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Introduction

Two Main Questions:

1. Given a matrix A, what are the admissible patterns?

2. Given a pattern α is there a nonderogatory A such that α is an
admissible pattern for A?

An admissible pattern is a pattern of specified entries of X which
can be completed to commute with A.
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Finding Patterns

The Omega matrix and the Psi matrix

• Given a matrix A, what are the admissible patterns?

• If A is nonderogatory then the nullspace of Ω(A) is equivalent to the
columnspace of Ψ(A).

• Admissible patterns for any given square matrix A can be found using
the nullspace of Ω(A)

Example

Let A =

 1 0 5
0 8 3
2 0 6
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Finding Patterns

Example: Ω(A)

Then Ω(A) =



0 0 5 0 0 0 −2 0 0
0 7 3 0 0 0 0 −2 0
2 0 5 0 0 0 0 0 −2
0 0 0 −7 0 5 0 0 0
0 0 0 0 0 3 0 0 0
0 0 0 2 0 −2 0 0 0
−5 0 0 −3 0 0 −5 0 5
0 −5 0 0 −3 0 0 2 3
0 0 −5 0 0 −3 2 0 0
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Finding Patterns

Example: Basis for Nullspace

And a basis for the nullspace of
Ω(A) is:

1 0 0
0 1 0
0 0 1
0 0 0
1 2/3

5/2

0 0 0
0 0 5/2

0 7/2
3/2

1 0 5/2



This is the also a basis for the
columnspace of Ψ(A) since A
is nonderogatory in this case.

Using the Vec ordering:

 1 4 7
2 5 8
3 6 9


Rank Ω(A) = Rank Ω(AαC )
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Peek into a general solution

The easiest case

Let A be a Matrix of size n × n and not all the diagonal entries are equal
(some can be equal), a pattern on X is the diagonal (it has n elements)

A1 =


a1 an+1 · · · an(n−1)+1

a2 a1
...

...
...

. . .

an a2n · · · ai



X1 =


x1 xn+1 · · · xn(n−1)+1

x2 xn+1
...

...
...

. . .

xn x2n · · · xn2
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Peek into a general solution

General Case

Let A be any Matrix of size n × n, we can rewrite AX = XA as
JY − YJ = 0. We know the patterns for any matrix J, with multiple
Jordan blocks having any kind of eigenvalues. A pattern for A is the same
pattern for J: 

� � • • • • � • • •
• � • • • • • • • •
• • � • • • • • • •
• • • � • • • • • •
• • • • � � • • • •
• • • • • � • • • •
• � • • • • � • • •
• • • • • • • � � �
• • • • • • • • � �
• • • • • • • • • �
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Peek into a general solution

General answer

• The way from AX = XA to JY − YJ = 0:

• For all square matrix A we can get its Jordan Canonical Form:

•
A = Q−1JQ

• And we change the matrix X by Y = QXQ−1

• We can complete any matrix A as the same form as we can complete
its matrix J, except for the easiest case.
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Peek into a general solution

Open Questions

• Does Y give us more information about maximal admissible pattern
for A?

• How can we order the matrix J?
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Permutation Matrices

Elements of the Symmetric Group

• n × n Matrices with a single 1 in each row and column; every other
entry is zero

• The 3× 3 Symmetric Group, Sn:1 0 0
0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 0

 ,
0 1 0

1 0 0
0 0 1


0 1 0

0 0 1
1 0 0

 ,
0 0 1

1 0 0
0 1 0

 ,
0 0 1

0 1 0
1 0 0


• The group operation is matrix multiplication
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Permutation Matrices

Properties of the Group

• Interesting because it’s nonabelian except for n ∈ {1, 2}:0 0 1
1 0 0
0 1 0

 ·

0 0 1
0 1 0
1 0 0

 =

1 0 0
0 0 1
0 1 0


0 0 1

0 1 0
1 0 0

 ·

0 0 1
1 0 0
0 1 0

 =

0 1 0
1 0 0
0 0 1

 (1)

• Sadly, it’s closed under neither matrix addition nor scalar
multiplication.

• We’ll examine the commutativity equation, AX − XA = 0 where A is
a fully specified permutation matrix, and X is a partially specified
matrix which we must complete as a permutation matrix.
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Permutation Matrices

Graphs and Orbits

We can rewrite a permutation matrix as a digraph. Notice the orbits.[
1 0
0 1

]
∼

[
0 1
1 0

]
∼
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Permutation Matrices

Powers and Commutativity

• Powers of any matrix will commute with it. Permutation matrices are
no different.

• But that doesn’t exhaust commutors.
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



=


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



• Neither power is a matrix of the other.
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Permutation Matrices

The Result

A pattern is acceptable if we can complete X so that there is some
partition of the rows and columns of both X and A such that. . .

every pair
of corresponding partitions are both powers of the same permutation.


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1
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History

Admissible Patterns for A = Q−1JQ

• An admissible pattern for a Jordan block is generally of the form:
α = {(a1, a1), (a2, (a2, a2 + 1), · · · , (an−1, an−1 + (n − 2)), (1, n)} for
1 ≤ ai ≤ n − i + 1

• Each element in an admissble pattern β for a n × n matrix A that is
permutation equivalent to J is of the form (σ(i), σ(j)) for each
(i , j) ∈ α. σ is the permutation associated with Q−1.

• If A = Q−1JQ, then
β = {(σ(a1), σ(a1)), (σ(a2), σ(a2 + 1)), ..., (σ(an), σ(an + (n − 1)))}
is an admissible pattern for the matrix A.
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History

Finding a Matrix for which β is an Admissible Pattern For

• New Question: Suppose we have a pattern β, then can we find a
matrix A that is permutation equivalent to a Jordan block such that
β is an admissible pattern for A?

• Given β, we can check if the pattern is permutation similar to an
admissible pattern for a Jordan block by multiplying it by each of the
n! n × n permutations.

• We try to find the σ−1 that makes this true because we can then
easily get Q−1.

• Answer: If we can find Q−1, then we can find the n × n matrix
A = Q−1JQ for which β is admissible for.
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History

Finding a Matrix for a given β Example

• Suppose β = {(1, 1), (3, 1), (3, 2)}. Is there an A such that β is an
admissible pattern for it?

• β-partial matrix → α-partial matrix � X X
X X X
� � X

→
 X � �

X � X
X X X


X-Unspecified entries which can be ANYTHING, �-Specified entries

• α = {(2, 2), (1, 2), (1, 3)}
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History

Example continued

• There is a permutation Q that transforms the β-partial matrix into
the α-partial matrix.
Q(β-partial matrix)Q−1 = α-partial matrix 0 0 1

1 0 0
0 1 0

 � X X
X X X
� � X

 0 1 0
0 0 1
1 0 0

 =

 X � �
X � X
X X X



• Hence, A = Q−1JQ =

 λ 1 0
0 λ 0
1 0 λ

 is a matrix that β is admissible

for!
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Graph Theoretic Approach

Graph Theoretic Approach

• We are able to find all possible graphs for all permutations

• n
(n2−n
n−1

)
• Worked on a 4× 4 matrix ⇒ 880 different graphs

• Some patterns, when permuted, can be completed to commute with a
Jordan block.

• What other patterns can we complete to commute with other
non-derogatory matrices?
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Graph Theoretic Approach

N-cycle Matrices

• Some patterns can be completed to commute with an ”N-cycle”
matrix.

Example

• Let X be a 4-cycle matrix pattern. X =


� ? ? ?
? ? � ?
� ? ? ?
? ? � ?


• For each specified entry aij , (i − j) mod 4, is distinct.
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Conclusion

Conclusion

• Given a matrix A, what are the admissible patterns?

• Given a pattern α, is there a non-derogatory matrix A such that α is
admissible for A?

• Ongoing work will attempt to give complete answers to these
questions.
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