonces r divide a n.

#### COROLARIO

Sea

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

la factorización del polinomio mínimo de A en factores irreducibles y

$$\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$



#### TEOREMA

Sea A una matriz  $n \times n$  con polinomio mínimo  $p(x)^l$ , con p(x) irreducible de grado r. Entonces r divide a n.

#### **COROLARIO**

Sea

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

la factorización del polinomio mínimo de A en factores irreducibles y

$$\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$



#### TEOREMA

Sea A una matriz  $n \times n$  con polinomio mínimo  $p(x)^l$ , con p(x) irreducible de grado r. Entonces r divide a n.

#### **COROLARIO**

Sea

$$m(x) = \rho_1^{r_1}(x)\rho_2^{r_2}(x)\cdots\rho_k^{r_k}(x)$$

la factorización del polinomio mínimo de A en factores irreducibles y

$$\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$

#### TEOREMA

Sea A una matriz  $n \times n$  con polinomio mínimo  $p(x)^l$ , con p(x) irreducible de grado r. Entonces r divide a n.

#### **COROLARIO**

Sea

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

la factorización del polinomio mínimo de A en factores irreducibles y

$$\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$

#### TEOREMA

Sea A una matriz  $n \times n$  con polinomio mínimo  $p(x)^l$ , con p(x) irreducible de grado r. Entonces r divide a n.

#### **COROLARIO**

Sea

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

la factorización del polinomio mínimo de A en factores irreducibles y

$$\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$

#### TEOREMA

Sea A una matriz  $n \times n$  con polinomio mínimo  $p(x)^l$ , con p(x) irreducible de grado r. Entonces r divide a n.

#### **COROLARIO**

Sea

$$m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$$

la factorización del polinomio mínimo de A en factores irreducibles y

$$\mathbb{R}^n = W_1 \oplus W_2 \oplus \cdots \oplus W_k$$

la descomposición inducida en  $\mathbb{R}^n$  por m(x). Si denotamos por  $r_i$  al grado de  $p_i(x)$ , entonces  $r_i$  divide a dim $(W_i)$ , para todo i = 1, 2, ..., k.

**◆** DESPRIM

# POLINOMIO CARACTERÍSTICO Y EL TEOREMA DE CAYLEY-HAMILTON

#### Definición

Sea A una matriz  $n \times n$ ,  $m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$  la factorización del polinomio mínimo de A como producto de irreducibles. Definimos el polinomio característico de A como  $f_A(x) := (-1)^n p_1^{d_1}(x) p_2^{d_2}(x) \cdots p_k^{d_k}(x)$ , en donde  $d_i = \frac{\dim W_i}{\deg p_i(x)}$ .

#### TEOREMA (CAYLEY-HAMILTON)

Toda matriz es cero de su polinomio característico.



# POLINOMIO CARACTERÍSTICO Y EL TEOREMA DE CAYLEY-HAMILTON

### DEFINICIÓN

Sea A una matriz  $n \times n$ ,  $m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$  la factorización del polinomio mínimo de A como producto de irreducibles. Definimos el polinomio característico de A como  $f_A(x) := (-1)^n p_1^{d_1}(x) p_2^{d_2}(x) \cdots p_k^{d_k}(x)$ , en donde  $d_i = \frac{\dim W_i}{\deg p_i(x)}$ 

#### TEOREMA (CAYLEY-HAMILTON

Toda matriz es cero de su polinomio característico.



# POLINOMIO CARACTERÍSTICO Y EL TEOREMA DE CAYLEY-HAMILTON

### DEFINICIÓN

Sea A una matriz  $n \times n$ ,  $m(x) = p_1^{r_1}(x)p_2^{r_2}(x)\cdots p_k^{r_k}(x)$  la factorización del polinomio mínimo de A como producto de irreducibles. Definimos el polinomio característico de A como  $f_A(x) := (-1)^n p_1^{d_1}(x) p_2^{d_2}(x) \cdots p_k^{d_k}(x)$ , en donde  $d_i = \frac{\dim W_i}{\deg p_i(x)}$ .

#### TEOREMA (CAYLEY-HAMILTON)

Toda matriz es cero de su polinomio característico.



## POLINOMIO MÍNIMO (PRELIMINARES)

#### TEOREMA

Dada la matriz A, existen matrices inversibles  $Q, R \in K[x]$  tales que

$$Q(A-xI)R = \begin{pmatrix} m_1(x) & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & m_2(x) & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & m_k(x) & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

en donde  $m_{i+1}(x)$  divide a  $m_i(x)$  y  $m_1(x)$  es el polinomio mínimo de A.



## POLINOMIO MÍNIMO (PRELIMINARES)

#### TEOREMA

Dada la matriz A, existen matrices inversibles  $Q, R \in K[x]$  tales que

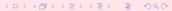
$$Q(A-xI)R = \begin{pmatrix} m_1(x) & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & m_2(x) & \cdots & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & m_k(x) & 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

en donde  $m_{i+1}(x)$  divide a  $m_i(x)$  y  $m_1(x)$  es el polinomio mínimo de A.



**Require:** Matriz cuadrada *A*.

- 1: Construya la matriz  $A_1 = A xI$ .
- 2: Con operaciones elementales en las filas y columnas de  $A_1$  se obtiene  $B = \text{diag}\{p(x), C\}$ , en donde p(x) es el máximo común divisor de los elementos de la primera fila y la primera columna de  $A_1$ , y C es cuadrada.
- 3: **while** p(x) no divida a todas la entradas de C, **do**
- 4: Encuentre la primera columna que contiene un elemento no divisible por p(x) y sume esta columna a la primera de B.
- 5: Aplique el Paso 2 a B.
- 6: end while
- 7: Haga  $A_1 = C$  y vaya al Paso 2.



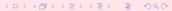
## Require: Matriz cuadrada A.

- 1: Construya la matriz  $A_1 = A xI$ .
- 2: Con operaciones elementales en las filas y columnas de A se obtiene  $B = \text{diag}\{p(x), C\}$ , en donde p(x) es el máximo común divisor de los elementos de la primera fila y la primera columna de  $A_1$ , y C es cuadrada.
- 3: **while** p(x) no divida a todas la entradas de C, **do**
- 4: Encuentre la primera columna que contiene un elemento no divisible por p(x) y sume esta columna a la primera de B.
- 5: Aplique el Paso 2 a B.
- 6: end while
- 7: Haga  $A_1 = C$  y vaya al Paso 2.



## Require: Matriz cuadrada A.

- 1: Construya la matriz  $A_1 = A xI$ .
- 2: Con operaciones elementales en las filas y columnas de A se obtiene  $B = \text{diag}\{p(x), C\}$ , en donde p(x) es el máximo común divisor de los elementos de la primera fila y la primera columna de  $A_1$ , y C es cuadrada.
- 3: **while** p(x) no divida a todas la entradas de C, **do**
- 4: Encuentre la primera columna que contiene un elemento no divisible por p(x) y sume esta columna a la primera de B.
- 5: Aplique el Paso 2 a B.
- 6: end while
- 7: Haga  $A_1 = C$  y vaya al Paso 2



## **Require:** Matriz cuadrada *A*.

- 1: Construya la matriz  $A_1 = A xI$ .
- 2: Con operaciones elementales en las filas y columnas de  $A_1$  se obtiene  $B = \text{diag}\{p(x), C\}$ , en donde p(x) es el máximo común divisor de los elementos de la primera fila y la primera columna de  $A_1$ , y C es cuadrada.
- 3: **while** p(x) no divida a todas la entradas de C, **do**
- 4: Encuentre la primera columna que contiene un elemento no divisible por p(x) y sume esta columna a la primera de B.
- 5: Aplique el Paso 2 a B.
- 6: end while
- 7: Haga  $A_1 = C$  y vaya al Paso 2.



## **Require:** Matriz cuadrada *A*.

- 1: Construya la matriz  $A_1 = A xI$ .
- 2: Con operaciones elementales en las filas y columnas de  $A_1$  se obtiene  $B = \text{diag}\{p(x), C\}$ , en donde p(x) es el máximo común divisor de los elementos de la primera fila y la primera columna de  $A_1$ , y C es cuadrada.
- 3: **while** p(x) no divida a todas la entradas de C, **do**
- 4: Encuentre la primera columna que contiene un elemento no divisible por p(x) y sume esta columna a la primera de B.
- 5: Aplique el Paso 2 a B.
- 6: end while

## 7: Haga $A_1 = C$ y vaya al Paso 2.



# POLINOMIO MÍNIMO (ALGORITMO)

## **Require:** Matriz cuadrada *A*.

- 1: Construya la matriz  $A_1 = A xI$ .
- 2: Con operaciones elementales en las filas y columnas de  $A_1$  se obtiene  $B = \text{diag}\{p(x), C\}$ , en donde p(x) es el máximo común divisor de los elementos de la primera fila y la primera columna de  $A_1$ , y C es cuadrada.
- 3: **while** p(x) no divida a todas la entradas de C, **do**
- 4: Encuentre la primera columna que contiene un elemento no divisible por p(x) y sume esta columna a la primera de B.
- Aplique el Paso 2 a B.
- 6: end while
- 7: Haga  $A_1 = C$  y vaya al Paso 2.

En un número finito de iteraciones llegará a una matriz de la forma diag $\{m_1(x), m_2(x), \ldots, m_k(x), 1, \ldots, 1\}$ , en donde  $m_i(x)$  divide a  $m_{i+1}(x)$ . El polinomio mínimo de A es  $m_k(x)$ .



# POLINOMIO MÍNIMO (ALGORITMO)

## **Require:** Matriz cuadrada *A*.

- 1: Construya la matriz  $A_1 = A xI$ .
- 2: Con operaciones elementales en las filas y columnas de  $A_1$  se obtiene  $B = \text{diag}\{p(x), C\}$ , en donde p(x) es el máximo común divisor de los elementos de la primera fila y la primera columna de  $A_1$ , y C es cuadrada.
- 3: **while** p(x) no divida a todas la entradas de C, **do**
- 4: Encuentre la primera columna que contiene un elemento no divisible por p(x) y sume esta columna a la primera de B.
- Aplique el Paso 2 a B.
- 6: end while
- 7: Haga  $A_1 = C$  y vaya al Paso 2.

En un número finito de iteraciones llegará a una matriz de la forma diag $\{m_1(x), m_2(x), \ldots, m_k(x), 1, \ldots, 1\}$ , en donde  $m_i(x)$  divide a  $m_{i+1}(x)$ . El polinomio mínimo de A es  $m_k(x)$ .



$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xl} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-x/} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(R_{2}(-1))} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-x/} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{B_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{B_{21}(1-x)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{B_{21}(1-x)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{B_{21}(1-x)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)} \begin{bmatrix} 0 & (1-x)^{2} & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(R_{21}(-1))} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^{2} & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^{2} & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^{2} & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}(1-x)^{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^{3} \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}(1-x)^{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^{3} \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22} \circ R_2(-1) \circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{23} \circ R_2(-1) \circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}\circ R_{2}(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}\circ R_{2}(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}\circ R_{2}(-1)\circ R_{3}(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 + (1-x)^3 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{22}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{22}(R_2(-1)) \circ R_2(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (x-1)^3 + 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-x/} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{22}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{22}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{22} \circ R_2(-1) \circ R_2(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 + (1-x)^3 \end{bmatrix} \xrightarrow{C_{22}(1-x)} \xrightarrow{C_{22}($$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{23} \circ R_2(-1) \circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (x-1)^3 + 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-x/} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1+(1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{22}(1-x)^2}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1+(1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1+(1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1+(1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{22}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1+(1-x)^3 \\ 0 & -1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-x/} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{32}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{32}(R_2(-1) \circ R_3(-1))} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 + (1-x)^3 \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{32}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1+(1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1+(1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{32}(R_2(-1)\circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1+(1-x)^3 + 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{32}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{23} \circ R_2(-1) \circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 + (1-x)^3 + 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{32}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{23} \circ R_2(-1) \circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (x-1)^3 + 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{32}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{23} \circ R_2(-1) \circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (x-1)^3 + 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \xrightarrow{A-xI} \begin{bmatrix} 1-x & 0 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21}(1-x)}$$

$$\begin{bmatrix} 0 & (1-x)^2 & -1 \\ -1 & 1-x & 0 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{21} \circ R_2(-1)} \begin{bmatrix} 1 & x-1 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{12}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & (1-x)^2 & -1 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{R_{32}(1-x)^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 1-x \end{bmatrix} \xrightarrow{C_{23}(1-x)}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 + (1-x)^3 \\ 0 & -1 & 0 \end{bmatrix} \xrightarrow{R_{23} \circ R_2(-1) \circ R_3(-1)} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (x-1)^3 + 1 \end{bmatrix}$$

## **BIBLIOGRAFÍA**

S. Axler.

Down with Determinants.

Am. Math. Monthly, Vol. 102 (1995).

S. Axler.

Linear Algebra Done Right.

Springer-Verlag, (1997).

F. Barrera Mora.

Álgebra Lineal.

Grupo Editorial Patria Cultural, (2007).



## BIBLIOGRAFÍA



S. Axler.

Down with Determinants.

Am. Math. Monthly, Vol. 102 (1995).



S. Axler.

Linear Algebra Done Right.

Springer-Verlag, (1997).



F. Barrera Mora.

Álgebra Lineal.

Grupo Editorial Patria Cultural, (2007).



