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Artificial Neural Networks Architectures

Basic definitions

Definition

An artificial neural network is a function F: S ×W → B, where S
represents the stimuli space, B the behaviors space and y = F(x; Ω) is the
rule of correspondence, with x ∈ S, y ∈ B and Ω ∈ W the weight
parameters to be determined through a proper training or learning process
inside the weight space W.

weights Ωx y

F

?
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Artificial Neural Networks Architectures

General structure

x1

xi

xn

y1

yj

yl

Stimulus x = (x1, . . . , xi , . . . , xn) ∈ S
Behavior y = (y1, . . . , yj , . . . , yl) ∈ B

ωr
ωs

ωt

ωu
ωv

Ω = (. . . ,ωr , . . . ,ωv , . . .) ∈ W
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Artificial Neural Networks Architectures

General neuron structure

I T Oxi

x1

xn

ω′

yj

−1

θ

...

...

Stimulus x = (x1, . . . , xi , . . . , xm) ∈ S ′

I : S ′ ×W ′ → R, I(x; ω′, θ) ∈ R

T : R → R, T(I(x; ω′, θ)) ∈ R

O : R → R,O(T(I(x; ω′, θ))) ∈ R
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Artificial Neural Networks Architectures

Transfer or activation functions

(Chapter 2 and 11 (Network function) MatLab nnd command)
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Artificial Neural Networks Architectures

Feedforward artificial neural networks
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Artificial Neural Networks Architectures

Feedback artificial neural networks
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Artificial Neural Networks Architectures

Competitive artificial neural networks

. . . . . .

. . . . . .
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Artificial Neural Networks Learning paradigms

Supervised learning

Main characteristics

1 The easiest way of learning.

2 The training process requires a supervisor or an instructor (not a
critic!).

3 Stimuli and their correspondent behaviors need to be previously
specified.

4 Square error provides theoretical basis for learning procedures.
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Artificial Neural Networks Learning paradigms

Unsupervised learning

Main characteristics

1 The most difficult way of learning.

2 The training process does not require supervisor or instructor, neither
critic.

3 Stimuli are the only data to be previously specified.

4 Looking for correlation between weights and stimuli.

5 Hebb’s rule provides theoretical basis for learning procedures.
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Feedforward Artificial Neural Networks
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Feedforward Artificial Neural Networks Multilayer perceptron

Simple perceptron

Main properties (Chapters 3 and 4 MatLab nnd command)

1 The architecture consists of only one layer with a previously specified
number of neurons.

2 Only linearly separable problems can be solved.

3 The training procedure is based on the application of the recurrence
equation (supervised learning)

ωnew = ωold + η[dT − hardlim(ωoldxT )]x

4 Classification problems with two or more classes can be solved
without difficulty only if they are linearly separable.

5 Impossible to solve the XOR problem (non linearly separable
problem), without introducing an additional layer of neurons.
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Feedforward Artificial Neural Networks Multilayer perceptron

Multilayer perceptron

Main properties (Chapters 9 and 11 (Backpropagation, Function
approximation and Generalization))

1 The architecture consists of one or more layers with a previously
specified number of neurons.

2 Non linearly separable problems can also be solved.

3 The training procedure is based on the application of the recurrence
equation (supervised learning)

ωnew = ωold − η
∂E2

∂ω
,

where E2 is the square total error as a function of the weights ω and
∂
∂ω is the gradient operator.
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Feedforward Artificial Neural Networks Radial Basis Function

Local receptive field

set of neurons
defining local re-
ceptive field

neuron

stimulus x on the set

sensory surface
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Feedforward Artificial Neural Networks Radial Basis Function

Types of local receptive fields

on center - off surround off center - on surround
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Feedforward Artificial Neural Networks Radial Basis Function

Mathematical model

Fourier’s transform

f : R → R
f (x) =

1

2π

∫ +∞

−∞
g(y)e ixy dy ,

where g is the inverse Fourier’s transform

Inverse Fourier’s transform

g(y) =

∫ +∞

−∞
f (z)e−izy dz
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Feedforward Artificial Neural Networks Radial Basis Function

Dirac’s delta

Dirac’s delta definition

f (x) =
1

2π

∫ +∞

−∞
f (z)

∫ +∞

−∞
e i(x−z)y dydz =

∫ +∞

−∞
f (z)δ(x − z)dz

δ(x − z) =
1

2π

∫ +∞

−∞
e i(x−z)y dy
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Feedforward Artificial Neural Networks Radial Basis Function

Dirac’s delta properties

1 ∫ ∞
−∞

δ(x − z)dz = 1

2

δ(x − z) = lim
ε→+∞

sin ε(x − z)

π(x − z)

3 Dirac’s delta is a sequence of functions

δε(x − z) =
sin ε(x − z)

π(x − z)
, 0 < ε

4 Dirac’s delta es an even function

δ(x − z) = δ(z − x)
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Feedforward Artificial Neural Networks Radial Basis Function

Some sequence examples
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Feedforward Artificial Neural Networks Radial Basis Function

Some approximations to Dirac’s delta sequence

1 For z ’s very close to x , δε(x − z) ≈ ε
π , 0 < ε

2 e−λ(x−z)2
, 0 < λ

3 1
(x−z)2+c2

4 Two dimensional Dirac’s delta approximation
e−λ1(x−z1)2−λ2(y−z2)2

, 0 < λ1, λ2

5 Another two dimensional Dirac’s approximation sin ε1(x−z1) sin ε2(y−z2)
π2(x−z1)(y−z2)
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Feedforward Artificial Neural Networks Radial Basis Function

Graphics of some two dimensional sequences
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Feedforward Artificial Neural Networks Radial Basis Function

Graphics of some two dimensional sequences
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Feedforward Artificial Neural Networks Radial Basis Function

Summary (first steps to build rbf artificial neural network)

1 Define a mother function to generate the whole class of generating
functions (the basis of the space of functions).

2 For every class in the problem, take a proper function from the basis.

3 Assign the selected function to one neuron in the neural network.

4 The selected set of neurons defines just one layer of neurons.

5 The linear combination of the elements of the set provides an
approximation to the desired result.

6 An output layer with a single neuron defines the approximated output.

7 It could be there some intersections of local receptive fields of a
subset of some basis functions.

8 First layer with parameters of basis functions as weights to be
determined through training process (supervised learning).

9 Second layer with single neuron with weights to be determined
through training process (supervised learning).
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Associative Artificial Neural Networks

Topics

1 Artificial Neural Networks
Architectures
Learning paradigms

2 Feedforward Artificial Neural Networks
Multilayer perceptron
Radial Basis Function

3 Associative Artificial Neural Networks
Hebb’s rule
Characteristics of the conditioning process

4 Neurofuzzy Systems
Basic extensions of crisp neurons

5 Support Vector Machines

6 Spiking Neurons
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Associative Artificial Neural Networks Hebb’s rule

Pavlov’s conditioning
unconditioned stimulus

unconditioned behavior

conditioned stimulus

initially
without behavior

unconditioned stimulus

conditioned stimulus

same unconditioned behavior

conditioned stimulus

same
unconditioned
behavior
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Associative Artificial Neural Networks Characteristics of the conditioning process

Conditioning neuron structure

x0

xi

x1

xn

ω1

yj

−1

θ

...

...

Stimulus x = (x0, x1, . . . , xi , . . . , xn,−1)

Weights ω = (ω0, ω1, . . . , ωi , . . . , ωn, θ)

ω0

ωi
ωn

Observation!

Since the unconditioned stimulus is previously learnt, the weights ω0 and θ
are not modified along the learning process. The conditioned stimulus
needs to be learnt, so the corresponding weights need to be modified.
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Associative Artificial Neural Networks Characteristics of the conditioning process

Summary

Main properties (Chapter 14 (Competitive learning))

1 The only data previously known are the stimuli.

2 There are no critic, instructor or supervisor.

3 The learning process is completely unsupervised.

4 The Hebb’s learning rule provides the mathematical basis for
modeling the association.

5 The association process looks for correlation between weights and
stimulus.

6 If forgetting is considered, the learning rule is

ωnew = ωold + ηy(x− ωold)

7 The weights are bounded, as well.
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6 If forgetting is considered, the learning rule is

ωnew = ωold + ηy(x− ωold)

7 The weights are bounded, as well.
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Neurofuzzy Systems
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Neurofuzzy Systems Basic extensions of crisp neurons

Focus of the main thrust of fuzzy neural nets

1 The fuzzification of the dendritic inputs.

2 The aggregation operation of a conventional neuron.
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Neurofuzzy Systems Basic extensions of crisp neurons

Basic structure of a fuzzy neuron
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Support Vector Machines
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Support Vector Machines

Hard margin support vector machine

L1

L2

ω

x

x′
y = x + λω

y = x′ + λ′ω⊥

intersection point

?

Line equation for L2 and L2

line equation L2

y = x + λω, λ ∈ R

line equation L1

y = x′ + λ′ω⊥, λ′ ∈ R
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Support Vector Machines

Shortest distance from x to line L1

In the intersection point there do exist scalars λ and λ′ such that the
following holds

x + λω = x′ + λ′ω⊥

After multiplying with dot product both sides of the equation by ω⊥

ω⊥ · x = ω⊥ · x′ + λ′||ω||2

So that, the scalar λ′ in the intersection point is given by the equation

λ′ =
ω⊥ · (x− x′)

||ω||2

Therefore, the shortest distance from x to line L1 is given by the expression

|ω⊥ · (x− x′)|
||ω||
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Support Vector Machines

Shortest distance

This is so, since

|ω⊥ · (x− x′)|
||ω||

=
ω⊥ · x− ω⊥ · x′

||ω||

And, after adding a zero value

ω⊥ · x + b − ω⊥ · x′ − b

||ω||
=

ω⊥ · x + b

||ω||
=

c

||ω||

(ω⊥ · x′ − b = 0 is the equation of L1 and ω⊥ · x + b = c is the equation
of the line passing through x and parallel to L1)
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Support Vector Machines

Two classes case

L1

L2

x

x′

ω

ω

Important question

What’s the minimum weight vector ω maximizing the distance

c

||ω||
?
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Support Vector Machines

Hard margin support vector machine

Problem

Minimize

Q(ω) =
1

2
||ω||2

Subject to the constraints

yi (ω
⊥xi + b) ≥ 1,∀i = 1, 2, . . . ,M

Data xi ’s that satisfy the equalities are called support vectors (deleting all
the data that satisfy the strict inequalities do not affect the resulting
hyperplane)
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