REPRODUCTIVE CYCLE OF MALE AND FEMALE SPINY LIZARDS, *SCELOROPUS MELANORHINUS*, IN A TROPICAL DRY FOREST

AURELIO RAMÍREZ-BAUTISTA, VÍCTOR H. LUJA, CARLOS BALDERAS-VALDIVIA, AND RAÚL ORTIZ-PULIDO

Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, A.P. 1-69 Plaza Juárez, Pachuca Hidalgo, C.P. 42001, México (AR-B, CB-V, RO-P)
El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal, Av. Centenario km 5.5, A.P. 424, C.P. 77000, Chetumal Quintana Roo, México (VHL)
Correspondent: aurelio@uaeh.edu.mx

Abstract—Male and female reproductive cycles are described for *Sceloporus melanorhinus* in Chamel, Jalisco, Mexico. Both males and females reached sexual maturity at 62 mm snout–vent length. Testes mass of adult males began to increase in March, reached maximum size in July, and began to decrease in August and September, reaching minimum size in October and November. Testes size was associated with increasing photoperiod, but not with temperature or precipitation. Enlarged vitellogenic follicles first appeared in May, and oviducal eggs were found from June to September. Vitellogenesis, follicular growth, and egg production were correlated with increasing photoperiod, temperature, and precipitation. Females produced a single clutch during the reproductive season. Mean clutch size based on oviducal eggs was 7.7 (range = 5 to 9). Clutch size was not correlated with female snout–vent length.

Resumen—Se describen los ciclos reproductivos de machos y hembras de *Sceloporus melanorhinus* en Chamela, Jalisco, México. Los machos y las hembras alcanzaron la madurez sexual a los 62 mm de longitud hocico-cloaca (LHC). La masa de los testículos de los adultos machos comenzó a incrementar en marzo en julio, alcanzó el máximo en julio, y comenzó a decrecer en agosto y septiembre, alcanzando el tamaño mínimo en octubre y noviembre. El tamaño testicular estuvo asociado con el incremento del fotoperiodo, pero no con la temperatura o precipitación. Los primeros foliculos vitelgénicos alargados aparecieron en mayo, y los huevos oviducales de junio a septiembre. La vitelogenesis, crecimiento follicular, y producción de huevos estuvieron correlacionados con el incremento en el fotoperiodo, temperatura, y precipitación. Las hembras produjeron una sola puesta durante la estación reproductiva. El tamaño medio de la puesta basado en los huevos oviducales fue de 7.7 (intervalo = 5 a 9). El tamaño de la puesta no estuvo correlacionado con la LHC de la hembra.

Lizards exhibit a great diversity of reproductive activity patterns (Fitch, 1970, 1985; Benabib, 1994; Ramírez-Bautista and Witt, 1997, 1998; Feria-Ortiz et al., 2001). Reproduction in many lizard species inhabiting seasonal tropical environments is cyclical, with courtship, mating, and copulation occurring at the beginning of the wet season, incubation during the wet season, and hatching at the end of the wet season (Ramírez-Bautista and Witt, 1997, 1998). Other tropical species are aseasonal in reproduction, exhibiting reproductive activity throughout the year (Benabib, 1994).

Considerable variation exists in lizard life-history characteristics, such as clutch, egg size, fecundity, and age at maturity (Tinkle et al., 1970; Benabib, 1994; Ramírez-Bautista and Witt, 1997, 1998). Large-bodied species generally have larger clutch sizes than small-bodied ones (Fitch, 1970, 1985). Variation in life-history traits among populations and species can be attributed to a combination of historical (phylogenetic), environmental (abiotic), and ecological (biotic) factors (Ballinger, 1983; Dunham and Miles, 1985; Witt, 1990). Environmental and ecological factors affecting life history variation include photoperiod, rainfall, temperature, and food availability (Dunham, 1982; Marion, 1982). Dunham et al. (1988) showed that variation in reproductive charac-
cteristics among major taxa is greater than variation within taxa, thus demonstrating a phylogenetic effect.

Although reproductive cycles of several Mexican species of Sceloporus have been studied recently (Benabib, 1994; Feria-Ortiz et al., 2001; Ramírez-Bautista and González-Romero, 2002; Valdés-González and Ramírez-Bautista, 2002), nothing has been published about reproductive characteristics of the Mexican arboreal, large-bodied lizard S. melanorhinus (Ramírez-Bautista, 1994). Previously, this species was assigned to the S. spinosus group (Smith, 1959), but Wiens and Reeder (1997) included S. melanorhinus in the S. clarkii group.

We describe in detail the male and female reproductive cycles of S. melanorhinus and address the following questions. Do males and females become sexually mature at the same size? What are the annual reproductive cycles of females and males? Is peak reproductive activity associated with environmental factors (temperature, precipitation, or photoperiod)? Does clutch size vary with female snout-vent length (SVL)? Are reproductive characteristics of S. melanorhinus similar to those of other spiny lizards of similar body size?

METHODS—This study was conducted at Chamela, near the Estación de Biología “Chamela” (EBCH, at 19°30'N, 105°03'W), at elevations from 10 to 584 m in Jalisco, México. The dominant vegetation type is tropical dry forest, with rains occurring in late spring and summer. Mean annual temperature is 24.9°C, with average annual rainfall of 748 mm, ranging from 585 to 961 mm (Bullock, 1986). Monthly mean temperature and precipitation over a 10-yr period were recorded at the Estación Meteorológica in the region. Data on photoperiod were taken from the Astronomical Almanac (1984).

We collected 30 female and 32 male lizards from January to December 1989. Lizards were humanely killed and fixed in 10% formalin in the laboratory, where gonadal analyses were performed. The following measurements were taken on necropsied lizards: SVL, testes length and width (to nearest 0.1 mm), and diameter of vitellogenic and nonvitellogenic follicles (to nearest 0.1 mm). The SVL of the smallest female with enlarged vitellogenic follicles or oviductal eggs was used to estimate minimum SVL at maturity. Males were considered sexually mature if they contained enlarged testes and convoluted epididymides typically associated with sperm production (Goldberg and Lowe, 1966).

Because organ size (males) and follicles (females) can vary with SVL, we first calculated regressions of log-transformed organ volume data against log of male and female SVL. For those regressions that were significant (indicating a body size effect), we calculated residuals from the relationship of organ size to SVL (all variables log-transformed) to produce SVL-adjusted variables. We used these residuals to describe the organ sizes and reproductive cycles. We performed one-way ANOVA on the organ volume residuals (with month as the factor) to determine whether significant monthly variation existed.

Length and width of gonads were used to obtain testicular and follicular volume (V), calculated with the formula for the volume of an ellipsoid:

\[V = \frac{4}{3}\pi ab \]

where \(a \) is one-half the shortest diameter and \(b \) one-half the longest diameter. Testicular and follicular volumes were used as indicators of reproductive activity of male and female lizards. Clutch size was determined by counting eggs in the oviducts of adult females.

Means ± 1 SE are presented unless otherwise indicated. Parametric statistical tests were used when possible. Otherwise, appropriate nonparametric tests were substituted. Statistical analyses were performed with the Macintosh version of Statview 4.01 (Abacus Concepts, 1992).

RESULTS—Sexually mature males of S. melanorhinus varied in size from 62 to 95 mm SVL \((mean = 84.6 ± 1.8 \text{ mm}, n = 32)\). Sexually mature females ranged in size from 62 to 98 mm SVL \((mean = 87.9 ± 1.2 \text{ mm}, n = 30)\). Males and females were similar in average size (Mann-Whitney U-test, \(Z = -0.48, P = 0.631 \)).

A significant relationship existed between the log_{10}-transformed testes volume and the log_{10} of male SVL \((R^2 = 0.13, F_{1,30} = 4.5, P < 0.05)\). Male testes enlarged in March and reached maximum size from May to July (Fig. 1). Testes began to decrease in size during August and September and reached minimum size by November. An ANOVA on the regression residuals indicated significant variation in testicular volume among months \((F_{10,21} = 32.0, P < 0.0001)\). The increase in testicular volume was positively correlated with photoperiod \((r = 0.81, P < 0.001)\), but not with temperature \((r = 0.15, P = 0.65)\) or precipitation \((r = 0.021, P = 0.948)\).

A significant relationship existed between the log_{10}-transformed volumes of follicles-eggs and the log_{10} SVL of females \((R^2 = 0.25, F_{1,28} = 9.1, P = 0.005)\). ANOVA on regression resid-
was 1,310 mm3 (July), 885.7 mm3 (August), and 869.8 mm3 (September).

Among 30 females, 16 (53.3%) had non-vitellogenic follicles, 2 (6.7%) had vitellogenic follicles, and 12 (40%) had oviductal eggs. Mean number of nonvitellogenic follicles was 14.3 ± 1.1 (range = 2 to 20). Based on counts of the oviductal eggs, mean clutch size was 7.7 ± 0.33 (range = 5 to 9, n = 12), and there was no correlation between clutch size and female SVL ($r = 0.39, F_{1,10} = 1.9, P > 0.05$).

Based on capture-recapture data (A. Ramírez-Bautista, pers. obser.), mean SVL at hatching was 34.2 ± 0.28 mm (range = 29 to 41 mm, n = 110). Incubation period was measured between the date that females first had oviductal eggs and the date on which first hatchlings appeared. On 25 June, the first females were found with oviductal eggs. The first hatchlings were seen on the study site on 13 August. Therefore, estimated incubation period was 49 days.

Discussion—Males and females of *S. melanorhinus* reached sexual maturity at a similar size and also attained similar size. No sexual dimorphism was detected in size between sexes of this population. Mature females and males were similar in SVL, as observed in previous studies of the genera *Sceloporus* (Fitch, 1978; Valdés-González and Ramírez-Bautista, 2002) and *Urosaurus* (Ramírez-Bautista and Vitt, 1998).

Sceloporus melanorhinus males and females showed seasonal reproductive activity. Males attained maximum testes size during May, whereas females attained maximum egg volume from March to September. The reproductive cycle of males and females is slightly offset (asynchronous), but most mating occurred in July and early August (A. Ramírez-Bautista, pers. obser.). Reproductive, territorial, and courtship behavior by males began between late March and early June, during the dry season, before females had oviductal eggs, but the peak of mating was during July, in the wet season, when females began producing oviductal eggs. This reproductive pattern is similar to that of other species from the same region, such as *Anolis nebulosus* (Ramírez-Bautista and Vitt, 1997) and *Urosaurus bicarinatus* (Ramírez-Bautista and Vitt, 1998), and also similar to other species of *Sceloporus* (Table 1).
cies have a relatively short reproductive season, in contrast to other syntopic species that have extended reproductive activity, such as *Scleropus utiformis* (May to December; Ramírez-Bautista and Gutiérrez-Mayén, 2003), *Cnemidophorus linearissimus* (April to January; Ramírez-Bautista et al., 2000), and *C. communis* (April to October; Ramírez-Bautista and Pardo-De la Rosa, 2002). These data suggest that species comprising the lizard community from the Chamela region have different requirements for reproduction. Testes size and vitellogenesis increased as photoperiod increased; temperature and precipitation might have also affected reproductive seasonality, as in some other species (Marion, 1982; Ramírez-Bautista and Vitt, 1997, 1998). Male reproduction ended during August, even though the rainy season does not end until October. Compared with other species of the same region, male reproduction began and ended earlier (March to August). Female reproductive activity began in June and decreased in October, with most egg production from July to September, coinciding with the rainy season. Although the 3 environmental factors influence initiation of reproduction in females, timing of rainfall could be the ultimate cue for reproduction through its effects on egg production and offspring survival (Andrews and Sexton, 1981).

Scleropus melanorhinos and *S. clarkii* have a similar body size and clutch size (Table 1), and because both lizards belong to the *clarkii* group, the small clutch sizes of both species might reflect historical effects on life-history traits. Large-bodied species in other clades, such as *S. horridus* and *S. spinosus* (*spinous* group; 14.8 and 18.5 eggs, respectively; Valdez-González and Ramírez-Bautista, 2002), *S. magnifier* and *S. orcutti* (*magnifier* group; 12.4 and 11.0 eggs, respectively; Mayhew, 1963; Fitch, 1978), and *S. olivaceus* (*olivaceus* group; 14.3 eggs; Fitch, 1978), have large clutch sizes (Table 1). Similarity in clutch sizes among closely related species could represent historical effects, and differences among populations could reflect evolved adaptive differences as a result of different environments or proximate effects of abiotic factors in different environments (Dunham and Miles, 1985).

We would like to thank the staff of the Estación de Investigación, Experimentación y Difusión de...
Chamela, UNAM for supporting our fieldwork. Financial support stemmed from a grant from the Facultad de Ciencias, UNAM (ARB), as a part of the program for graduate students (PADEP) during 1989-1990, and to the projects UAEH-DIP-ICBI-AAB-020 and PROMEP-SEP. We thank 2 anonymous reviewers, who greatly improved our manuscript, J. Marshall for checking the English of the first version of the manuscript, and R. León-Rico for logistical help.

LITERATURE CITED

Associate Editor was Geoffrey C. Carpenter.