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Abstract
In the spinal cord of the anesthetized cat, spontaneous cord dorsum potentials (CDPs) appear
synchronously along the lumbo-sacral segments. These CDPs have different shapes and
magnitudes. Previous work has indicated that some CDPs appear to be specially associated
with the activation of spinal pathways that lead to primary afferent depolarization and
presynaptic inhibition. Visual detection and classification of these CDPs provides relevant
information on the functional organization of the neural networks involved in the control of
sensory information and allows the characterization of the changes produced by acute nerve
and spinal lesions. We now present a novel feature extraction approach for signal
classification, applied to CDP detection. The method is based on an intuitive procedure. We
first remove by convolution the noise from the CDPs recorded in each given spinal segment.
Then, we assign a coefficient for each main local maximum of the signal using its amplitude
and distance to the most important maximum of the signal. These coefficients will be the input
for the subsequent classification algorithm. In particular, we employ gradient boosting
classification trees. This combination of approaches allows a faster and more accurate
discrimination of CDPs than is obtained by other methods.

(Some figures may appear in colour only in the online journal)

1. Introduction

Classification of central nervous system signals recorded
using different techniques, such as electrospinogram,
electroencephalography or magnetoencephalography, is a task
present in many biomedical scenarios, like, for example, brain–
computer interface design [1–5].

Spontaneous spinal activity (SSA) in the cord dorsum
was first recorded more than 60 years ago in [6] and [7] in the
spinal cord of the cat. The SSA is characterized by a noise-like
background activity recorded at the dorsal surface of the spinal
cord. This can be observed as the occurrence of relatively large
potentials in the absence of any stimulation (spontaneous cord

dorsum potentials or CDPs). Studies using intact and freely
moving cats show that the SSA recorded in such animals is
similar to that observed in anesthetized animals except that
frequency and amplitude are both lower [8].

Several investigators [9–11] have documented the nature
of the spontaneous CDPs recorded in the anesthetized cat.
These CDPs have different shapes and amplitudes. CDPs that
are above 5–50 μV, start from a relatively flat baseline and
last 40–70 ms, are usually purely negative CDPs (nCDPs) or
negative–positive CDPs (npCDPs). The nCDPs and npCDPs
appear to be generated by neurons located at the dorsal horn of
the lumbar spinal cord, receiving mono and/or oligosynaptic

1741-2560/12/056009+11$33.00 1 © 2012 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. (A) Recordings that show synchronization and high correlation in different lumbar segments of CDPs (L4–L7) and DRPs of L6
(DRP L6) in the anesthetized cat. These occur throughout the recording at different time intervals. (B) nCDPs without DRP and npCDPs
that appear to be associated with presynaptic inhibition due to the presence of DRP.

excitatory inputs from low-threshold cutaneous afferents [10].
See [12] for a review.

Unlike the nCDPs, the npCDPs have recently been found
to be preferentially associated with spontaneous dorsal root
potentials (DRPs), which are a sign of primary afferent
depolarization and presynaptic inhibition [13]. Figure 1(A)
illustrates samples of nCDPs and npCDPs recorded in one
typical experiment that are similar to those reported in this
paper. In this case, spontaneous CDPs were simultaneously
recorded from four spinal segments on the left side (L4, L5,
L6 and L7), together with the DRPs, recorded from the central
end of a small L6 dorsal root filament on the left side. The
CDPs recorded from the L6 segment were usually larger than
those recorded from the other segments. Vertical lines labeled
a, c and d show three L6 npCDPs associated with DRPs, while
line b shows nCDPs occurring without DRPs. Panels B and C
show several superposed nCDPs, npCDPs and corresponding
DRPs. Note that, in C, the npCDPs with a larger positive
component appeared in association with the largest DRPs.

In previous studies, the program used to separate the
spontaneous CDPs according to their shape and amplitude
was based on the visual selection of a few nCDPs and npCDPs
whose means were later used as templates to retrieve the
nCDPs and npCDPs for the whole recording period [13].
Usually three experts visually inspected the output CDPs to
remove signals without the predetermined characteristics (see
[13] for more details). The visual selection of nCDPs and
npCDPs took hours or even days. Therefore, we aimed
at designing a faster and automatic procedure to classify
spontaneous CDPs.

Typically, some feature extraction approach applied to
raw signals precedes the classification procedure. Some well-
known examples are based on amplitude values [14], band
powers [15], power spectral density values [16], autoregressive

coefficients (AR) [17], principal component analysis (PCA)
[18] and independent component analysis (ICA) [19].

In this paper, we propose to analyze the main peaks of the
CDPs and summarize the entire signal in a few coefficients
derived from the amplitude and separation of the peaks. The
objective is to mimic the intuitive classification rule used by the
experts to distinguish spontaneous CDPs generated by neurons
located in the dorsal horn of the lumbar spinal cord.

The rest of the paper is organized as follows. Section 2
presents the underlying methodology on which the proposed
approach is based. In particular, we give a brief description of
the discrete wavelet transform (DWT), boosting classification
trees and state-of-the-art feature extraction. Section 3
introduces the core of the method. Sections 4 and 5 describe
data and results with, respectively, synthetic and real data sets.
Finally, section 6 sums up the paper and outlines future work.

2. Underlying methodology

In this section, we briefly describe the DWT [20], which
we use to approximate the signal while removing noise.
Also, we outline the principles of boosting classification trees
[21]. Although we have tested other supervised classification
paradigms, such as bagged trees, support vector machines or
quadratic discriminant analysis [21], they have been found to
behave worse in this setting.

2.1. Discrete wavelet transform

Unlike Fourier analysis, which establishes a frequency
representation of an analog signal, wavelet theory uses a time–
frequency representation. The DWT maps an input signal
of T values onto components of different frequencies. For
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Figure 2. Wavelet signal decomposition of some signal (top) into a detailed component (middle) and an approximation component (bottom).

simplicity, T is usually considered to be a power of 2, but this
is not strictly necessary.

Let x = (x1, . . . , xT )′ be a discretized signal. The DWT
of x is computed by passing it through a sequence of filters.
The signal is decomposed using a high-pass filter and a low-
pass filter. In this paper, we use a least-asymmetric mother
wavelet filter of length 8. After downsampling the redundant
information, this process halves the time resolution, splitting
the signal into two vectors of T/2 values: the detailed x0,
generated by the high-pass filter, and the approximation x1,
generated by the low-pass filter. Figure 2 illustrates a T =
250 raw signal (top) decomposed into a detailed component
(middle) and an approximation component (bottom).

We can further decompose x1 down to level p, obtaining
an approximation vector xp with T/2p coefficients. Thus,
xp contains a noise-free, compact description of the original
signal x, whose detail level depends on p. As explained below,
this is the first step of our approach. We use the wavelets R
package4 for this purpose.

2.2. Boosting classification trees

Boosting is an extremely successful idea within machine
learning theory. In this paper, we apply boosting classification
trees to the preprocessed signals, in the final classification step.
Boosting classification trees are based on the combination
of many simple base learners to produce a powerful final
classifier. The base learners are simple classification trees.
Prediction is performed by a weighted majority vote:

T = sign

(
K∑

k=1

wkT
(k)

)
, (1)

4 http://cran.r-project.org/web/packages/wavelets/index.html.

where the actual classification T is the weighted sum
(given weights wk) of the outputs T (k) ∈ {−1, 1} of K
(sequentially built) simple classification trees. This scheme
can be generalized by using base learners that output real-
valued confidence predictions (probabilities) mapped to the
interval [−1, 1] [22]. To keep the notation uncluttered, we
drop the explicit algorithm input from the expression.

Hence, at each step k, the algorithm has to induce both
a classification tree and a weight wk. The classification tree
is trained over a weighted version of the data set, using the
weights ν1, . . . , νN , where N is the number of data instances.
The weights ν1, . . . , νN are computed so that data instances
that were misclassified in the previous age are given more
importance. The weights wk are computed as a function of
the error at this step, typically as wk = log((1 − εk)/εk)),
where εk is the error made by the tree k. In this way, more
influence is attached to the more accurate trees.

Following this scheme, the boosting procedure can be very
efficiently performed using a two-terminal node classification
tree (also called decision stump) as the basic classifier; see
[21] for details. The method works insofar as single classifiers
are (just slightly) better than random guessing, which is the
case for two-terminal node classification trees. As it uses only
two-terminal node trees, however, the resulting model does
not consider interactions between the variables. As a general
rule, if (J + 1)-terminal node trees (J � 1) are used, the final
model considers interactions up to order J. Here, we consider
two-level interactions.

In this paper, we use a faster, more sophisticated
implementation of this basic scheme, called gradient boosting
[23]. Gradient boosting makes use of numerical optimization
techniques to approximate the solution of the boosting
classification trees problem (in this case, with J = 2). In
particular, the minimization of the binomial likelihood loss
function derived from equation (1) can be formulated as a

3
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convex optimization problem and solved by gradient descent.
We use the gbm R package5.

Since the training data set is formed by a collection of
signals whose class (CDP or not CDP) is determined by visual
identification, it is natural to consider a richer representation
of the class that reflects label uncertainty. This is motivated
by the error proneness and subjectivity of the labeling process.
For example, instead of a binary value, the algorithm input can
be a percentage reflecting the confidence of a signal being a
CDP, mapped to be in the interval [−1, 1]. If several experts
are available, this percentage can be obtained from the ratio of
experts that labeled the signal as a CDP. We can use gradient
boosting trees to handle uncertainty in the labeling process by
applying the boosting regression trees approach. This approach
minimizes a squared error loss function instead of the binomial
likelihood. Since the actual prediction is a real value in [−1, 1],
we can use the sign for the actual classification. The gbm R
package includes the boosting regression trees methodology.
A natural alternative, not implemented in gbm, is to adapt
the binomial likelihood loss function to make use of CDP
probabilities instead of binary responses.

2.3. State-of-the-art feature extraction methodology

In this section, we briefly describe three popular feature
extraction techniques that will be used in sections 4 and 5
for comparison purposes: AR [17], PCA [24] and ICA [25].

The AR method is based on linear regression, where the
responses are the signal values and the regression covariates
are the γ previous signal values. Assuming centered data, a
γ -order AR model is a type of random process that imposes a
linear relation

xt =
γ∑

l=1

ωlxt−l + ε, t ∈ {γ + 1, . . . , T },

where ε is the Gaussian white noise and ω = (ω1, . . . , ωγ )′ are
the AR coefficients, which will play the role of the predictors in
the subsequent classification algorithm. The tuning parameter
is thus γ .

PCA obtains a linear decomposition of the data intended to
capture maximal variance. Let X denote the N ×T matrix with
one row per signal. PCA is based on the eigen-decomposition
of the sample covariance matrix X ′X/N, defined as

X ′X = VD2V ′,

where V is a T × T orthogonal matrix spanning the row space
of X (an orthogonal basis) and D is a T × T diagonal matrix,
with diagonal entries d1 � d2 � . . . � dp. Such values are
the singular values of X . The classifier inputs are the first Q
columns of V that correspond to the highest eigenvalues, i.e.
the columns which have the highest variance among all the
linear combinations of the data set columns. Those columns
are called the principal components. The tuning parameter can
be either the percentage of variance that we intend to capture
or the value of Q. We use the prcomp built-in R command.

ICA aims at separating the different sources from which
some multivariate data are generated, identifying a matrix

5 http://cran.r-project.org/web/packages/gbm/index.html.

of independent latent components that we can use as the
classification algorithm input. The difference from classic
factor analysis [26] is that ICA is built under the assumption
of mutual statistical independence and non-Gaussianity of
the sources, whereas factor analysis assumes non-correlated,
Gaussian distributed data. In this paper, we run ICA on the
projection of X onto its Q principal component directions, i.e.
on the first Q columns of V , previously computed by PCA. Let
VQ be the T × Q matrix with the first Q columns of V . The
ICA model is defined as

XVQ = SA′,

where A is a Q × Q orthogonal matrix of loadings and S is an
N×Q matrix that encodes the latent variables or factors, which
represent common sources of variation for XVQ. The columns
of S represent non-Gaussian, independent variables. It is
assumed that V ′

QX ′XVQ = NI and S′S = NI. The objective
is to find A such that S holds the mentioned conditions. A
is typically estimated by information theory techniques, such
as the minimization of the mutual information between the
components of XVQA. When the estimates are constrained
to be uncorrelated, this amounts to maximizing the departure
from Gaussianity of the estimates. Then, the tuning parameter
is Q and the columns in S are the extracted features. We use
the fastICA R package.

3. Feature extraction based on peak analysis

Our aim is to use some feature extraction method to map each
T -value signal onto a meaningful vector of M components,
where M is some small value. A gradient boosting algorithm
is then run to train an accurate classifier on these M-value
vectors. M is, then, the number of features to extract. The
general idea is to represent each main peak (either maximum
or minimum) by some value that quantifies its magnitude and
distance to the main maximum. In the following, we detail
each step of the devised feature extraction procedure6. This is
enacted separately for each signal.

The first step is to approximate each signal by the DWT
(see section 2.1) in order to retain the main information and
then identify the peaks. The DWT transforms each original
T -value signal into an approximation s = (s1, . . . , sT/2p )′.
We denote the signal value of peak i as αi ∈ {s1, . . . , sT/2p},
placed at the time point ti ∈ {1, . . . , T/2p}. Obviously, if αi

is a minimum, then αi−1 and αi+1 correspond to maxima and
vice versa (unless αi is the leftmost or rightmost peak).

Let �max be the height difference between the highest
maximum and the lowest minimum, �max = max{|αi −
αi′ |}i�=i′ , where {|αi − αi′ |}i�=i′ is the set of height differences
between all peaks of the approximated signal. We assume
that the signal is not completely flat and has at least one peak,
because, otherwise, the signal would not have been considered.
Let tmax be the time point of the highest maximum.

We discard all peaks αi that do not satisfy

|αi − αi−1| � δ�max and |αi − αi+1| � δ�max, (2)

6 R code is available on request.
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Figure 3. Raw 200 ms signal (top) and p = 6 approximation component (bottom), where main peaks are indicated by vertical lines. Only
the mean peak is marked in the top signal. The time gap between adjacent points in the bottom graph is 3.2 ms.

where δ ∈ (0, 1) is some parameter. This way, we discard those
peaks that do not have a minimum slope. Figure 3 illustrates
a raw signal (top) and the p = 6 approximation component,
where the selected peaks (peaks that satisfy condition (2)) are
indicated by dashed lines (bottom).

Since we want to characterize the signal according to the
nature of its maxima, the next step is to assign a measure βi to
each maximum. Assuming that αi is a maximum, we define βi

as

βi = �−
i �+

i φσ (ti − tmax), (3)

where �−
i and �+

i are defined, given some parameter τ , as

�−
i =

{
max{|αi − s j|}ti− j�τ if ti − ti−1 � τ

|αi − αi−1| otherwise

and

�+
i =

{
max{|αi − s j|}0< j−ti�τ if ti+1 − ti � τ

|αi − αi+1| otherwise,

and φσ (·) is some kernel function. We use the well-known
tri-cube kernel

φσ (d) =
{

(1 − |d|3)3 if |d| � σ

0 otherwise,

where σ > 0 is the kernel parameter.
Intuitively, �−

i (�+
i ) measures the signal difference

between this maximum and the minimum just on the left (on
the right). If this minimum is further than τ , then �−

i (�+
i ) is

the signal decrement within this τ -radius neighborhood. The
value �−

i for the principal maximum is indicated for τ = 3 in
figure 3.

We now keep the M + 1 highest βi values. Recall that
we have defined βi only when αi is a maximum. We form the

β∗ = (
β∗

1 , . . . , β∗
M+1

)′
vector by sorting the defined elements

βi in decreasing order:

β∗
1 > β∗

2 > . . . > β∗
M+1,

where the last components can be zero.

Algorithm 1. Feature extraction based on peak analysis.

Obtain an approximation s with the DWT.
Identify the peaks and store their signal values in α.
Compute �max = max({αi − αi′ }i�=i′ ).
Discard those peaks that do not satisfy equation (2).
Compute β by equation (3).
Sort β and keep the M + 1 first components to obtain β∗.
Output

(
β∗

2 /β∗
1 , . . . , β∗

M+1/β
∗
1

)′
.

Finally, we rescale β∗ by applying the perspective
function, which divides each element of β∗ by β∗

1 , and we then
remove the first component from the resulting vector (which
is equal to 1). The resulting vector of inputs for the supervised
classifier is then

(
β∗

2 /β∗
1 , . . . , β∗

M+1/β
∗
1

)′
. The entire procedure

is repeated for each signal in the data set. Algorithm 1 outlines
the proposed feature extraction procedure.

Table 1 shows the value of βi, obtained with equation (3),
for the maxima of the signal depicted in figure 3. Note that
the minima are not assigned a βi value. Note also that some
peaks (peaks that correspond to time points 21, 22 and 28 in
the approximation scale) have been discarded because they do
not satisfy equation (2). For M = 3, for example, we would
have β∗ = (0.4468, 0.0090, 0.0042, 0.0038)′.

Note that, if the signal has two relevant peaks, the method
will consider the highest peak as the maximum peak, treating
the other one as any other peak. If two or more peaks are very
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Figure 4. Time in seconds taken by the entire feature extraction
method (solid line), showing the computation time of the DWT
phase (dashed line) and the remaining steps (dotted line).

Table 1. Time point (ti), signal value (αi), type of peak and values of
�−

i , �+
i and βi of the selected peaks for the signal depicted in

figure 3. The main peak is highlighted.

i ti αi Type �−
i �+

i βi

1 2 −0.05 Maximum 0.0476 0.0223 0.0001
2 3 −0.08 Minimum – – –
3 5 0.03 Maximum 0.1090 0.0925 0.0038
4 8 −0.06 Minimum – – –
5 10 0.00 Maximum 0.0578 0.0902 0.0042
6 13 −0.09 Minimum – – –
7 18 0.76 Maximum 0.6054 0.7379 0.4468
8 21 0.03 Minimum – – –

11 24 0.07 Maximum 0.0467 0.2114 0.0090
12 26 −0.14 Minimum – – –
14 30 −0.12 Minimum – – –

close to each other, then, by definition, they will not be CDPs,
and, then, the signal will be labeled as non-CDP. Otherwise,
if the signal is considered as a CDP, then the ‘main’ peak is
expected to be relatively far from the others. Consequently,
thanks to the kernel function φσ (·), the βi value of the second
peak will be low and will probably not be included in the
vector of extracted features.

The proposed method is fast thanks to the DWT step, with
parameter p, which shortens the signals to handier sizes. The
DWT is a rapid procedure, too. For example, figure 4 shows,
for different values of p, the time in seconds taken by the
entire feature extraction method for a real data set (described
below) with N = 1577 signals and T = 2001 (200 ms),
divided into the DWT phase and the remaining steps. We have
used an Intel Core 2 Duo processor (2.26 GHz). The standard
deviation of time across different executions is negligible.
Note that p is the only parameter related to computational
efficiency. Classification by gradient boosting is also very fast
for moderate dimensions.

In summary, the proposed feature extraction approach
involves the configuration of several input parameters: p, M,
δ, τ and σ . Although a cross-validation procedure can be
enacted to select all these parameters, most of them are not
crucial and can be set to any reasonable value. Note that, given
the computational efficiency of the method, cross-validation
is affordable. The relevant parameters are, in fact, M and p.

The choice of p should be governed by the signal length and
the signal-to-noise ratio. For longer and noisier signals, the
value of p is incremented in order to, respectively, reduce the
computational burden and avoid spurious minima/maxima. M
can be selected by cross-validation. For the other parameters,
we have observed that the following values yield good results:
δ = 0.01, τ = 3 and σ = 18. The classification output does
not vary much for sensible variations of these parameters.

4. Experiments with synthetic data

4.1. Data generation

Synthetic data were obtained by adding several types of noise
(with different frequencies and amplitudes) to a pure CDP
without noise (like, for example, those in figure 1(C)) Each
signal is thus labeled with its confidence level being a CDP
(either nCDP or npCDP), which depends on the type and
amount of added noise. The confidence level is a quantitative
measure of how well each signal fits the definition of CDP
according to an external observer. Signals with 1.0 CDP
confidence have only Gaussian white noise with low variance.
We have added a low-amplitude noise sinusoidal signal to
signals with 0.8 CDP confidence. In addition to the low-
amplitude noise signal, we have added a medium-amplitude
noise sinusoidal signal to signals with 0.6 CDP confidence.
Also, we have added a high-amplitude noise signal to signals
with 0.4 CDP confidence. Signals with 0.0 CDP confidence
have only noisy sinusoidal signals and no CDP signal at all.
Finally, each signal was translated at random over the time
scale. Figure 5 shows some examples of generated signals. The
generated data set comprises N = 500 signals with T = 2000
(200 ms) time points. Of these, 80 are 1.0 confidence CDPs,
80 are 0.8 confidence CDPs, 80 are 0.6 confidence CDPs, 80
are 0.4 confidence CDPs and 180 are non-CDPs (with a 0.0
confidence level). Note that the objective of these experiments
is to measure how the models are capable of learning from
data and not to give a rigorous CDP characterization. Hence,
the models obtained from this data set should not be used for
classification of future real signals.

4.2. Results

In this section, we compare the feature extraction approach
based on peak analysis (PA) with AR, PCA and ICA on
a synthetic data set. We have run the gradient boosting
classification trees algorithm on the features extracted by AR,
PCA, ICA and PA. We also test the amplitude thresholding
(AT) method, which is widely used, for example, for neural
spike detection [27]. In an unsupervised manner, AT would
select the signals whose main peak amplitude exceeds a
certain threshold, which is typically set as a multiple of
the estimated noise standard deviation. In this case, since
we have a labeled training data set, we obtain the median
of the main peak amplitudes (normalized by the estimated
noise standard deviation) separately for CDPs and non-CPDs.
We denote them, respectively, as mCDP and mnonCDP. In a
supervised way, an incoming signal will be classified as CDP
when its normalized main peak amplitude is closer to mCDP

6
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Figure 5. Some artificially generated signals. Each chart indicates the confidence level of the signal being considered a CDP (either nCDP
(top) or npCDP (bottom)).

than to mnonCDP. Then, the threshold is automatically set to
(mCDP + mnonCDP)/2. Unlike PA, AT does not consider the
relation between peaks, exclusively focusing on the main peak.
Before applying AR, PCA, ICA and AT, a low-pass filter with
detail level p = 2 is applied to each signal to remove noise, so
that signals have 500 time points.

For our approach, we have set p = 6, so that the signals
are reduced from T = 2000 to 32 time points. Also, we have
used δ = 0.01, τ = 3 and σ = 18. We have performed 20-fold
cross-validation to evaluate the methods, leaving 25 signals out
for testing at each iteration and using the remaining 475 for
training and selection of the parameters M (PA), γ (AR), Q
(PCA) and L (ICA). Note that AT does not require parameter
selection, so, at each cross-validation iteration, we use the 475
samples for training.

Table 2 shows mean and standard deviations of sensitivity
and specificity for each approach. Sensitivity is the number
of identified CDPs divided by the total number of true CDP.
Specificity is the number of identified non-CDP signals divided
by the total number of signals that are not CDPs. For evaluation
purposes, a signal is considered to be a CDP if the confidence
is higher than 0.5.

On the one hand, PA, AR and PCA yield a high sensitivity.
Although sensitivity is best for PCA, the differences to PA and
AR are not statistically significant according to a t-test with
a significance level of 0.01. The t-test, following Student’s
t-distribution, has been arranged to be one-sided. As expected,
since it only considers one peak and, hence, disregards the
relation between peaks, AT exhibits a poor sensitivity. On
the other hand, PA clearly yields the highest specificity, with
a statistically significant difference from the other methods.
Note that PCA, along with AR, has the worst specificity,
overshadowing the good sensitivity results. ICA, instead, gives

a fine balance between sensitivity and specificity, but this is still
worse than PA. PA, then, clearly produces the best sensitivity–
specificity compromise.

Figure 6 illustrates the accuracy for each method and each
CDP confidence level. For each confidence level in the x-axis,
we show the results for the signals with such confidence level.
For evaluation purposes, we consider a signal to be a CDP
if its confidence is greater than 0.5. The figure is divided
by a dotted vertical line, so that the left part corresponds
to signals with confidence level lower than 0.5 (considered
non-CDP) and the right part corresponds to signals with
confidence level greater than 0.5 (considered CDP). Whereas
the accuracy reported on the left part of the chart accounts for
specificity errors (non-CDP signals misclassified as CDPs), the
accuracy reported on the right accounts for sensitivity errors
(CDP signals misclassified as non-CDPs). Note that PA is the
only method that is able to correctly classify CDP with an
uncertain label (0.4 and 0.6). This can be interpreted as a sign
of robustness.

5. Experiments with real data

5.1. Data acquisition

Data were obtained from four control recordings performed
in adult cats. Guidelines contained in Principles of Laboratory
Animal Care7 were followed in all cases and the experiments
were also approved by the Institutional Bioethical Committee8.
The animals were initially anesthetized with pentobarbitone
sodium (40 mg kg−1 i.p.) and additional doses were given

7 NIH publications 85-23, revised in 1985.
8 Protocol number: 0126-03.
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Figure 6. Accuracy for each method and each CDP confidence level.

Table 2. Sensitivity and specificity results for the boosting classification trees algorithm after feature extraction performed by PA, AR, PCA
and ICA, and for AT, for the synthetic data set. The best results are highlighted. The symbol ∗ is added when the difference between the best
and the second-best method is statistically significant.

PA AR PCA ICA AT

Sensitivity 0.95(±0.07) 0.94(±0.06) 0.99(±0.09) 0.86(±0.10) 0.65(0.22±)
Specificity 0.98 ∗ (±0.03) 0.74(±0.09) 0.68(±0.12) 0.89(±0.08) 0.86(0.12±)

intravenously to maintain an adequate level of anesthesia,
tested by assessing that withdrawal reflexes were absent, the
pupils were constricted and the arterial blood pressure was
between 100 and 120 mm Hg−1. The carotid artery, radial
vein, trachea and urinary bladder were cannulated. A solution
of 100 mM of sodium bicarbonate with glucose 5% was given
i.v. (0.03 ml min−1) to prevent acidosis [28]. When necessary,
dextran 10% or ethylephrine (Effortil, Boering-Ingelheim) was
administered to keep blood pressure above 100 mm Hg−1.

The lumbosacral and low thoracic spinal segments
were exposed. After the surgical procedures, the animals
were transferred to a stereotaxic metal frame allowing
immobilization of the spinal cord, paralyzed with pancuronium
bromide (0.1 mg kg−1) and artificially ventilated. The tidal
volume was adjusted to maintain 4% of CO2 concentration in
the exhaled air. To prevent desiccation of the exposed tissues,
pools were made with the skin flaps, filled with paraffin oil
and maintained between 36o and 37o by means of radiant heat.

Four ball Ag–AgCI homemade electrodes were placed on
the cord dorsum of the lumbosacral enlargement at different
spinal segments to record the spontaneous CDPs against an
indifferent electrode placed on the paravertebral muscles.
The whole recording period of the SSA ranged from 10 to
30 min in order to have sufficient samples for further analysis.
Spontaneous CDPs were recorded with separate preamplifiers
(band-pass filters from 0.3 Hz to 10 kHz), displayed on an
oscilloscope, digitized with a sampling rate of 10 kHz and
stored for subsequent processing. After the experiment, the
spontaneous CDPs recorded in L6 segments that exceeded a
predetermined amplitude (5 μV) were sequentially displayed
and aligned by centering the signal at the highest point of the L6

recordings. This way, we obtained N = 1577 signals, whose
segment size is T = 2001 time points (200 ms), with 100 ms
before the peak and 100 ms after the peak. Of these, only 379
are CDPs (where 210 are nCDPs and 169 are npCDPs) that
could be associated with presynaptic mechanisms (npCDPs).
No confidence levels are available for these data.

5.2. Results

In this section, we evaluate the described methods on real
data. The tested techniques are again PA, AR, PCA, ICA
and AT. We used a similar experimental scheme to that in
section 4.2. In this case, however, to improve the algorithm’s
performance, after the feature extraction step, we have grown
the data set by including (randomly selected) repeated copies
of CDPs. This is done to balance the data set, because there
are few CDP instances. Again, we use 20-fold cross-validation.
Table 3 shows mean and standard deviations of sensitivity and
specificity for each approach.

PA clearly produces the best sensitivity–specificity
compromise, followed by ICA. Sensitivity is of special interest
because the value of identifying the true CDPs is high. Note
that sensitivity is the highest for PA, followed by PCA, from
which the difference is statistically significant according to a
t-test with a significance level of 0.01. PA and AR also have
the best specificity. Note that, on the other hand, sensitivity is
poor for AR and specificity is poor for PCA. The AT results
are rather average.

Figure 7 shows some examples of signals that only PA is
able to identify as CDPs (either an nCDP or an npCDP). They
have been approximated with the DWT for clarity. Although

8
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Figure 7. Some CPDs that were only identified by the PA approach. Most of them are npCDPs. Time scale is in ms and signal scale is in μV.

Figure 8. Some CDPs that could not be identified by the PA approach. The method that identified the signal as CDP (or none) is specified in
each case. Time scale is in ms and signal scale is in μV.

Table 3. Sensitivity and specificity results for the boosting classification trees algorithm after feature extraction performed by PA, AR, PCA
and ICA, and for AT, for the real data set. The best results are highlighted. The symbol ∗ is added when the difference between the best and
the second-best method is statistically significant.

PA AR PCA ICA AT

Sensitivity 0.83 ∗ (±0.10) 0.54(±0.14) 0.72(±0.11) 0.67(±0.09) 0.66(±0.09)
Specificity 0.67(±0.08) 0.67(±0.04) 0.57(±0.07) 0.64(±0.06) 0.62(±0.06)

these are not the best defined CDPs, they meet the requirements
for categorization as CDPs. None of the other state-of-the-
art feature extraction methods (or AT), however, lead to their
identification.

Figure 8 shows some CDP signals obtained from the same
set of recordings that PA could not identify. As observed, most

of them are noisy or contain several significant peaks that
are relatively close to the main peak. Although they were
visually labeled as CDPs, their inclusion in this category is
debatable because they do not have a well-defined baseline
or they have multiple peaks around the main one. The signal
in the middle row and left column, for example, has three

9
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significant peaks. The proposed approach can thus be used to
check for errors in the visual classification, and is, in any case,
a handy aid for the slower manual procedure.

6. Discussion

In this paper, we have presented a novel feature extraction
approach based on the signal peaks. We have verified the
usefulness of the method for identifying spontaneous CDPs
(nCDPs and npCDPs together in the same classification)
that are generated by neurons located at the dorsal horn of
the lumbar spinal cord receiving mono and/or oligosynaptic
excitatory inputs from low-threshold cutaneous afferents.
Experiments with synthetic data reinforce this claim. The
algorithm is very fast and outperforms state-of-the-art methods
for CDP recognition (nCDPs and npCDPs) in terms of
accuracy. Hence, the introduced approach is a useful tool for
preselecting well-defined CDPs and is an aid for a highly time-
consuming manual procedure.

Note that some problem-related heuristics could be
applied to further improve classification accuracy. For
example, a significant maximum that is relatively close to
the main maximum of the signal is discarded as a CDP with
possible presynaptic inhibition association. Such heuristics
have been excluded from the procedure for the sake of
generality.

The method is not well suited for discriminating between
nCDPs and npCDPs. Such automatic classification could be
done by comparing the initial and final voltage values to
ascertain the presence or absence of a positive component
following the negative part. As mentioned above, nCDPs and
npCDPs can also be distinguished by observing that, unlike
the spontaneous nCDPs, the spontaneous npCDPs occur in
association with DRPs, which are a sign of primary afferent
depolarization and presynaptic inhibition. DRPs recordings
are, however, not feasible in humans. Since presynaptic
inhibition has been shown to be altered after spinal lesions
(leading, for example, to spasticity, paresthesias and weakness
[29, 30]), reliable discrimination of nCDPs and npCDPs is of
potential clinical interest.

Since the algorithm is able to learn the signal
characterization from data, we believe that it could also be used
for neural spike detection or other signal type classification.
However, the focus of the method is on the relation between the
peaks in the signal. It requires further investigation to ascertain
whether this feature is adequate for other domains.
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