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Throughout F = R or C and 0 ∈ N.

Definition 1. Let A be a vector space over F equipped with an additional associa-
tive binary operation from A × A to A, denoted here by · (i.e. if x and y are any
two elements of A, x ·y is the product of x and y). Then A is an algebra over F (an
F -algebra) if the following hold for all elements x, y, and z in A, and all elements
a and b in F :

• (x + y) · z = x · z + y · z
• x · (y + z) = x · y + x · z
• (ax) · (by) = (ab) · (xy).

Definition 2. Let A be an F -algebra. We say that A is finitely generated provided
there is {a1, a2, · · · , ar} ⊆ A such that every element of A can be written as a finite
linear combination of monomials in a1, a2, . . . , ar. V will denote the F -span of
{a1, a2, . . . , ar}. V is called a finite dimensional generating subspace (fdgs) for A.

Definition 3. Let A be an F -algebra with finite dimensional generating subspace
V = span{a1, a2, . . . , ar}. The length of a monomial in A is the number of letters
that make up the monomial, counting repetitions. Define V 0 = F and for n ≥ 1,
V n as the F -span of monomials in a1, . . . , ar of length n and An =

∑n
i=0 V i.

Proposition 1. Let V n, for n ≥ 0, be the F -span of monomials in a1, . . . , ar of
length n, and An =

∑n
i=0 V i. Then

A =
∞⋃

n=0

An

Proof. “⊇” Since each An ⊆ A for all n ∈ N,
⋃∞

n=0 An ⊆ A.
“⊆” Let a ∈ A. Then since {a1, a2, . . . , ar} is a generating set for A, a can be written
as a finite linear combination of monomial in a1, . . . , ar. Let k be the maximum
length of these monomials. Then a ∈ Ak ⊆

⋃∞
n=0 An, so A =

⋃∞
n=0 An. ¤

Also, note that for the An’s as defined above, A0 ⊆ A1 ⊆ A2 ⊆ · · · is an ascending
chain of finite dimensional spaces.

Definition 4. Define a growth function of A with respect to V dV : N→ N by
dV (n) = dim(An) = dim(

∑n
i=0 V i). We note that in general dim

∑n
i=0 V i 6= ∑n

i=0dimV i
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We would like to know what types of functions these growth functions can be. Are
they polynomials or exponential functions?

Example 1. What is a growth function for R[x], the commutative polynomial al-
gebra in one variable? Let n ∈ N.
It has fdgs V = span{x}. Each V n = span{xn}, so {xn} is a basis for V n. Since
{1, x, . . . , xn} is a basis for polynomials of at most degree n, dV (n) = dim(An) =
n + 1.

Example 2. What is a growth function for R[x, y], the commutative polynomial
algebra in two variables? Let n ∈ N.
It has fdgs V = span{x, y}. Each basis element of V n will be of the form xayb,
where a + b = n. There are n + 1 choices for a and one corresponding b for each a,
so each V n will have n + 1 basis elements. Thus dV (n) =

∑n
i=0(i + 1) = n2+3n+2

2 .

Example 3. What is a growth function for R〈x, y〉,the free algebra in two variables?
Let n ∈ N.
Note that x and y do not commute. R〈x, y〉 has fdgs V = span{x, y}. Each V n has
2n basis elements since there are 2 choices for each letter of a monomial of length
n. Thus dV (n) =

∑n
i=0 2i = 2n+1 − 1.

Proposition 2. Every finitely generated algebra is isomorphic to a quotient of a
finitely generated algebra.

Proof. Let A be a finitely generated algebra with generating set {a1, a2, . . . , ar}.
Define ψ : F 〈x1, x2, . . . , xr〉 → A by setting ψ(xi) = ai for 1 ≤ i ≤ r and extending
to F 〈x1, x2, . . . , xr〉 in the natural way. ψ is a surjective algebra homomorphism.
By the First Isomorphism Theorem, we see that F 〈x1, x2, . . . , xr〉/ker(ψ) ' A.

¤

Note that every ideal of F 〈x1, x2, . . . , xr〉 is the kernel of some surjective homo-
morphism, so in order to calculate growth functions for various algebras, we may
calculate them for quotients of finitely generated free algebras. In particular,
we will look at quotients whose ideals are generated by finitely many monomi-
als in x1, x2, . . . , xr. We will refer to monomials as words and denote them by
m1,m2, . . . , mk. An ideal generated by the set {m1, m2, . . . ,mk} is the set of lin-
ear combinations of words who contain at least one m1,m2, . . . ,mk as a factor
(subword) denoted I = (m1, . . . ,mk). Such ideals are called monomial ideals.

Throughout I will be a monomial ideal with generators m1,m2, . . . ,mk ∈ F 〈x1, . . . , xr〉
and A = F 〈x1, x2, . . . , xr〉/I. A will be called a finitely generated, finitely presented monomial algebra.
In a quotient algebra, we can view words in I as zero, so every element of A can be
written as a linear combination of words not in I. Let B be the collection of words
not in I including 1. B is a spanning set for A. B consists of the words that do not
have any of m1,m2, . . . , mk as a subword.

Proposition 3. B is a basis for A.
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Proof. We have already seen that B is a spanning set. Let w1, w2, . . . , wk ∈ B.
Suppose α1w1 + · · · + αtwt is zero for some α1, . . . , αt ∈ F . By zero, we mean an
element of I, α1w1 + · · ·+ αtwt ∈ I. None of w1, w2, . . . , wt is in I, so
α1 = α2 = · · · = αt = 0. Thus we have spanning and independence, therefore we
have a basis. ¤

Throughout, let V = span{x1, x2, . . . , xr} is a fdgs for A, so V n = the span of
words in B of length n. So dim V n = number of words in B of length n. Since
An =

∑n
i=0 V i and B is a basis for A, dimAn = the number of words in B of length

at most n. Hence calculating a growth function is counting words.

Example 4. Determine a growth function for R〈x, y〉/I where I = (xy).

n Words in B of length n
0 1
1 x, y
2 x2, y2, yx
3 x3, y3, y2x, yx2

Let bn denote the number of words in B of length n. Then bn = dimV n. The growth
function dV (n) =

∑n
i=0 bi. Since I = (xy), any word with xy as a subword is zero.

Given n ≥ 1, there is only one word of length n in B beginning with x namely xn.
There are n such words beginning with y, namely ykxn−k for 1 ≤ k ≤ n.So there are
n + 1 words of length n in B, i.e., dimV n = n + 1. Thus, dV (n) =

∑n
i=0 (i + 1) =

n2+3n+2
2 . Note the growth function is a quadratic polynomial, and is identical to

that for the commutative polynomial in two variables. However these algebras are
not isomorphic.

Proposition 4. Any subword of a word in B is also in B.

Proof. Suppose w ∈ B and v is subword of w that is not in B. Since v /∈ B, there is a
generator of I that is subword of v. Hence w has a generator of I as a subword. ¤

Note, the longer words in B are made up of shorter words in B. The words of length
d determine words of length greater than d.

Example 5. I = (x2y, y2x)
The word w = xy2x2y3 has subwords of length 3: xy2, y2x, yx2, x2y, xy2, y3. Thus
w /∈ B because it contains the subwords x2y and y2x which are in I.

We need a better way to count our words. It turns out that this better way is using
a directed graph.

Definition 5. A directed graph is a set V of vertices with a set E of ordered pairs
of vertices called arrows.
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Definition 6. Let u, v be words. We say u is a prefix of v provided there is a word
w for which v = uw. We say u is a suffix of v provided that there is a word z for
which v = zu.

Example 6. Let w = x2y3x = (x2y)(y2x) = (x2y2)(yx). x2y is a prefix of w and
yx is a suffix of w.

Let d + 1, where d ≥ 2, be the maximum length of the generators in I and
{w1, w2, . . . , wk} be words in B of length d. We use this set of words as vertices for
a directed graph. We draw an arrow from wi to wj provided there is a word in B
of length d+1 whose prefix of length d is wi and whose suffix of length d is wj . We
will call our graph an overlap graph for B, and denote it by Γ. Equivalently there
are letters a and b such that wia = bwj ∈ B.

Example 7. I = (yx2, y2x, xyx, yxy)
d + 1 = maximum length of generators in I = 3
d = max length−1 = 2.
d is the length of the vertices: x2, y2, xy, yx
x2 → xy provided there is a word of length 3 in B whose prefix is x2 and suffix is
xy.
Words of length 3 in B: x3, y3, x2y, xy2

xy

ÃÃA
AA

AA
AA

A

x2
77

>>}}}}}}}}
y2

gg

yx

Definition 7. A path in a directed graph is a sequence of arrows in the same
direction. We call path u1 → u2 → · · · → ut → u1 a cycle provided ui 6= uj for
i 6= j. The length of a path is the number of arrows in it.

Example 8.
path word

x2 → xy x2y
x2 → xy → y2 x2y2

yx → x2 → xy → y2 → yx yx2y2x

number of arrows length of word
1 3 (d + 1)
2 4 (d + 2)
4 6 (d + 4)
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Proposition 5. A path in Γ with j arrows, for j ≥ 1, corresponds to a unique
word in B of length d+ j. A word in B of length d+ j corresponds to a unique path
in Γ with j arrows.

Proof. Let v1 → v2 → · · · → vj+1 be a path in Γ of length j, where vi ∈
{w1, . . . , wt}. Denote v∗k = suffix of vk+1 of length d − 1 for k = 1, 2, . . . , j. Since
v1 → v2 → · · · → vj+1 is a path, we can write vi = v∗i−1ai−1, where ai−1 is a single
letter for i = 2, 3, . . . , j + 1. The corresponding word is w = v1a1a2 . . . aj , which is
of length d + j. Since the generators of I are of max length d + 1, we only need to
look at the subwords of w of length d + 1. The subwords of length d + 1 are each
determined by vi → vi+1, where 1 ≤ i ≤ j, and each of these corresponds to a word
in B by definition, and hence, do not contain any generators of I as a subword.

Let w ∈ B with length d + j. Write w = y1y2 . . . yd+j and consider the subwords of
length d, vi = yiyi+1 . . . yi+d−2yi+d−1, 1 ≤ i ≤ j. Since vi+1 = yi+1yi+2 . . . yi+d−1yi+d,
we have vi → vi+1 when 1 ≤ i ≤ j. Thus, w corresponds to the path v1 → · · · →
vj+1.

¤

Theorem 1 (Ufnarovski). Consider the monomial algebra F 〈x1, . . . , xr〉/I where
I is generated by finitely many monomials. Let d + 1 be the maximum length of
the monomials that generate I. Let Γ denote the overlap graph for B, the basis of
words for A with vertices the words of length d in B.
(1) If Γ has two intersecting cycles, then the growth function for A is exponential.
(2) If Γ has no intersecting cycles, then the growth function for A is bounded above
and below by two polynomials of degree s where s is the maximal number of distinct
cycles on a path in Γ.

Example 9. Recall graph in Example 7.
I = (yx2, y2x, xyx, yxy)
d + 1 = maximum length of generators in I = 3
d = max length−1 = 2.
vertices: x2, y2, xy, yx
The overlap graph has no intersecting cycles and has two cycles on a path, so the
growth function is bounded by a polynomial of degree 2.

xy

ÃÃA
AA

AA
AA

A

x2
77

>>}}}}}}}}
y2

gg

yx

It is known that growth functions for algebras are either exponential or polynomial.
We would like to know more specifically, for a given d, what types of growth func-
tions are attainable. We can construct an algebra by first costructing an overlap
graph. We begin with all words of length d and connect v to w when the suffix of
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length d− 1 of v is the prefix of length d− 1 of w. Arrows not drawn are words in
I.

Proposition 6. For some ideal I generated by words of at most length d + 1, the
corresponding algebra F 〈x, y〉/I has exponential growth.

Proof. Consider I = (yd+1). Then the following cycles intersect: xd → xd and
xd → xd−1y → xd−2yx → xd−3yx2 → · · · → yxd−1 → xd. So by Ufnarovski’s
Theorem, F 〈x, y〉/I has exponential growth. ¤

So we know that for any d, exponential growth will be possible. Next we will look
at what degrees are possible when the algebras have polynomial growth.

Conjecture 1 (Dr. Ellingsen’s Conjecture). If I is generated by words of at most
length d + 1, then the growth function is either exponential or is polynomial with
degree at most d + 1.

We have shown for d = 2 that the growth function must be either exponential or
bounded by a polynomial of degree at most 3.

xy

ÃÃA
AA

AA
AA

A

²²

x2
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>>}}}}}}}}
y2

gg

yx

OO

Additionally, we have shown that for d = 3, the growth function must be either
exponential or bounded by a polynomial of degree at most 4.

x2y //

!!CC
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What about d = 4?



7

yx3

²²

x2y2oo y3x
{{vv

xyx2

$$JJJ
yxyx

²²

y2xy

²²
x4

77

»»1
11

11
11

yx2y
zzttt

xy2x

[[7777777

y4
gg

x2yx

OO

// xyxy

OO

// yxy2

##HH

x3y

;;vvv
// x2y2

CC̈
¨̈

¨̈
¨̈

xy3

OO

FF°°°°°°°

I = (yx4, xyx3, yxyx2, y2x2y, yx2y2, x2y3, yxy2x, y2xyx, y3x2, xy2xy, y4x)

The conjecture fails for d = 4. We would like to find a new maximum or upper
bound on the degrees of growth functions for a given d. A theorem by Dr. Ellingsen
gives us a starting point.

Theorem 2 (Ellingsen). If there are d + i words of length d, the growth function
is either exponential or bounded by a polynomial of degree i + 1.

This gives us a really high upper bound on the possible degrees for our growth
functions. There are 2d words of length d, which we can write as d+(2d−d) words,
so the growth of our algebra with corresponding ideal generated by words of length
at most d+1 is either exponential or bounded by a polynomial of degree 2d−d+1.

Although d + 1 is not a maximum for a growth function, we can show that growth
functions up to degrees d + 1 are attainable. To prove this we need a few more
definitions.

Definition 8. Let v be a word of length p and w a word of length d ≥ p. w is
periodic provided w is a prefix of vj from some positive integer j. We call v a
base for w and the length p is the period for w. The smallest possible period is the
minimal period.

Example 10. 1.) Let w = x2yx2yx. Then w has minimal period 3 with base x2y.
Note that w also has period 6 with base x2yx2y.
2.) Let u = x2yx2. Interestingly u has periods 3 and 4 with bases x2y and x2yx
respectively.

Definition 9. Let w = a0a1 . . . ad−1 be a word of length d. Then any word of the
form aiai+1 . . . ad−1a0 . . . ai−1 is called a cyclic permutation of w.

Note that we can draw an arrow from any word to exactly one cyclic permutation
of itself, namely a0a1 . . . ad−1 → a1a2 . . . ad−1a0.
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Example 11. Let w = xy2xy. Then the cyclic permuations of w are xy2xy, y2xyx, yxyxy, xyxy2, yxy2x, xy2xy.
Note these all connect and give us a cycle: xy2xy → y2xyx → yxyxy → xyxy2 →
yxy2x → xy2xy.

Lemma 1. Let w be a word of length d. Every vertex on a cycle of length p < d
must be periodic with minimal period of length p. Moreover, the bases of length p
for any two words on these cycles are cyclic permutations of each other.

Proof. FINISH ¤

Proposition 7. Let w be a word of length d with minimal period d. Then w and
its cyclic permutations form a cycle of length d.

Proof. Let w0 = w. We know that the cyclic permutations of w are on a path
of length d that begins and ends at w0: w0 → w1 → · · · → wd−1 → w0 where
w1, w2, . . . , wd−1 are cyclic permutations of w. Suppose that this path does not form
a cycle. In other words, some of our vertex words are equal. We will show that w0

is on a cycle of length less than d. Consider the set of ordered pairs of equal words,
U = {(wi, wj)|wi = wj and i < j}. Choose i1 the least index of the first coordinates
of the elements of U . Choose j1 the largest index such that (wi1 , wj1) ∈ U . We
begin our path w0 → w1 → · · · → wi1 = wj1 (if i0 = 0, this is just the vertex w0). If
there is no (wi, wj) ∈ U with i > j1, then w0 → w1 → · · · → wi1 → wj1+1 → · · · →
wd−1 → w0 is a cycle of length at most d − 1. Suppose there is an ordered pair
(wi, wj) ∈ U with i > j1. Then choose i2 to be the least index greater than j of the
first coordinates and choose j2 the greatest index such that (wi2 , wj2) ∈ U . Then we
extend the path: w0 → · · · → wi1 → wj1+1 → · · · → wi2 = wj2 . By choice of i1 and
i2, each of these words are distinct. Again, if there is no (wi, wj) ∈ U with i > j2,
we have that w0 → · · · → wi1 → wj1+1 → · · · → wi2 → wj2+1 → · · · → wd−1 → w0

is a cycle. Otherwise, we repeat this process. Since our ik’s are strictly increasing
and less than d − 1, this will terminate, leaving us with a cycle of length smaller
than d. By the preceding lemma, w has period smaller than d, a contradiction to
minimal period d. ¤

Let [u] denote all cyclic permutations of the word u. We will write [u] → [v] to
denote that some cyclic permutation of u connects to some cyclic permutation of
v.

Proposition 8. For some ideal I generated by words of length at most d + 1, the
corresponding algebra has growth function of degree d + 1.

Proof. Consider the path [xd] → [xd−1y] → [xd−2y2] → · · · → [x2yd−2] → [xyd−1] →
[yd]. We have cycles of length 1 at xd and yd. Let 1 ≤ i ≤ d− 1. The word xd−iyi

has minimal period d. By the proposition, xd−iyi and its cyclic permutations form
a cycle of length d. Note the number of x’s in each of these words is d − i. This
yields d + 1 cycles on a path. Since words on different cycles have different number
of x’s, the cycles are disjoint.

¤
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Additionally, any degree smaller than d + 1 can be attainable by removing the
arrows corresponding to any number of cycles along the above path. We would
like to know the maximum possible degree that is attainable for d = 4. We can do
this by putting as many distinct cycles on a path as possible by using the smallest
cycles first. For d = 4, there are 24 = 16 possible vertices to use in cycles. We want
to start by finding all the cycles which contain only one vertex, namely, x4 and y4.
By exhaustion, we can find all cycles containing 2, 3, and 4 vertices.

Number of vertices in a cycle Number of cycles
1 2
2 1
3 2
4 3

By using two cycles with 1 vertex, one cycle with 2 vertices, two cycles with 3
vertices, and one cycle with 4 vertices, we use 14 out of the total 16 possible
vertices 1(2) + 2(1) + 3(2) + 4(1) = 14. We cannot include another cycle with 4
vertices because we would use some vertices twice which would give us exponential
growth. Thus, we could potentially connect these 6 cycles in a path which would
correspond to a maximum possible degree of 6 for the growth function. This is
just a possible upper bound and is not the actual path as shown previously. Our
previous example in fact shows 6 is the upper bound.

Consider d = 5

Number of vertices in a cycle Number of cycles
1 2
2 1
3 2
4 3
5 ≥ 4

Similarly to the d = 4 case, we can count the number of distinct cycles that we can
put in a path using only 25 = 32 vertices. 1(2) + 2(1) + 3(2) + 4(3) + 5(2) = 32.
This gives us an upper bound of 10 cycles.
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Conjecture 2. For d prime, there are 2d−2
d cycles of length d.

Example 12. For d = 5, we have 25−2
5 = 6 cycles of length 5. We have connected

all 6 cycles of length 5 on a path.

Example 13. For d = 3, note d is prime, the path with 22−2
2 + 2 = 4 cycles is

x3 → [x2y] → [xy2] → y3.

For d = 5, the path with 23−2
3 + 2 = 8 cycles is

x5 → [x4y] → [x3y2] → [x2y3] → [x2yxy] → [xy2xy] → [xy4] → y5

We have also shown this is true for d = 7 for a path with 27−2
7 + 2 = 20 cycles.

Conjecture 3. For d prime, all of the cycles of length d can be connected on a
path.

Proposition 9. Let d be an odd integer. For some ideal I generated by words of
length at most d+1, the corresponding algebra has growth function of degree 2d−2.

Proof. Consider the path [xd−iyi] → [xd−i−2yixy] → [xd−i−1yi−1] → [xd−i−1yi+1].
We have an arrow [xd−iyi] → [xd−i−2yixy] because xd−i−1yix ∈ [xd−iyi] and
xd−i−1yix → xd−i−2yixy. We have an arrow [xd−i−2yixy] → [xd−i−1yi−1] because
yixyxd−i−2 ∈ [xd−i−2yixy] and yi−1xyxd−i−2 ∈ [xd−i−1yi−1] and yixyxd−i−2 →
yi−1xyxd−i−2. Finally, we have an arrow [xd−i−1yi−1] → [xd−i−1yi+1] because
xyxd−i−1yi−1 ∈ [xd−i−1yi−1] and yxd−i−1yi ∈ [xd−i−1yi+1] and xyxd−i−1yi−1 →
yxd−i−1yi. For i = 2, 4, . . . , d− 3, these paths connect end to end since we always
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have an arrow xd−i−1yi−1 → xd−i−2yi+2. Consider the path [xd] → [xd−1y] →
[xd−2y2] → · · · → [x2yd−2 → [xyd−1] → [yd] where the middle consists of the previ-
ously described paths of length 4 connected end to end. This path contains 2d− 2
cycles. Take I to be the ideal containing the words corresponding to all arrows not
on this path. ¤
Additionally, we see that growth functions of any degree less than 2d−2 is attainable
by removing any combination of cycles from the path we constructed in our proof.


