

Licenciatura en Matemáticas Aplicadas

Examen de Álgebra Lineal 18 de mayo de 2018

Nombre del Estudiante:		

Resuelve los siguientes ejercicios justificando todas tus respuestas.

1. Demuestra que si $T:\mathbb{R}^2\to\mathbb{R}^2$ es una transformación lineal de la forma

$$T(x,y) = A \begin{pmatrix} x \\ y \end{pmatrix},$$

donde A es una matriz invertible 2×2 , entonces:

- a) La imagen de una recta es una recta.
- b) La imagen de una recta que pasa por el origen es una recta que pasa por el origen.
- c) Las imágenes de rectas paralelas son rectas paralelas.
- 2. Sea $T: \mathbb{R}^4 \to \mathbb{R}^2$ una transformación lineal. Si el núcleo de T es

$$\{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_1 = 5x_2 \text{ y } x_3 = 7x_4\}$$

demuestra que T es suprayectiva.

- 3. Sean $T: \mathbb{R}^2 \to \mathbb{R}^2$ la reflexión con respecto a la recta y = x y $U: \mathbb{R}^2 \to \mathbb{R}^2$ la rotación de $\pi/2$ con centro en el origen. Hallar la matriz de $(U \circ T)^3$.
- 4. Sea A una matriz real simétrica de $n \times n$, supongamos que λ_1 y λ_2 son valores propios distintos de A con correspondientes vectores propios v_1 y v_2 . Demuestra que v_1 y v_2 son ortogonales.
- 5. Sean Ay B matrices de tamaño $n \times n$. Demuestra que traza(AB) = traza(BA). ¿Es cierto que traza(ABC) = traza(ACB)? Demuestra o da un contraejemplo.